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We show theoretically that multipartite entanglement is generated on a massive scale in
the spectrum, or optical frequency comb, of a single optical parametric oscillator (OPO)

emitting well above threshold. In this system, the quantum dynamics of the strongly

depleted pump field are responsible for the onset of the entanglement by correlating the
two-mode squeezed, bipartite-entangled pairs of OPO signal fields. (Such pairs are inde-

pendent of one another in the undepleted, classical pump approximation.) We verify the

multipartite nature of the entanglement by evaluating the van Loock-Furusawa criterion
for a particular set of entanglement witnesses deduced from physical considerations.
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1 Introduction

The generation of massively entangled states is of great importance for quantum information.

For quantum communication, good examples are multiparty quantum teleportation [1] and

quantum secret sharing [2]. For measurement-based quantum computing, cluster states [3, 4]

are known to enable one-way quantum computing [5, 6]. Constructing large-scale quantum

registers and processors is therefore one of the prime objectives of experimental quantum

information, along with the suppression or alleviation of decoherence.

In most cases, the approach to scaling up the size of quantum registers or processors is

a “bottom-up” one, in which individual Qbits (following Mermin’s more harmonious spelling

[7]) are put together to form, say, an entangled quantum register [8]. Now, there are, in-

deed, extremely few examples of “top-down” approaches to multipartite entanglement, in

which a single physical system enables intrinsic generation of multipartite entanglement over

a large scale. To the best of our knowledge, there are but two such systems. The first one

is the individually trapped atoms in an optical lattice initially loaded with a Bose-Einstein

condensate subsequently undergoing a Mott insulator transition [9]. The second one is the

ensemble of entangled quantum modes of light, a.k.a. “Qmodes,” defined by the resonant

frequencies—or quantum optical frequency comb (QOFC)—of an optical parametric oscilla-

tor (OPO), in which the QOFC is entangled by the OPO’s nonlinear crystal [10, 11]. Recently,
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the simultaneous generation of 15 identical quadripartite “square” cluster states was realized

experimentally over 60 Qmodes of a single OPO [12].

The QOFC entanglement experiments mentioned above necessitate an exquisitely sophis-

ticated OPO [12], operated below threshold [13], and in which two or three different nonlinear

interactions must be phasematched [14, 15].

In this paper, we present the theoretical discovery of massive multipartite entanglement

generation in a much simpler system and in a completely different regime. The system is but

a standard OPO, in which only one nonlinear interaction is phasematched. In addition, the

OPO must be operated well above threshold. It is somewhat surprising that such a simple,

well-known system might lend itself to the generation of such an exotic quantum state as

a massively multipartite one. In particular, we emphasize that the entangling interaction

is only pairwise. It is the fact that all entangled pairs are derived from the same, strongly

depleted pump field that generates the multipartite entanglement by way of a bona fide 3-

field Hamiltonian. This is therefore a fundamentally different situation from that of the

below-threshold OPO in which pairwise interactions are chained and all their pump fields are

undepleted, yielding quadratic nonlinear interactions [10] in lieu of cubic ones.

This paper is organized as follows. In Section 2, we introduce the system Hamiltonian,

distinguishing between the depleted and undepleted pump cases. In Section 3, we solve

the equations of motion for the system by employing a linearization procedure. We are

certainly aware that more sophisticated treatments exist [16, 17, 18, 19, 13] and may indeed be

interesting to use in order to explore this system further. In particular, it is worth mentioning

the new physics of noncritical squeezing generation—that is, squeezing independent of the

system parameters such as pump amplitude—in the transverse spatial modes of an OPO,

which was recently predicted via the phenomena of spontaneous symmetry breaking [20, 21]

and pump clamping [22], the latter having already been observed in the laboratory [23]. Also,

in this novel regime, the well-known, laser-like (and usually slow) phase diffusion process of

an OPO [24, 25] becomes entwined with the squeezed variables and affects detection [21],

which isn’t usually the case in a critically squeezing two-mode OPO [24, 25]. As the present

paper doesn’t pertain to noncritical squeezing, we have set aside this issue of phase diffusion

for further studies, under the hypothesis that its effect may be similar to that in the usual

critical squeezing situation. We therefore focus here on the nontrivial new results obtained

from the simple approach adopted here. In Section 4, we use the multipartite inseparability

criterion derived by van Loock and Furusawa [26] to establish the existence of multipartite

entanglement in the optical frequency comb of a single OPO. We then conclude.

