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Eigenvalue-preserving-but-not-completely-eigenvalue-preserving (EnCE) maps were pre-
viously introduced for the purpose of detection and quantification of nonclassical correla-
tion, employing the paradigm where nonvanishing quantum discord implies the existence

of nonclassical correlation. It is known that only the matrix transposition is nontrivial
among Hermiticity-preserving (HP) linear EnCE maps when we use the changes in the
eigenvalues of a density matrix due to a partial map for the purpose. In this paper, we
prove that this is true even among not-necessarily HP (nnHP) linear EnCE maps. The

proof utilizes a conventional theorem on linear preservers. This result imposes a strong
limitation on the linear maps and promotes the importance of nonlinear maps.
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1 Introduction

Nonclassical correlation in a bipartite quantum system defined differently from entanglement
has been studied in several different contexts [1, 2, 3] and attracting much interest in quantum
information science. There are quantum information processing schemes, such as superdense
coding [4, 5] and some of quantum games [6, 7, 8, 9], having advantages over classical counter-
parts even with a slightly polarized pseudo-entangled state that possesses a certain amount
of nonclassical correlation. It is also known that the quantum algorithm for an approximate
trace estimation of a unitary matrix using a single pseudo-pure qubit and other qubits in the
maximally mixed state [10] involves no entanglement but a considerable amount of nonclas-
sical correlation [11]. With these examples, it is highly motivated to study well-formulated
nonclassical correlation.
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A bipartite density matrix ρAB is (properly) classically correlated (pcc) [3, 12] if and only
if it has a product eigenbasis:

ρAB
pcc =

dAdB∑
ij=11

eij |ui〉A〈ui| ⊗ |vj〉B〈vj |

where eij are the eigenvalues; |ui〉 and |vj〉 are the eigenvectors of the reduced density matrices
of subsystems A and B, respectively; dA and dB are the dimensions of the Hilbert spaces of
the respective subsystems. Any ρAB having no product eigenbasis is nonclassically correlated
(ncc). These definitions are equivalent to regarding a bipartite quantum state with a nonvan-
ishing quantum discord (for any side) [2] as a nonclassically correlated state and a state with
a vanishing quantum discord as a classically correlated state. Here, we have used the term
quantum discord as the one defined with a minimization.

There have been several detection methods and measures of nonclassical correlation for
this paradigm; some of them are computationally expensive while perfect in the detection
range [2, 3, 13, 14, 15] (there are some conditionallya computationally tractable ones [16, 17]);
the others are computationally tractable while imperfect in the detection range [18, 19].
Recently, Dakić et al. [20] proposed a computationally tractable method detecting nonclassical
correlation perfectly using an operator Schmidt decomposition. Chen et al. [21] also proposed
a computationally tractable methodb to detect nonclassical correlation perfectly.

Among tractable albeit imperfect ones, the scheme we proposed in Ref. [18] uses a certain
class of maps acting on a given density matrix. This scheme is in analogy with the scheme
using positive-but-not-completely-positive (PnCP) maps [22, 23, 24] commonly used for en-
tanglement detection and quantification. It has been of our interest to find certain maps
that are useful for detecting and quantifying nonclassical correlation of a quantum bipartite
system. There have been some classes of maps already defined in our previous works [25, 18]
for this purpose.

Let us first introduce those classes of maps. A map that preserves the eigenvalues and their
algebraic multiplicities of a matrix is called an eigenvalue-preserving (EP) map. Sometimes
the term “spectrum-preserving” is used in the same meaning, but it often means spectrum-
preserving without taking the multiplicity into account. Therefore, we employ the term EP
in this paper. Among EP maps, Hermiticity preserving (HP) maps were thought to be rather
natural in quantum physics. We considered linear and nonlinear HP EP maps that are not
completely EP in our previous contribution [18]. We call such maps HP eigenvalue-preserving-
but-not-completely-eigenvalue-preserving (EnCE) maps.

