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We present a simple method for constructing optimal fault-tolerant approximations of
arbitrary unitary gates using an arbitrary discrete universal gate set. The method
presented is numerical and scales exponentially with the number of gates used in the

approximation. However, for the specific case of arbitrary single-qubit gates and the
fault-tolerant gates permitted by the concatenated 7-qubit Steane code, we find gate
sequences sufficiently long and accurate to permit the fault-tolerant factoring of num-
bers thousands of bits long. A general scaling law of how rapidly these fault-tolerant

approximations converge to arbitrary single-qubit gates is also determined.
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1 Introduction

In large-scale quantum computation, every qubit of data is encoded across multiple physical

qubits to form a logical qubit permitting quantum error correction and fault-tolerant compu-

tation. Unfortunately, only very small sets of fault-tolerant gates G can be applied simply to

logical qubits, where G depends on the number of logical qubits considered, the code used,

and the level of complexity one is prepared to tolerate when implementing fault-tolerant gates.

Gates outside G must be approximated with sequences of gates in G. The existence of efficient

approximating sequences has been established by the Solovay-Kitaev theorem and subsequent

work [1, 2, 3, 4]. In this paper, we describe a simple numerical procedure taking a universal

gate set G, gate U , and integer l and outputting an optimal approximation of U using at

most l gates from G. This procedure is used to explore the properties of approximations of

the single-qubit phase rotation gates R2d = diag(1, eiπ/2
d

) built out of fault-tolerant gates

that can be applied to a single Steane code logical qubit. The average rate of convergence of

Steane code fault-tolerant approximations to arbitrary single-qubit gates is also obtained.

Section 2 describes the numerical procedure used to find optimal gate sequences approx-

imating a given gate. A convenient finite universal set of fault-tolerant gates that can be

applied to a single Steane code logical qubit is given in Section 3. Section 4 contains a

discussion of phase rotations R2d and their fault-tolerant approximations, followed by ap-

proximations of arbitrary gates in Section 5. Section 6 summarizes the results of this paper

and their implications, and points to further work.
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2 Finding optimal approximations

In this section, we outline a numerical procedure that takes a finite gate set G ⊂ U(m) that

generates U(m), a gate U ∈ U(m), and an integer l and outputs an optimal sequence Ul of

at most l gates from G minimizing the metric

dist(U,Ul) =

√

m− |tr(U †Ul)|
m

. (1)

The rationale of Eq. (1) is that if U and Ul are similar, U †Ul will be close to the identity

matrix (possibly up to some global phase) and the absolute value of the trace will be close to

m. By subtracting this absolute value from m and dividing by m a number between 0 and 1

is obtained. The overall square root is required to ensure that the triangle inequality

dist(U,W ) ≤ dist(U, V ) + dist(V,W ) (2)

is satisfied. This metric has been used in preference to the trace distance used in the Solovay-

Kitaev theorem [2, 3], as the trace distance does not ignore global phase, and hence leads to

unnecessarily long global phase correct approximating sequences.

Finding optimal gate sequences is a difficult task, and the run-time of the numerical

procedure presented here scales exponentially with l. Nevertheless, as we shall see in Section 4,

gate sequences of sufficient length for practical purposes can be obtained.

For a set G of size g = |G| and a maximum sequence length of l, the size of the set of all

possible gate sequences of length up to l is approximately gl. For even moderate g and l, this

set cannot be searched exhaustively. To describe the basics of the actual method used, a few

more definitions are required. Let G denote a gate in G. Order G, and denote the ith gate by

Gi. Let S denote a sequence of gates in G. Order the possible gate sequences in the obvious

manner and let Sn denote the nth sequence in this ordering. Let {S}l denote all sequences

with length less than or equal to l. Let {Q}l′ , l′ < l denote the set of unique sequences

of length at most l′. Naively, {Q}l′ can be constructed by starting with the set containing

the identity matrix, sequentially testing whether Sn ∈ {S}l′ satisfies dist(Sn, Q) > 0 for all

