
Quantum Information and Computation, Vol. 11, No. 9&10 (2011) 0784–0812
c© Rinton Press

SIMULATING QUANTUM COMPUTERS WITH PROBABILISTIC METHODS

MAARTEN VAN DEN NEST

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1

85748 Garching, Germany

Received April 21, 2011
Revised July 5, 2011

We investigate the boundary between classical and quantum computational power. This
work consists of two parts. First we develop new classical simulation algorithms that

are centered on sampling methods. Using these techniques we generate new classes

of classically simulatable quantum circuits where standard techniques relying on the
exact computation of measurement probabilities fail to provide efficient simulations. For

example, we show how various concatenations of matchgate, Toffoli, Clifford, bounded-
depth, Fourier transform and other circuits are classically simulatable. We also prove that

sparse quantum circuits as well as circuits composed of CNOT and exp[iθX] gates can be

simulated classically. In a second part, we apply our results to the simulation of quantum
algorithms. It is shown that a recent quantum algorithm, concerned with the estimation

of Potts model partition functions, can be simulated efficiently classically. Finally, we

show that the exponential speed-ups of Simon’s and Shor’s algorithms crucially depend
on the very last stage in these algorithms, dealing with the classical postprocessing of the

measurement outcomes. Specifically, we prove that both algorithms would be classically

simulatable if the function classically computed in this step had a sufficiently peaked
Fourier spectrum.

Keywords: Quantum computation, classical simulations, sampling methods, quantum
algorithms

Communicated by: R Jozsa & B Terhal

1 Introduction

What is the power of quantum computers compared to classical ones? Understanding this

fundamental but difficult question is one of the great challenges in the field of quantum

computation.

A fruitful approach to tackle this problem is to study classes of quantum computations

that do not offer any computational benefits over classical computation. Indeed, such inves-

tigations shed light on the essential features of quantum mechanics that are responsible for

quantum computational power. At the same time, understanding which classes of quantum

computations can be simulated classically provides useful insights in the difficult task of con-

structing novel quantum algorithms, potentially yielding indications on where to look for new

algorithmic primitives.

In recent years several non-trivial classes of quantum computations have been identified

for which an efficient classical simulation can be achieved. For example, certain computations

are classically simulatable due to their low degrees of entanglement (quantified appropriately

in terms of suitable entanglement measures) [1, 2, 3, 4, 5]. Other well known results are the

784

M. Van den Nest 785

Gottesman-Knill theorem [6, 7, 8, 9, 10] and the classical simulation of matchgate circuits

[11, 12, 13, 14, 15]. The latter two classes of results provide key illustrations of the fascinating

and puzzling relation between classical and quantum computational power, as they e.g. regard

computations that may exhibit large degrees of entanglement, interference, superposition,

etc.—i.e. the ingredients that supposedly provide QC with its increased power—but which

nevertheless cannot achieve any computational speed-up over classical computers.

A common element in many existing classical simulation results and methods is the no-

tion of classical simulation that is, sometimes implicitly, adopted in these works. When a

quantum computation is to be simulated classically, the goal may be to either classically

compute measurement probabilities (or expectation values) with high precision in polynomial

time (“strong simulation”), or to classically sample in polynomial time from the resulting

output probability distribution (“weak simulation”). Given the intrinsic probabilistic nature

of quantum mechanics, it is readily motivated that weak simulation is the more natural no-

tion of what a classical simulation should constitute. Furthermore, one may easily construct

examples of quantum circuit classes for which strong simulation is intractable whereas weak

simulation is achieved by elementary sampling methods (see e.g. [10])—hence showing that

a gap between strong and weak simulations manifests itself already in elementary scenar-

ios. The latter gap moreover highlights that any serious attempt to compare classical with

quantum computational power should not be based on strong simulation methods.