2 The quantum optical frequency comb of a single OPO above threshold

2.1 Hamiltonian of the system

We consider the simplest possible case of an OPO with a single, nondegenerate nonlinear

interaction. In this case the interaction-picture Hamiltonian is

Hint = 2i~χβ
n∑
i=1

(a†ia
†
−i − aia−i), (1)

where β is the classical (real) and constant (undepleted) pump field (in practice a stable,

narrow-linewidth, continuous-wave laser) and a±i are the photon annihilation operators of
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entangled Qmodes ±i, of frequencies

ω±i =
ωp
2
±
(
i+

1

2

)
∆, (2)

where ωp = ωi + ω−i is the pump frequency (see Fig. 1) and ∆ is the free spectral range of

Fig. 1. Optical frequency comb defined by the resonant modes of the OPO cavity, spaced by free

spectral range ∆. The green arrow symbolizes the pump field, placed at half its frequency for
clarity.

the OPO cavity.

Below the OPO emission threshold, such a system is known to emit two-mode squeezed

fields which demonstrate the Einstein-Podolsky-Rosen (EPR) paradox [27, 28]. Above the

OPO threshold, the undepleted classical pump approximation can still be taken to hold and

the generation of EPR states has also been shown to be possible, theoretically [29] and ex-

perimentally [30, 31, 32, 33].a

However, the undepleted classical pump approximation breaks down if the external pump

power is increased significantly above threshold. In that case, the pump must be treated as a

quantum field in the three-wave mixing interaction

Hint = 2i~χ
n∑
i=1

(pa†ia
†
−i − p

†aia−i), (3)

where p is the annihilation operator of the pump field. Recently, it was predicted [34] and

experimentally demonstrated [35] that the pump field participates in three-way entanglement

in this case. Another interesting theoretical analysis showed that the signal fields from two

OPOs pumped by the same field could become entangled [36]. Here, we extend this analysis

to the QOFC of a single OPO, in which a vast number of different Qmode pairs are already

known to be entangled by their parametric downconversion from the pump field [37, 12]. In

the undepleted pump approximation, all EPR pumps are independent. However, when one

considers the OPO well above threshold, there is but a single quantum pump field, whose

strong (ideally total) depletion entail strong correlations between the EPR fields, since a

pump photon downconverting into one Qmode pair will necessarily not be downconverted

aNote that all previous works featured the entanglement of a single Qmode pair at a time, which is not
the situation described by Eq. (1). Indeed, Eq. (1) predicts many independent EPR pairs. Experimentally,
this requires that the OPO cavity be resonant for all Qmode EPR pairs, which can be realized either by
compensating birefringence in a type-II OPO or by using a type-I OPO. Dispersion is neglected in this
discussion as its effects can be neglected for the first tens to hundreds of modes.
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into any other pair. This paper posits that this situation should yield multipartite, rather

than bipartite, quantum correlations and our goal is to ascertain whether they result in

multipartite entanglement, which they do.

3 The quantum optical frequency comb of a single OPO above threshold

As mentioned before, we consider the simplest possible case of an OPO cavity with a single

pump mode and a single nondegenerate interaction in its nonlinear crystal. Such a crystal

implements the Hamiltonian of Eq. (3). We assume a single two-mirror standing wave cavity,

with one mirror of reflectivity R
′

±i = 1 for all modes and the other an output coupler of

R±i = 1−T±i < 1. Taking into account the vacuum modes Ain
i that enter the cavity through

its output coupler, the input-output theory [38, 39] can be used to derive the equations of

motion for the internal cavity modes

ȧi = 2χpa†−i − ki ai +
√

2ki A
in
i (4)

ȧ−i = 2χpa†i − k−i a−i +
√

2k−i A
in
−i (5)

ṗ = −2χ

n∑
i

aia−i − kp p+
√

2kp pin. (6)