Q ∈ {Q}l′ , and adding Sn to {Q}l′ if it does. A search for an optimal approximation of U

using gates in G begins with the construction of a very large set of unique sequences {Q}l′ .
The utility of {Q}l′ lies in its ability to predict which sequences in {S}l, l > l′ do not need

to be compared with U to determine whether they are good approximations, and what the

next sequence worth comparing is. To be more precise, assume every sequence up to Sn−1

has been compared with U . Let {Sn−1} denote this set of compared sequences. Consider

subsequences of Sn of length l′. If any subsequence is not in {Q}l′ , there exists a sequence

in {Sn−1} equivalent to Sn. In other words, a sequence equivalent to Sn has already been

compared with U , and Sn can be skipped. Furthermore, let

Sn = GiN . . . Gi
k+l′+1

Gi
k+l′

. . . Gik+1
Gik . . . Gi1 , (3)

where Gi
k+l′

. . . Gik+1
is the subsequence not in {Q}l′ . Let Q(Gi

k+l′
. . . Gik+1

) denote the

next sequence in {Q}l′ after Gi
k+l′

. . . Gik+1
. The next sequence with the potential to not be

equivalent to a sequence in {Sn−1} is

GiN . . . Gi
k+l′+1

Q(Gi
k+l′

. . . Gik+1
)G1 . . . G1. (4)
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The process of checking subsequences is then repeated on this new sequence. Skipping se-

quences in this manner is vastly better than an exhaustive search, and enables optimal se-

quences of interesting length to be obtained. It should be stressed, however, that the runtime

is still exponentially in l.

Highly non-optimal but polynomial runtime sequence finding techniques do exist [2, 3, 5, 6].

The fast runtimes come at the cost of long sequences, ranging from O(ln2(1/ǫ) ln(ln(1/ǫ)))

[5] to O(ln3.97(1/ǫ)) [6]. The method presented here obtains sequences of optimal length

O(ln(1/ǫ)). Given classical computing is much cheaper than quantum computing, it is far

better to have an exponential runtime classical algorithm that obtains optimal length quantum

gate sequences, provided sufficiently long sequences can still be obtained, which we will show

is the case.

3 Simple Steane code single-qubit gates

For the remainder of the paper we will restrict our attention to fault-tolerant single-qubit

gates that can be applied to the 7-qubit Steane code. The Steane code representation of

states |0〉 and |1〉 is [7]

|0L〉 =
1√
8
(|0000000〉+ |1010101〉+ |0110011〉

+|1100110〉+ |0001111〉+ |1011010〉
+|0111100〉+ |1101001〉), (5)

|1L〉 =
1√
8
(|1111111〉+ |0101010〉+ |1001100〉

+|0011001〉+ |1110000〉+ |0100101〉
+|1000011〉+ |0010110〉). (6)

An equivalent description of this code can be given in terms of stabilizers [8] which are

operators that map the logical states |0L〉 and |1L〉 to themselves.

IIIXXXX (7)

IXXIIXX (8)

XIXIXIX (9)

IIIZZZZ (10)

IZZIIZZ (11)

ZIZIZIZ (12)

States |0L〉 and |1L〉 are the only two that are simultaneously stabilized by Eqs (7–12).

The minimal universal set of single-qubit fault-tolerant gates that can be applied to a

Steane code logical qubit consists of just the Hadamard gate and the T -gate [3]

T =

(

1 0
0 eiπ/4

)

. (13)

For practical purposes, the gates X, Z, S, S† should be added to this set, where

S =

(

1 0
0 i

)

, (14)
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along with all gates generated by H, X, Z, S, S†. The complete list of gates that we shall

consider is shown in Eq. (15). This is our set G. Note that gates {I,G1, . . . , G23} form a

group under multiplication.

G1 = H G13 = HS
G2 = X G14 = HS†

G3 = Z G15 = ZXH
G4 = S G16 = SXH
G5 = S† G17 = S†XH
G6 = XH G18 = HSH
G7 = ZH G19 = HS†H
G8 = SH G20 = HSX
G9 = S†H G21 = HS†X
G10 = ZX G22 = S†HS
G11 = SX G23 = SHS†

G12 = S†X G24 = T

(15)

We use this large set G as H, X, Z, S, S† and their products can all be easily implemented

with transversal single-qubit gates. In contrast, the T -gate is extremely complicated to imple-

ment [9]. Since we are interested in minimal complexity as well as minimum length sequences

of gates in G, it would be unreasonable to count G23 as three gates when in reality it can

be implemented as easily as any other gate {G1, . . . , G22}. Since {I,G1, . . . , G23} is a group

under multiplication, minimum length sequences of gates approximating some U outside G

will alternate between an element of {G1, . . . , G23} and a T -gate. Note that the T †-gate is not

required in G for universality or efficiency as, in gate sequences of length l ≥ 2, it is equally

efficient to use S†T or TS†. The extra S†-gate is absorbed into neighboring Gi-gates, i < 24.