An HP EP map ΛHPEP maps a density matrix ρ to a density matrix ρ′ with the same

aTo be tractable, the measures in Refs. [16, 17] require that a proper Schmidt basis be found within polynomial
time in dAdB.
bThey proved that a necessary and sufficient condition for a bipartite density matrix ρAB to be a one-way
classically correlated (1wcc) state ρAB

1wcc =
P

j σA
j ⊗|vj〉B〈vj | (σA

j ’s are positive semidefinite Hermitian matrices

acting of subsystem A and {|vj〉B} is a complete orthonormal set (CONS) of subsystem B) is that, for an
arbitrary CONS {|ui〉A} (i = 1, . . . , dA) of subsystem A, all A〈ui|ρAB|ui′ 〉A’s commute with each other
(i, i′ = 1, . . . , dA). By their theorem, one has only to test a polynomial number of commuting relations (by
applying their theorem to both sides) to decide whether ρAB has a product eigenbasis or not.
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eigenvalues by definition. Thus

ΛHPEP :
∑

i

ei|vi〉〈vi| 7→
∑

i

ei|vi
′〉〈vi

′|

with ei the ith eigenvalue of ρ and ρ′; |vi〉 and |vi
′〉 the corresponding eigenvectors of ρ and ρ′,

respectively. Therefore, ΛHPEP maps any projector set {|vi〉〈vi|} corresponding to a complete
orthonormal set (CONS) {|vi〉} to another projector set {|vi

′〉〈vi
′|} corresponding to a CONS

{|vi
′〉}.
An HP EnCE map is an HP EP map that is not completely EP, i.e., IA ⊗ΛB

HPEP does not
always preserve the eigenvalues of a density matrix for some dimensions of subsystem A. For
any linear or nonlinear HP EnCE map ΛHPEnCE, the maps IA ⊗ΛB

HPEnCE and ΛA
HPEnCE ⊗ IB

both preserve the eigenvalues of a density matrix ρAB when it has a product eigenbasis,
by the definition of the class of the maps, while they may change when it has no product
eigenbasis. Therefore, changes in the eigenvalues under the action of IA ⊗ ΛB

HPEnCE and/or
ΛA

HPEnCE ⊗ IB can be used for detection and quantification of nonclassical correlation. As
an example of detection, consider the state ρp = (1 − p)I/d + pρNPT with 0 < p ≤ 1, d the
dimension of the Hilbert space, and ρNPT a state possessing negative partial transposition
(NPT) [22, 23], and consider the matrix transposition T as an HP EnCE map. (The state
ρp is possibly a separable state.) Obviously, (I ⊗ T )ρp has different eigenvalues from ρp.
As for quantification, we introduced a measure using a form of logarithmic fidelity, which is
subadditive when an HP EnCE map is chosen appropriately [18].

In particular for HP linear EnCE maps, the only nontrivial map is T as we showed in
Ref. [18] using Wigner’s unitary-antiunitary theorem [26, 27, 28, 29]. One may notice that an
HP linear EnCE map is nothing but an operation to change an orthonormal basis to another
one with the same dimension. In short, any HP linear EP map can be decomposed into
unitary transformations and T . Therefore, any HP linear EnCE map can also be decomposed
into unitary transformations and T . To overcome this limitation, we introduced a nonlinear
extension in the previous work [18].

A natural question arises as to whether there is a nontrivial linear EnCE map other than
T if we consider not-necessarily Hermiticity preserving (nnHP) maps. This contribution will
reach a negative answer with the following theorem.
Theorem 1 For any nnHP linear EnCE map Υ and an identity map I of any dimension,
the set of eigenvalues of (IA ⊗ΥB)ρAB is the same as that of ρAB for all ρAB, or the same as
that of (IA ⊗ T B)ρAB for all ρAB, where ρAB is a density matrix of a bipartite system AB.

This is the main theorem we are going to prove. It suggests that, even among nnHP linear
EnCE maps, T is the only nontrivial map for the purpose of detecting and quantifying non-
classical correlation as far as we use the changes in the eigenvalues. Thus, linear ones cannot
detect and quantify nonclassical correlation of the states whose eigenvalues are unchanged by
the partial transposition, such as one-way classically correlated states [12].

The result shown here should not be regarded as a limitation for general linear operations
although it is, of course, a natural choice to explore nonlinear EnCE maps.

In this paper, we begin with preliminary lemmas in Section 2 and describe the results in
the subsequent sections. As we mentioned, we are going to prove that T is the only nontrivial
nnHP linear EnCE map for our purpose. This will be proved in two different contexts. In
Section 3, we discuss the case where we regard a map as one preserving eigenvalues of any
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matrix. In Section 4, we discuss the case where we regard a map as one preserving eigenvalues
of any density matrix. The results are summarized in Section 5 with remarks.