In spite of these basic and well-known insights, the majority of existing results on classical

simulation of QC regard the strong variant, and weak simulation techniques seem to date

largely unexplored. The goal of the present work is to develop new classical simulation

algorithms that are based on sampling methods and to therewith initiate an investigation of

the potential of weak simulation of quantum computation. Next we state more precisely the

contributions of this work.

2 Statement of results

Classical simulation of QC with probabilistic methods

In a first part of the paper, we develop tools to investigate weak classical simulation of

QC (henceforth the notion “classical simulation” will always refer to efficient weak classical

simulation). A central ingredient in our analysis will be a certain class of quantum states,

called here computationally tractable states (CT states). Colloquially speaking, a state is CT

if it is possible to classically simulate computational basis measurements on |ψ〉 and if the

coefficients of |ψ〉 in this basis can be efficiently computed. As we will see, many important

state families—matrix product states, stabilizer states, states generated by polynomial size

matchgate circuits, and several others—turn out to be CT. A second element will be the

notion of efficiently computable sparse operators (ECS). An n-qubit operation is ECS if its

matrix representation in the standard basis has at most poly(n) nonzero entries per row and

per column, and if these entries can be determined efficiently. For example, all Pauli products,

k-local operators with k = O(log n), as well as operators that can be written as polynomial

size circuits of Toffoli gates, are ECS. We will prove the following result.

Theorem 1 Consider a polynomial size quantum circuit U acting on a state |ψ〉 and followed

by measurement of an observable O where ‖O‖ ≤ 1. If |ψ〉 is CT and if U†OU is ECS, then

786 Simulating quantum computers with probabilistic methods

Fig. 1. The above concatenated quantum circuits can be efficiently simulated classically via an

application of theorem 1. See section 5.2 for a discussion of these examples.

this quantum computation can be simulated classically.

An immediate remark to be made is that the unitary operation U itself is not required to be

sparse—only its action on O is to yield an ECS operation, which is a significantly distinct

requirement. For example, if U is a polynomial size circuit consisting of nearest neighbor

matchgates—which is generally not sparse at all—then U†Z1U is a linear combination of

poly(n) Pauli products, which is an ECS operation (here Z denotes the Pauli σz operator

acting on qubit 1).

Theorem 1 identifies a general scenario in which quantum circuits can be simulated effi-

ciently classically. This result turns out to be rather versatile and will be useful in a number

of contexts. In this work we highlight the following particular applications (however, it is

likely that this result has applications beyond the ones considered here):

• Sparse circuits. A simple instance of theorem 1 is obtained by considering a product

input state (which is trivially CT) and the Z observable on, say, the first qubit, and by

letting the circuit U itself be an ECS operation (in which case U†ZU is ECS as well).

Then, by virtue of theorem 1, the resulting quantum computation can be simulated

classically. In fact, one can immediately extend this result by composing m efficiently

computable s-sparseaunitary operations with sm = poly(n). Then the overall circuit

will still be ECS, as can easily be verified, and thus can be simulated classically due to

theorem 1.

Sparse unitary operations are of interest because they highlight the role of interference

in quantum computation, as opposed to entanglement. In particular, sparse operations

may produce highly entangled states but the interference exhibited in any sparse unitary

evolution is always limited. As we will show, this absence of a high degree of interfer-

ence can be exploited to construct an efficient classical simulation algorithm, in spite of

the potentially complex entangled states produced throughout the computation. This

provides (yet another) illustration that the presence of entanglement is by no means

sufficient to guarantee quantum computational speed-ups. Sparse operations further-

more provide examples of a class of QCs where weak classical simulation is efficiently

possible, whereas strong simulation is intractable (#P-hard). In other words, adopt-

ing the notion of weak simulation constitutes a necessary ingredient in the simulation

aAn operator is s-sparse if its standard basis matrix representation has at most s nonzero entries per row and
per column.