4 Approximations of phase gates

We now use the simple algorithm described in this paper to construct optimal fault-tolerant

approximations of phase rotation gates

R2d =

(

1 0

0 eiπ/2
d

)

. (16)

Gates R2d are examples of gates used in the single-qubit quantum Fourier transform that forms

part of the Shor circuits described in [10, 11]. Note that phase rotations of angle 2πx/2d,

where x is a d-digit binary number, are also required, but the properties of fault-tolerant

approximations of such gates can be inferred from R2d .

For a given R2d , and maximum number of gates l in G, Fig. 1 shows dist(R2d , Ul) where

Ul is an optimal sequence of at most l gates in G minimising dist(R2d , Ul). For d ≥ 3, U1

is equivalent to the identity. Note that as d increases, R2d becomes closer and closer to the

identity, lowering the value of dist(R2d , U1), and increasing the value of l required to obtain

an approximation Ul that is closer to R2d than the identity. In fact, for R128 the shortest

sequence of gates that provides a better approximation of R128 than the identity has length

l = 31. There are a very large number of optimal sequences of this length. An example of

one with a minimal number of T -gates is
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Fig. 1. Optimal fault-tolerant approximations Ul of phase rotation gates R
2d

.

U31 = HTHT (SH)T (SH)T (SH)THTHT (SH)
THTHT (SH)THTHTHT (SH)T (S†H)

(17)

Note that dist(R128, I) = 8.7× 10−3 whereas dist(R128, U33) = 8.1× 10−3. In other words

Eq. (17) is only slightly better than the identity. This immediately raises the question of how

many gates are required to construct a sufficiently good approximation.

In [11], it was shown that

U =

(

1 0
0 ei(π/128+π/512)

)

(18)

was sufficiently close to R128. This is, of course, only a property of Shor’s algorithm, not a

universal property of quantum circuits. Given dist(R128, U) = 2.2 × 10−3, a fault-tolerant

approximation Ul of R128 must therefore satisfy dist(R128, Ul) < 2.2 × 10−3 to have a high
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Fig. 2. Average accuracy of optimal fault-tolerant gate sequence approximations of length l.

chance of being sufficiently accurate. The smallest value of l for which this is true is 46, and

one of the many optimal gate sequences satisfying dist(R128, U46) = 7.5× 10−4 is

U31 = HTHTHT (SH)THT (SH)T (SH)T (SH)THT
(SH)T (SH)THTHT (SH)T (SH)THT (SH)T
(SH)T (SH)THT (SH)THT (HS†)T

(19)

Note that implementing this long sequence of fault-tolerant gates would necessitate the use of

concatenation to ensure the inevitable multiple errors during execution are reliably corrected.

5 Approximations of arbitrary gates

In this section, we investigate the properties of fault-tolerant approximations of arbitrary

single-qubit gates

U =

(

cos(θ/2)ei(α+β)/2 sin(θ/2)ei(α−β)/2

− sin(θ/2)ei(−α+β)/2 cos(θ/2)ei(−α−β)/2

)

. (20)

Consider Fig. 2. This was constructed using 1000 random matrices U of the form Eq. 20

with α, β, θ uniformly distributed in [0, 2π). Optimal fault-tolerant approximations Ul were

constructed of each, with the average dist(U,Ul) plotted for each l. The indicated line best

fit has the form

δ = 0.292× 10−0.0511l. (21)

This equation characterizes the average number l of Steane code single-qubit fault-tolerant

gates required to obtain a fault-tolerant approximation Ul of an arbitrary single-qubit gate U

to within δ = dist(U,Ul).

6 Conclusion

We have described an algorithm enabling the optimal approximation of arbitrary unitary

matrices given a discrete universal gate set. We have used this algorithm to investigate the

properties of fault-tolerant approximations of arbitrary single-qubit gates using the gates

that can be applied to a single Steane code logical qubit. We have found that on average an

l gate approximation can be found within δ = 0.292× 10−0.0511l of the ideal gate. The work
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here suggests that practical quantum algorithms should avoid, where possible, logical gates

that must be implemented using a sequence of fault-tolerant gates since even the rotation

gates used in Shor’s algorithm, which do not need to be implemented with great accuracy,

still require lengthy sequences. Quantum simulation algorithms are expected to require far

greater precision and thus far longer sequences, and will be studied in future work.
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