Here k±i = T±i/2τ are the loss rates of the cavity mirror for mode i, τ being the cavity round

trip time. In order to solve Eqs. (4-6) we first rewrite field operators as centered fluctuations

about their expectation value

ai = αi + δai (7)

Ain
i = δAin

i (8)

p = $ + δp (9)

pin = $in + δpin. (10)

3.1 Classical steady-state solutions

The semiclassical, or mean value, equations follow directly from Eqs. (4-6):

α̇i = 2χ$α∗−i − ki αi (11)

α̇−i = 2χ$α∗i − k−i α−i (12)

$̇ = −2χ

n∑
i

αiα−i − kp$ +
√

2kp $in. (13)

Now, considering same cavity losses for all signal modes, ki = k−i = ka, the stationary

solutions of the two coupled equations Eqs. (11-12) for semi-classical mean values are

2χ$α0∗
−i = ka α

0
i (14)

2χ$α0∗
i = ka α

0
−i. (15)

this results in |α0
i | = |α0

−i| , |$0| = ka/2χ and φ0i + φ0−i − φ0 = 0 where φ0±i and φ0 are the

respective phases of α0
±i and $0. For simplicity we take $in real and positive therefore based
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on Eq. (13), φ0 = 0 and φ0i = −φ0−i. The stationary solution for the pump field’s mean value

can then be written as

4χ2
n∑
i

|α0
i |2 = kakp(

√
σ − 1), (16)

where

σ =

(
2χ

ka

√
2

kp
$in

)2

. (17)

Clearly, the right-hand side of Eq. (16) must be positive and σ = 1 defines the threshold

pump field

$th
in =

ka
2χ

√
kp
2
, (18)

Hence, σ = ($in/$
th
in)2 is also the pump to threshold power ratio. The classical signal

amplitudes are weakly set by Eq. (16).

3.2 Stability analysis

The stability of the steady-state solution can be determined by a linearized analysis for small

perturbations:

αi = α0
i + δαi (19)

$i = $0
i + δ$i. (20)

Substituting Eqs. (19-20) into Eqs. (11-13), we get

...

δα̇i = kaδα
∗
−i + 2χα0

i δ$ − kaδαi (21)

δ ˙α−i = kaδα
∗
i + 2χα0

−iδ$ − kaδα−i (22)

...

δ$̇ = −2χ

n∑
i

(α0
i δα−i + α0

−iδαi)− kpδ$, (23)

where i = 1, ..., n, n being the number of signal and idler pairs considered inside the cavity.

Defining δA =
(
. . . δαi δα∗i δα−i δα∗−i . . . δ$ δ$∗

)T
We can rewrite Eqs. (21-23)

in block matrix form:

d

dt



...
δαi
δα∗i
δα−i
δα∗−i

...
δ$
δ$∗


=



...
...

...
...

...
...

. . . −ka 0 0 ka . . . 2χα0
i 0

. . . 0 −ka ka 0 . . . 0 2χα0∗
i

. . . 0 ka −ka 0 . . . 2χα0
−i 0

. . . ka 0 0 −ka . . . 0 2χα0∗
−i

...
...

...
...

...
...

. . . −2χα0
−i 0 −2χα0

i 0 . . . −kp 0
. . . 0 −2χα0∗

−i 0 −2χα0∗
i . . . 0 −kp





...
δαi
δα∗i
δα−i
δα∗−i

...
δ$
δ$∗


.

(24)



958 Large-scale multipartite entanglement in the quantum optical frequency comb

We derived the eigenvalues of the matrix in Eq. (24) for n = 1, 2, 3. In all these cases, the

eigenvalue sets have the following form:

{λ} = {0, . . . , 0︸ ︷︷ ︸
2n−1

,−2ka, . . . ,−2ka︸ ︷︷ ︸
2n−1

, λ1, λ2, λ3, λ4}, (25)

where, posing the pump-signal loss ratio κ = kp/ka,

λ1,2 = −1

2
ka

(
κ±

√
κ
[
κ− 8(

√
σ − 1)

])
(26)

λ3,4 = −1

2
ka

(
κ+ 2±

√
(κ+ 2)2 − 8n

√
σ

)
. (27)