2 Preliminary Lemmas

Let us begin with two lemmas for linear maps that are used in proofs hereafter. Here, Md(F)
denotes the set of d×d matrices over a field F and Sd denotes the set of d×d density matrices
(positive semidefinite Hermitian matrices with unit trace). In addition, as usual, linearity is
defined in the following way.
Definition 1 For two spaces V and W of matrices over F, we say that a map Λ : V → W

is linear if Λ(αu + βv) = αΛ(u) + βΛ(v) for all α, β ∈ F and u, v ∈ V .
Now the lemmas are stated as follows.

Lemma 1 Consider linear maps Λ1 : Md(C) → Md(C) and Λ2 : Md(C) → Md(C) with
integer d > 0. Suppose they are equivalent as maps, i.e., Λ1L = Λ2L for all L ∈ Md(C).
Then, I ⊗Λ1 and I ⊗Λ2 are equivalent as maps for an identity map I acting on the space of
q × q matrices for any integer q > 1, i.e., (I ⊗ Λ1)M = (I ⊗ Λ2)M for all M ∈ Mqd(C).
Proof. By linearity, for any matrix M =

∑q,q,d,d
i,j,k,l=1,1,1,1 cijkl|i〉〈j| ⊗ |k〉〈l| with cijkl ∈ C, we

have (I ⊗Λ1)M =
∑

ijkl cijkl|i〉〈j| ⊗Λ1(|k〉〈l|) and (I ⊗Λ2)M =
∑

ijkl cijkl|i〉〈j| ⊗Λ2(|k〉〈l|).
Obviously, (I ⊗ Λ1)M = (I ⊗ Λ2)M since, by assumption, Λ1(|k〉〈l|) = Λ2(|k〉〈l|) ∀k, l. 2.
Lemma 2 Consider linear maps Λ1 : Sd → Md(C) and Λ2 : Sd → Md(C) with integer d > 0.
Suppose Λ1ρ = Λ2ρ for all ρ ∈ Sd. Then, (I ⊗Λ1)σ = (I ⊗Λ2)σ for an identity map I acting
on the space of q × q density matrices for any integer q > 1 and all σ ∈ Sqd.
Proof. It is always possible to represent a qd × qd density matrix σ as σ =

∑
ij cijαi ⊗ βj

with a finite number of cij ∈ R (note that they may be negative), q × q density matrices
αi, and d × d density matrices βj . This is because any Hermitian basis operator can be
represented as a linear combination of a finite number of density matrices. By linearity of Λ1

and Λ2, (I⊗Λ1)σ =
∑

ij cijαi⊗Λ1βj and (I⊗Λ2)σ =
∑

ij cijαi⊗Λ2βj hold. By assumption,
Λ1βj = Λ2βj ∀j. Hence (I ⊗ Λ1)σ = (I ⊗ Λ2)σ. 2.

3 A Theorem on Linear Preservers Revisited

The maps we consider are those preserving the eigenvalues of a density matrix. In this regard,
it is essential to revisit the long-standing research on linear preservers [30, 31, 32] in the theory
of linear algebra. When we consider the linear maps preserving eigenvalues of any d×d matrix,
then it is rather immediate to show that the transposition is the only nontrivial map in the
context, as shown in this section. However, it should be noted that the maps of our interest
are those preserving the eigenvalues of the density matrices; thus the class of the maps are
possibly different from those acting on the space of general square matrices. Some additional
mathematical evaluations are required as we will describe in the next section for the maps of
our interest.

Let us revisit the result of the Marcus-Moyls theorem [33] and Minc’s theorem [34, 35] on
linear transformations.
Theorem 2 (From Marcus and Moyls, 1959 and Minc, 1974) A linear transformation
Λ on Md(C) preserves the determinant and the trace for all A ∈ Md(C) if and only if Λ pre-
serves the eigenvalues (including their algebraic multiplicities) for all A ∈ Md(C). Then there
exists a matrix S in Md(C) such that ΛA = S−1AS for all A ∈ Md(C), or ΛA = S−1AT S
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for all A ∈ Md(C).
Proof. This is a direct consequence of the Marcus-Moyls theorem [33] and Minc’s theorem
[34, 35] on linear preservers. 2.