Because of the particular symmetry of the problem—namely the block structure of the matrix

in Eq. (24), we argue that it is reasonable to postulate that Eq. (25) is the general eigenvalue

set, ∀n, even though a complete inductive proof is formally required. For certain initial

conditions all 2(2n + 1) eigenvalues of the matrix in Eq. (25) can only be zero or negative,

which ensures the stability of the stationary solution presented in Eq. (16). Equations (26-27)

show that, as the number of times above threshold σ increases, one can always find negative

values for λ1,...,4 by increasing the pump-signal loss ratio κ, thereby tending towards the

doubly resonant OPO, which is always stable.

3.3 Quantum fluctuations

Now, we rewrite Eqs. (4-6) for the quantum fluctuations around these classical mean values.

Notice α∗−i = αi,

˙δai = 2χ(δpαie
iφi +$δa†−i)− kaδai +

√
2kaδA

in
i (28)

˙δa−i = 2χ(δpαie
−iφi +$δa†i )− kaδa−i +

√
2kaδA

in
−i (29)

δṗ = −2χ

n∑
i

(αie
iφiδa−i + αie

−iφiδai)− kpδp+
√

2kpδpin. (30)

We introduce the generalized field quadrature operators as Qi = (eiφia†i + e−iφiai) and Pi =

i(eiφia†i − e−iφiai). Then solve these coupled equations we can use the symmetry of the

equations in the exchange of the two signal modes and introduce the new variables [40]

Qi+ = Qi +Q−i (31)

Qi− = Qi −Q−i (32)

Pi+ = Pi + P−i (33)

Pi− = Pi − P−i. (34)
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The equations of motion for these quadratures are

δQ̇i+ = 4χαiδQp +
√

2ka δQ
in
i+ (35)

δQ̇i− = −2kaδQi− +
√

2ka δQ
in
i− (36)

δQ̇p = −2χ

n∑
i

αiδQi+ − kpδQp +
√

2kp δQ
in
p (37)

δṖi+ = 4χαiδPp − 2kaδPi+ +
√

2ka δP
in
i+ (38)

δṖi− =
√

2ka δP
in
i− (39)

δṖp = −2χ

n∑
i

αiδPi+ − kpδPp +
√

2kp δP
in
p . (40)

As seen from Eq. (36) and Eq. (39), the equations for the antisymmetric modes are decoupled

from the pump and the solutions are, in the frequency domain [40],

δQ̃out
−i (Ω) = − iΩ

2ka + iΩ
δQ̃in
−i(Ω) (41)

δP̃ out
−i (Ω) =

(
−1− 2ika

Ω

)
δP̃ in
−i(Ω). (42)

The frequency-domain equations for the symmetric modes are [40]

iΩδQ̃i+(Ω) = 4χαiδQ̃p(Ω) +
√

2kaδQ̃
in
i+(Ω) (43)

iΩδP̃i+(Ω) = 4χαiδP̃p(Ω)− 2kaδP̃i+(Ω) +
√

2kaδP̃
in
i+(Ω) (44)

iΩδQ̃p(Ω) = −2χ

n∑
i

αiδQ̃i+(Ω)− kpδQ̃p(Ω) +
√

2kpδQ̃
in
p (Ω) (45)

iΩδP̃p(Ω) = −2χ

n∑
i

αiδP̃i+(Ω)− kpδP̃p(Ω) +
√

2kpδP̃
in
p (Ω). (46)

These equations can be easily solved for pump and signal- idler pairs. The output quadratures

are finally determined using input-output relations:

δQout
± =

√
2kaδQ± − δQin

±

δP out
± =

√
2kaδP± − δP in

±
δQout

p =
√

2kpδQp − δQin
p

δP out
p =

√
2kpδPp − δP in

p . (47)
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The solutions of Eqs. (43-46) are

δQ̃out
+i (Ω) = −

1 +
2ka

{
kpΩ + i[Ω2 + 8χ2(α2

i −
∑
j α

2
j )]
}

Ω
(
−ikpΩ + Ω2 − 8χ2

∑
j α

2
j

)
 δQ̃in

+,i(Ω)