Suppose we require a linear map Λ acting on the space of dB×dB matrices to preserve the
eigenvalues of any matrix in MdB(C) rather than density matrices only. Then, by Theorem 2
and Lemma 1, IA ⊗ ΛB can be written as

IA ⊗ ΛB : A 7→ [IA ⊗ (SB)−1]A′(IA ⊗ SB)

where A′ stands for either A for all A ∈ MdAdB(C) or (IA ⊗ T B)A (namely, the partial
transposition of A) for all A ∈ MdAdB(C). Consequently, the set of eigenvalues of (IA⊗ΛB)A
is equal to either that of A or that of (IA ⊗T B)A. The partial transposition is thus the only
nontrivial linear map as far as we use the changes in the eigenvalues for our purpose.

As we have already mentioned, this result is not directly applicable to the case where Λ is
required to preserve the eigenvalues for density matrices only and not necessarily for general
matrices. (In addition, we do not assume that Hermiticity is preserved in general.)

4 Formal Definitions and the Proof for the Main Theorem

In this section, we are going to prove our main theorem (Theorem 1) step by step. Due to
its context, we restrict ourselves within maps from the set of density matrices to the set of
square matrices. Note that the image need not be Hermitian.

We begin with the definitions of maps of our interest without imposing linearity.
Definition 2 A not-necessarily Hermiticity preserving (nnHP) eigenvalue-preserving (EP)
map Θ is a map from Sd to Md(C) such that, for a d × d density matrix ρ =

∑d
i=1 ei|vi〉〈vi|

(ei and |vi〉 are the ith eigenvalue and the corresponding eigenvector), Θ : ρ 7→ A ∈ Md(C)
with a matrix A having the set of eigenvalues same as that of ρ, for all ρ ∈ Sd.
Definition 3 An nnHP EP-but-not-Completely-EP (nnHP EnCE) map is an nnHP EP map
Θ̃ such that I ⊗ Θ̃ for some dimension for I does not preserve eigenvalues of some density
matrix.

When we impose linearity (see Definition 1), the class of nnHP EP maps has an interesting
property as stated in the following theorem. The proof is given later in this section.
Theorem 3 For an nnHP linear EP map Θlin : Sd → Md(C), there exists a matrix S in
Md(C) such that either Θlinρ = S−1ρS for all ρ ∈ Sd or Θlinρ = S−1ρT S for all ρ ∈ Sd.

(Note: In case we also impose the HP property, then S becomes unitary; the theorem under
this restriction is equivalent to the statement of Proposition 2 of our previous work [18].) The
theorem suggests that Θlin must map the set {|vi〉〈vi|} of any ρ to some set {|ai〉〈bi|} where
vector sets {|ai〉} and {|bi〉} are biorthogonalc, i.e., the left and right eigenvectors of Θlinρ are
(|bi〉)∗ and |ai〉, respectively.

Before going into the proof of the theorem, let us briefly overview how such a map is related
to detection and quantification of nonclassical correlation. For any nnHP linear EnCE map
Υ, we have

(IA ⊗ ΥB)ρAB
pcc =

∑
ij

eij |ui〉A〈ui| ⊗ |aj〉B〈bj |.

cGenerally, we say that two systems of elements {x1, . . . , xd} and {y1, . . . , yd} in a unitary space are biorthog-
onal if (xi, yj) = δij (1 ≤ i, j ≤ d) where ( , ) is an inner product (see, e.g., Ref. [36]). In the present context,
of course, a standard inner product is employed.
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The eigenvalues of ρAB
pcc are preserved by IA ⊗ ΥB (and by ΥA ⊗ IB). Thus changes in the

eigenvalues of ρAB by IA ⊗ΥB or by ΥA ⊗ IB imply that ρAB has no product eigenbasis. The
original and the (possibly) transformed eigenvalues are used to define a measure of nonclassical
correlation as we discussed in Ref. [18].

To prove Theorem 3, we firstly introduce a remark, several lemmas, and the Marcus-Moyls
theorem [33]. Here, Hd denotes the set of d × d Hermitian matrices.
Remark 1 An nnHP linear EP map Θlin preserves the set of eigenvalues of any positive
semidefinite Hermitian matrix A+.

This is obvious considering the fact that A+ is proportional to some density matrix or
otherwise a zero matrix, and Θlin is linear. The proofs hereafter are tacitly based on this
remark. We now introduce the lemmas.
Lemma 3 An nnHP linear EP map Θlin can be regarded as a map from Hd to Md(C) such
that, for all A ∈ Hd, the set of eigenvalues of Θlin(A) is equal to that of A, if Θlin is unital
(i.e., if Θlin(I) = I).
Proof. By linearity, Θlin(A) = Θlin[(A+cI)− (cI)] = Θlin(A+cI)−cΘlin(I) for some c ∈ R
such that A + cI ≥ 0. By assumption, Θlin is unital. Therefore Θlin(A) = Θlin(A + cI) − cI.
By the fact that the eigenvalues of Θlin(A+ cI) are same as those of A+ cI by definition, the
proof is now completed. 2.