− 16iχ2kaαi

Ω
(
−ikpΩ + Ω2 − 8χ2

∑
j α

2
j

)∑
j 6=i

αj δQ̃
in
+,j(Ω)

−
8χ
√
kakpαi

−ikpΩ + Ω2 − 8χ2
∑
j α

2
j

δQ̃in
p (Ω) (48)

δP̃ out
+i (Ω) =

(
−1 +

2ka
2ka + iΩ

− 16χ2kaα
2
i

(2ka + iΩ)[(2ka + iΩ)(kp + iΩ) + 8χ2
∑
j α

2
j ]

)
δP̃ in

+,i(Ω)

− 16χ2kaαi
(2ka + iΩ)[(2ka + iΩ)(kp + iΩ) + 8χ2

∑
j α

2
j ]

∑
j 6=i

αj δP̃
in
+,j(Ω)

+
8χ
√
kakpαi

(2ka + iΩ)(kp + iΩ) + 8χ2
∑
j α

2
j

δP̃ in
p (Ω) (49)

δQ̃out
p (Ω) =

kpΩ− i
(

Ω2 − 8χ2
∑
j α

2
j

)
kpΩ + i

(
Ω2 − 8χ2

∑
j α

2
j

) δQ̃in
p (Ω)

+
4iχ
√
kakp

kpΩ + i
(

Ω2 − 8k2
∑
j α

2
j

) n∑
j=1

αj δQ̃
in
+,j(Ω) (50)

δP̃ out
p (Ω) =

2ka(kp − iΩ) + ikpΩ + Ω2 − 8χ2
∑
j α

2
j

2ka(kp + iΩ) + ikpΩ− Ω2 + 8k2
∑
j α

2
j

δP̃ in
p (Ω)

−
4k
√
ka
√
kp

2ka(kp + iΩ) + ikpΩ− Ω2 + 8k2
∑
j α

2
j

n∑
i=1

αi δP̃
in
+,i(Ω). (51)

Substituting the classical solutions Eq. (16) in Eqs. (48-51) and taking Ω = 0, these equations

yield:

δQout
−i −→ 0 (52)

δP out
−i −→∞ (53)

δQout
+i −→∞ (54)

δP out
+i =

4χ
√
kakpαi

kakp
√
σ

δP in
p −

4χ2α2
i

kakp
√
σ
δP in

+,i −
4χ2αi
kakp
√
σ

∑
j 6=i

αj δP
in
+j (55)

3.3.1 Two-mode squeezing

In order to quantitatively study squeezing behavior, we assumed equal classical mean values

for all pairs. However, we can assume any ratio between the classical mean values, as long
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as they satisfy
∑n
i |αi|2 =

kakp(
√
σ−1)

4χ2 = const, Eq. (16). Therefore the variances of squeezed

and antisqueezed quadratures are

V (Q−i) =
〈
(δQ−i)

2
〉
−→ 0 (56)

V (P−i) =
〈
(δP−i)

2
〉
−→∞ (57)

V (Q+i) =
〈
(δQ+i)

2
〉
−→∞ (58)

V (P+i) =
〈
(δP+i)

2
〉

=
2(σ − 1)

nσ
, (59)

which yields the classic EPR result at threshold (σ = 1), the generation of n independent

entangled (i,−i) pairs.

However, if the OPO is above threshold (σ > 1), the variance of the phase sum, Eq. (59)

will increase from zero [40, 29] and will eventually stop being squeezed. It states the well-

known fact that for the OPO operating well above the emission threshold, twin pairs are not

independent EPR pairs due to the pump statistics, unless kp � ka [29]. This is precisely

the mechanism that we rely upon to create multipartite entanglement in this work. We give

two preliminary examples before turning to the evaluation of precise multimode entanglement

criteria.

3.3.2 Multimode squeezing

We give two examples of squeezed multimode operators which will be useful in the next

section.

First off, specifically combining phase sum operators of two pairs i and j yields

αi(Pj + P−j)− αj(Pi + P−i) −→ 0. (60)

Even though phase sum operators for each pair become noisier with increasing input pump,

this noise can be canceled appropriate linear combinations.

Another interesting example is that of operator
∑n
i=1(Pi + P−i)− xPp. In Fig. 2 we plot

Fig. 2. Plot of nV (Pi +P−i), in red, and V [
∑n

i=1(Pi +P−i)− xPp], in blue, for n = 3 and x = σ.

When σ increases, the variance of Pi+P−i increases from zero and approaches the shot noise level.
However, the variance of

∑n
i=1(Pi + P−i) − xPp, not squeezed at threshold, subsequently drops

from the shot noise level (of value 1 in this graph) and shows squeezing. In this particular graph,

the minimum of V [
∑n

i=1(Pi + P−i) − xPp] occurs at σ = 1.18 but, in general, the value of σ for
which the blue curve reaches its minimum, as well as the value of the minimum itself, depends on

the choice of x.



962 Large-scale multipartite entanglement in the quantum optical frequency comb

its variance as a function of σ, for x = σ. This graph clearly shows that the assumption

of the existence of a correlation between all modes and the pump is a sensible one. Having

established this, we turn to directly testing the existence of multipartite entanglement in our

system.

4 Multipartite entanglement in the OPO well above threshold

4.1 The van Loock-Furusawa inseparability criterion

The van Loock-Furusawa (vLF) multipartite entanglement criterion [26] is the multipartite

generalization of the Duan [41]-Simon [42] criterion, itself the continuous-variable formulation

of the Peres [43]-Horodecki [44] positive partial transpose criterion. A density operator is

partially separable if and only if it can be written as the convex sum

ρ̂ =
∑
i

ηiρ̂i,k1.....km ⊗ ρ̂i,km+1...,kn , (61)

where the mode set (k1, ..., km) is separable from the mode set (km+1, . . . , kn). If we define

two “entanglement witnesses,” quadrature operators with arbitrary real parameter sets {hi}i
and {gi}i,

u = h1Q1 + h2Q2 + · · ·+ hnQn (62)

v = g1P1 + g2P2 + · · ·+ gnPn, (63)

then the separable density operator of Eq. (61) must verify the vLF inequality [26]

Vρ(u) + Vρ(v) > 2
(
|hk1gk1 + · · ·+ hkmgkm |+ |hkm+1gkm+1 + · · ·+ hkngkn |

)
, (64)

whose violation implies the existence of entanglement between mode set (kr,. . . ,km) and

mode set (ks,. . . ,kn). Operators u and v were coined variance-based entanglement witnesses

for continuous-variable systems by Hyllus and Eisert [45], in reference to the original Qbit

expectation-value-based entanglement witnesses [44, 46, 47].

4.2 Multipartite entanglement in a single, depleted-pump OPO

In order to demonstrate multipartite entanglement, we examine the conditions for violation

of all possible vLF inequalities, corresponding to all possible respective mode partitions such

as Eq. (61), and their associated experimental regimes.

4.2.1 Pump-signals partition

We first consider the separability of the sole pump mode from all signal modes. We define u1
and v1 as

u1 =

n∑
i=1

αi
α1

(Qi +Q−i) +
2

x

n∑
i=1

αi
α1
Qp (65)

v1 =

n∑
i=1

(Pi + P−i)− xPp, (66)
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with the real parameter x > 0. Based on Eq. (64), the separability of mode p implies

S1 = V (u1) + V (v1) > 2 (|h−ng−n + · · ·+ h−1g−1 + h1g1 + · · ·+ hngn|+ |hpgp|) (67)

> 2 (2|h1g1 + · · ·+ hngn|+ |hpgp|) (68)

> 2(| 2

α1

n∑
i=1

αi|+ |
2

xα1

n∑
i=1

αi(−x)|) (69)

>
8

α1

n∑
i=1

αi. (70)

Here, and in the following, we make the assumption that all classical amplitudes {αi}i are

equal, for the sake of simplicity. This doesn’t lessen the generality of our treatment and makes

numerical evaluations easier. Under this assumption, we get

S1 > 8n. (71)