We can prove that any nnHP linear EP map is in fact a unital map.
Lemma 4 Any nnHP linear EP map Θlin satisfies Θlin(I) = I.
Proof. Consider a density matrix ρ ∈ Sd with eigenvalues e1, . . . , ed. By definition, Θlin

preserves the eigenvalues of ρ + cI for any c ≥ −minkek (k = 1, . . . , d). Consider such c.
We have det Θlin(ρ + cI) =

∏
k(ek + c). Now consider the matrix Θlin(I)−1, namely, the

inverse matrix of Θlin(I). This has the eigenvalue 1 with multiplicity d. Thus det Θlin(I)−1 =
1. We have det Θlin(ρ + cI) = det [Θlin(ρ + cI)Θlin(I)−1] = det [Θlin(ρ)Θlin(I)−1 + cI] by
linearity of Θlin. Let us write the eigenvalues of Θlin(ρ)Θlin(I)−1 as λ1, . . . , λd. Then we have∏

k(λk + c) =
∏

k(ek + c) ∀c ≥ −minkek. Therefore, λk = ek for k = 1, . . . , d. Thus, the
matrix Θlin(ρ)Θlin(I)−1 has the same eigenvalues as those of ρ. Consider the case where ρ

has mutually distinct nonzero eigenvalues. Then, Θlin(ρ)Θlin(I)−1 is a nonsingular simple
matrix; hence there exists nonsingular Q ∈ Md(C) such that Θlin(ρ)Θlin(I)−1 = QDQ−1

with nonsingular D = diag(e1, . . . , ed). We then use the fact that Θlin(I)Θlin(ρ)Θlin(I)−1 is
a similarity transformation of Θlin(ρ), and hence it is a similarity transformation of D. It
follows that Θlin(I)QDQ−1 is a similarity transformation of D. Now we use the fact that
the Jordan decomposition of Θlin(I) is given by Θlin(I) = I + N with N the nilpotent termd.
We have Θlin(I)QDQ−1 = QDQ−1 + NQDQ−1. Because this is similar to D, its Jordan
decomposition is written as S̃ + Ñ with S̃ similar to D and Ñ = 0. Hence the term NQDQ−1

should vanish, which implies N = 0. Therefore, Θlin(I) = I holds. 2.
With Lemmas 3 and 4, we can state the following lemma.

Lemma 5 An nnHP linear EP map Θlin can be regarded as a map from Hd to Md(C) such
that, for all A ∈ Hd, the set of eigenvalues of Θlin(A) is equal to that of A.
Proof. This is a consequence of Lemmas 3 and 4. 2.

We introduce one more lemma.

dBecause the eigenvalue of Θlin(I) is 1 with multiplicity d, we have the Jordan decomposition Θlin(I) =
WIW−1 + N = I + N for some nonsingular W ∈ Md(C).
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Lemma 6 A linear map Π : Hd → Md(C) can be regarded as a linear map on Md(C)
[namely, a linear map from Md(C) to Md(C)].
Proof. For all A ∈ Md(C), there exists a Cartesian decomposition A = H1 + iH2 with
i =

√
−1, H1 = (A + A†)/2, and H2 = (A − A†)/(2i) (See, e.g., pp.178-179 of Ref. [36]).

Because H1 and H2 are Hermitian, we have Π(A) = Π(H1) + iΠ(H2). 2.
In addition to the above lemmas, it is essential to introduce a useful theorem by Marcus

and Moyls [33].
Theorem 4 (Marcus and Moyls, 1959) Let Λ be a linear map on Md(C). The following
conditions are equivalent:
(i) Λ preserves eigenvalues for all Hermitian matrices in Md(C).
(ii) Λ preserves eigenvalues for all matrices in Md(C).
(iii) There exists a unimodular matrix L such that either ΛA = LAL−1 for all A ∈ Md(C)
or ΛA = LAT L−1 for all A ∈ Md(C).
Proof. The proof is found in Ref. [33]. 2.