Figure 3 displays the maximum violation of the above inequality versus n and σ, for optimized

values of the arbitrary weight x. As can be seen, there always exist values of (n, σ) for

which S1 − 8n is negative, which proves the inseparability of the pump mode from the signal

modes. Unsurprisingly, entangling a larger number of pairs (n) requires a higher pump to

threshold power ratio (σ). However, further increasing the pump power (σ) does degrade the

inseparability, which might just be due to the increasing depletion of the intracavity pump

field.

a1 a−1

a2 a−2

a−nan

ap

Fig. 3. Left, sketch of the mode partition studied. Center, plot of the optimum values of x = xopt
which give maximum violation S1(x) − 8n of the vLF inequality, at a given pump to threshold
power ratio σ and a given number n of mode pairs inside the cavity. Right, plot of the maximum
vLF inequality violation S1(xopt) − 8n, versus σ and n. We took the particular case Ω = 0 and

αi = αj ∀i, j.

4.2.2 Partition of one (aj , a−j) EPR pair

We now study the inseparability of an entangled pair (aj , a−j) from the rest of the signals

and the pump. For such a partition, we define

u2 = Qj+ +

n∑
i 6=j

αi
αj
Qi+ +

2

xαj

n∑
i

αiQp (72)

v2 =

n∑
i 6=j

(
αi
αj
Pj+ − Pi+), (73)
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and the vLF inequality is

S2 = V (u2) + V (v2) > 2 (|2hjgj |+ |2h1g1 + · · ·+ 2hngn + hpgp|) (74)

> 2

∣∣∣∣∣∣
2

1

αj

n∑
i 6=j

αi

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣− 2

αj

n∑
i6=

αi + 0

∣∣∣∣∣∣ (75)

>
8

αj

n∑
i 6=j

αi (76)

> 8(n− 1). (77)

Figure 4 shows the violation of this inequality for a broad range of parameters. It also demon-

strates the necessity of applying larger input pump intensity when considering more pairs

inside the cavity in order to generate inseparability between all pairs, again unsurprisingly.

aj a−j

a1 a−1

a2 a−2

a−nan

ap

Fig. 4. Left, sketch of the mode partition studied. Center, plot of the optimum values of x = xopt
which give maximum violation S2(x)−8(n−1) of the vLF inequality, at a given pump to threshold

power ratio σ and a given number n of mode pairs inside the cavity. Right, plot of the maximum

vLF inequality violation S2(xopt)− 8(n− 1), versus σ and n. We took the particular case Ω = 0
and αi = αj ∀i, j.

4.2.3 Pair set partition

We next turn to partitions {(a1, b1) . . . (ak, bk)}{(ak+1, bk+1) . . . (an, bn)}. The operators are

u3 =

k∑
i=1

Qi+ +

n∑
j=k+1

αj
α1
Qj+ +

2

xα1

n∑
l

αlQp (78)

v3 =

k∑
i=1

n∑
j 6=i

(Pi+ −
αi
αj
Pj+), (79)

and the vLF inequality is

S3 = V (u3) + V (v3) > 2 (|2h1g1 + · · ·+ 2hkgk|+ |2hk+1gk+1 + · · ·+ 2hngn + hpgp|) (80)

> 8k(n− k). (81)

Assuming 1 6 k < n, then it is straightforward to show that 8(n − 1) 6 8k(n − k) 6 2n2.

As a consequence, the vLF inequality S3 is automatically violated when vLF inequality S2 is,

and does not need to be considered separately.
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4.2.4 Single signal mode partition

Finally, we consider partitions of a single signal mode, or several such, all belonging to dif-

ferent EPR pairs (i,−i). Because the signal mode ai is highly entangled to the mode a−i—
and to all other signals by virtue of the preceding—the separability test is simple in the

present case. It is straightforward to show that the necessary vLF inequality for the partition

{a1, . . . , ak}{a−1, . . . , a−k, (ak+1, a−(k+1)), . . . , (an, a−n))} ,

S4 =V

Qj −Q−j +
∑
i6=j

αi
αj

(Qi −Q−i)

+ V

∑
i 6=j

Pi + P−i −
αi
αj

(Pj + P−j)


> 2 (|h1g1 + · · ·+ hkgk|+ |h−1g−1 + . . . h−kg−k + 2hk+1gk+1 + . . . 2hngn|)