With the above preparation, we can now prove Theorem 3.
Proof of Theorem 3. By Lemmas 5 and 6, an nnHP linear EP map Θlin can be regarded as
a linear map on Md(C) that preserves the eigenvalues of any Hermitian matrix. By Theorem
4, the proof is completed. 2.

With Theorem 3 and Lemma 2, we obtain our main theorem:
Theorem 1 For any nnHP linear EnCE map Υ and a bipartite system AB, the set of eigen-
values of (IA ⊗ ΥB)ρAB is equal to that of ρAB for all ρAB ∈ SdAdB or equal to that of
(IA ⊗ T B)ρAB for all ρAB ∈ SdAdB , where T is the matrix transposition.
Proof. Theorem 3 and Lemma 2 prove the theorem. 2.

Besides our main theorem, Definition 2, Lemma 5, and Lemma 6 also imply the following
fact.
Remark 2 The following condition is equivalent to conditions (i)-(iii) of Theorem 4.
(iv) Λ preserves eigenvalues for all density matrices in Md(C).

5 Concluding Remarks

We have proved that, for a linear map Υ in the class of nnHP EnCE and a bipartite density
matrix ρ, (I ⊗ Υ)ρ has the same set of eigenvalues as ρ or its partial transposition. This
indicates that nontrivial nnHP EnCE maps for detection and quantification of nonclassical
correlation, except for the transposition, should be nonlinear.

To achieve this result, we have used a conventional theorem in the theory of linear pre-
servers (See, e.g., Refs. [30, 31, 32]). Linear maps locally acting on a quantum bipartite system
are often found useful to characterize nonclassicality of correlation, such as PnCP maps used
in the entanglement theory. In this sense, it is expected that more conventional theorems will
be found to be useful in the development of the theory of bipartite nonclassical correlation.

It should be noted that a class of maps useful for the purpose is not limited to the one
working inside Md(C) apart from EnCE maps. Furthermore, one may seek for some linear
operation which is not described by a map and has a natural extension in the dimension.
Therefore, the result shown in this paper should not be regarded as a limitation in the use of
general linear operations although it is, of course, a natural choice to explore nonlinear EnCE
maps.
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Given a general nonlinear (NL) map ΛNL, there is a freedom to define I ⊗ ΛNL under
the present circumstance where no axiom is commonly known. It is natural to impose the
condition that (I ⊗ ΛNL)(A ⊗ B) = A ⊗ ΛNLB for any matrices A and B in the spaces on
which I and ΛNL are respectively acting. In addition, as for the case where ΛNL is an nnHP
nonlinear EnCE map Θ̃NL, it is desirable to impose the condition that the map I ⊗ Θ̃NL

should preserve the set of eigenvalues of any density matrix with a product eigenbasis in a
similar manner as linear one since we aim to use the map to detect and quantify nonclassical
correlation. These conditions are satisfied by the particular nonlinear EnCE map defined in
Ref. [18]. It is hoped that further discussions will be made and a natural axiom for extending
the dimension by a tensor product will be found so as to utilize other nonlinear preservers for
the study of nonclassical correlation.

Acknowledgement

A.S. and M.N. are supported by the “Open Research Center” Project for Private Universities:
matching fund subsidy from MEXT. A.S. is supported by the Grant-in-Aid for Scientific
Research from JSPS (Grant No. 21800077). R.R. is supported by Industry Canada and
CIFAR.

References

1. C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin,
and W. K. Wootters (1999), Quantum nonlocality without entanglement, Phys. Rev. A, 59, pp.
1070–1091.

2. H. Ollivier and W. H. Zurek (2001), Quantum discord: A measure of the quantumness of correla-
tions, Phys. Rev. Lett., 88, pp. 017901–1–4.

3. J. Oppenheim, M. Horodecki, P. Horodecki, and R. Horodecki (2002), Thermodynamical approach
to quantifying quantum correlations, Phys. Rev. Lett., 89, pp. 180402–1–4.

4. C. H. Bennett and S. J. Wiesner (1992), Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states, Phys. Rev. Lett., 69, pp. 2881288.

5. R. Rahimi, K. Takeda, M. Ozawa, and M. Kitagawa (2006), Entanglement witness derived from
nmr superdense coding, J. Phys. A: Math. Gen., 39, pp. 2151–2159.

6. J. Shimamura (2004), Playing games in quantum realm, PhD thesis, Osaka University, Toyonaka.
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