> 2| −
∑
i 6=1

αi
α1

+
k∑
i=2

αk
α1
|+ 2|

∑
i 6=1

α−i
α1

+
k∑
i=2

α−k
α1

+ 0|

> 4(n− k), (82)

is always violated in the presence of single EPR pair entanglement. This is because the left

hand side term of Eq. (82) contains EPR nullifiers [48], a.k.a. EPR entanglement witnesses,

whose squeezed variances tend toward zero. The inseparability of any other form of parti-

tions on modes when modes a1 and a−1 are placed in different partitions, can be examined

by inequalities similar to S4 and with nonzero boundaries. Such inequalities are always vi-

olated. Therefore, if EPR entanglement is present (the checking of which is a staple of the

experimental calibration of a regular two-mode squeezer), then the violation of both S1 and

S2 is a necessary and sufficient condition to mode inseparability for all possible partitions in

the optical frequency comb of a single OPO.

4.3 Entanglement between pairs without considering the pump

Here we ask the question of the possibility of multipartite entanglement between twins without

considering the pump field. For that, we rewrite inequality S2 without the pump quadratures:

S
′

2 = V (u
′

2) + V (v
′

2) > 8(n− 1) (83)

with

u
′

2 = Qj+ +

n∑
i 6=j

αi
αj
Qi+ (84)

v
′

2 =

n∑
i 6=j

αi
αj
Pj+ − Pi+. (85)

In Fig. 5, we plot the violation of this inequality. As can be seen by comparing with Fig. 4,

Inequality S
′

2 requires slightly larger σ to be violated, compared to S2, for small values of

n. It shows we need to pump harder (and get closer to total depletion) in order to see pure

entanglement between twin pairs. The arguments of subsections and 4.2.3 and 4.2.4 may be

reused here to complete the inseparability proof.
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Fig. 5. Plot of the vLF inequality violation S
′
2 − 8(n− 1), versus σ, the pump to threshold power

ratio, and n, the number of mode pairs inside the cavity, for Ω = 0 and αi = αj , ∀i, j.

4.4 Optimal entanglement witnesses

A valid question is whether the entanglement witnesses that were derived here on the basis of

physical considerations, namely the pump-depletion-induced correlations between EPR pairs,

are in fact the optimal entanglement witnesses for the system. In other words, do different

observables exist that would lead to even more strongly violated vLF inequalities? Answering

this question should, in turn, inform on what type of entangled state is really generated here.

The search for optimal entanglement witnesses was addressed by Hyllus and Eisert, using

semidefinite programming procedures [45]. While the scope of the present paper is limited to

this successful demonstration of large-scale entanglement in a simple OPO, the exact nature

of the quantum state generated is clearly an interesting followup question, on which light

can be shed by seeking the optimal entanglement witnesses and checking whether they are

different from the ones derived above.

5 Conclusion

We showed that a single OPO operating well above threshold can generate multipartite en-

tanglement in its quantum optical frequency comb. We verified the multipartite nature of

the entanglement by evaluating the van Loock-Furusawa separability criterion over all possi-

ble Qmode partitions. We showed that all of these vLF inequalities can be violated, for an

arbitrary large number of pairs n, simply by increasing the input pump power higher above

threshold.

While the presence of multipartite entanglement in such a simple system is a remarkable

feature, it is important to keep in mind that the exact type of entanglement that is pro-

duced here (GHZ, W, cluster) is difficult to determine. The search for optimal entanglement

witnesses for this system is a promising approach to illuminate this question. Note that pre-

vious work has shown that multipartite cluster-state generation, which was experimentally

demonstrated in a single OPO below threshold [12], should actually fail above threshold [13].

However, the multipartite entanglement that we discovered in the simple OPO above thresh-

old would certainly be useful for quantum communication applications, such as quantum

secret sharing.
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Spontaneous Rotational Symmetry Breaking,” Phys. Rev. Lett. 100, 203601 (2008).

21. C. Navarrete-Benlloch, A. Romanelli, E. Roldán, and G. J. de Valcárcel, “Noncritical quadrature
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