M. Van den Nest 787

Fig. 2. Both the factoring algorithm and Simon’s algorithm can be implemented by a circuit with

the following structure. The first and third round in the circuit consist of collections of Hadamard

operations applied to certain subsets of the qubits; the second round is a unitary operation that acts
as a permutation on the computational basis. The circuit is followed by a {|0〉, |1〉} measurement of

a subset of the qubits. The algorithm concludes with classical postprocessing of the measurement

results.

of sparse circuits whereas strong simulation methods such as e.g. tensor contraction

schemes cannot (unless #P = P) yield an efficient classical simulation.

• Composability. Instead of letting |ψ〉 be a simple product input state, we may also

consider more complicated CT states which are e.g. the result of an earlier quantum

computation, i.e. |ψ〉 = U ′|ψin〉 for some simple (e.g. standard basis) input |ψin〉. As

long as |ψ〉 is CT and subsequently a circuit U is applied followed by measurement of O

such that U†OU is ECS, the overall quantum circuit UU ′, acting on |ψin〉 and followed

by measurement of O, can be simulated classically by theorem 1. One hence arrives at

a criterion to asses when the concatenation of two quantum circuits can be simulated

classically.

Since the majority of existing efficiently simulatable circuits turn out to generate CT

states when acting on suitable inputs and since at the same time many simulatable

operations yield ECS operations when acting on suitable observables, the above com-

posability result is applicable to a wide variety of settings. In particular, this result

applies to Clifford operations, matchgate circuits, bounded-depth circuits, classical cir-

cuits, bounded-treewidth circuits, the quantum Fourier transform, and others. This

leads to sometimes surprising examples of concatenated circuits that can be simulated

classically (cf. Fig. 1). As illustrated in these examples, the concatenation of sim-

ulatable blocks of very different nature may remain efficiently simulatable classically

(consider e.g. the concatenation of a Clifford with a matchgate circuit).

It is interesting to compare the examples in Fig. 1 to powerful quantum algorithms

such as Simon’s and Shor’s. Strikingly, the latter algorithms are implemented with

particularly simple circuitry—arguably even simpler than the classically simulatable

circuits displayed in Fig. 1. In particular, it is known that both the factoring algorithm

and Simon’s algorithm can be efficiently implemented by a circuit with the very simple

structure of Fig. 2 [17, 18]. Intriguingly, this circuit is the composition of only three

blocks, each of which is elementary. Nevertheless, our simulation techniques cannot be

successfully be applied to yield an efficient classical simulation of this circuit class. In

788 Simulating quantum computers with probabilistic methods

the second part of this work we investigate the hardness of simulating these circuits

and, by extension, Simon’s and Shor’s algorithms, in more detail.

• CNOT-eiθX circuits. As a further application of theorem 1, we will show that poly-

nomial size circuits composed of CNOT and eiθX gates, acting on product inputs and

followed by measurement of Z on any single qubit, can be simulated classically. This

result is of interest since it is known that CNOT together with any single real one-qubit

gate V such that V 2 is not basis-preserving, is universal for quantum computation [19].

In contrast to this, here it is found that there is a class of non-trivial complex gates eiθX

that can be added to the CNOT gate while retaining efficient classical simulation.

The above result is also interesting from a conceptual point of view. In particular, its

proof will follow from a variant of theorem 1 where states |ψ〉 and operations U†OU are

considered that are CT, resp. ECS, with respect to bases other than the standard basis.

Letting |ψ〉 be a product input and U a polynomial size circuit composed of CNOT and

eiθX gates, it will be shown that |ψ〉 and U†Z1U are CT, resp. ECS, with respect tho the

{|±〉} basis of X eigenstates. Hence, viewing the entire computation in this basis and

applying theorem 1 shows that classical simulation is efficiently possible. In contrast, a

direct application of theorem 1, i.e. with respect to the standard basis, is not possible

as U†Z1U is generally not ECS w.r.t this basis.

Classical simulation of quantum algorithms

In a second part of the paper, the above results are applied in the context of quantum

algorithms. Depending on the case at hand, the goal will be to either show that certain

algorithms can be simulated classically or to deepen our insight into why certain algorithms

achieve exponential (oracle) speed-ups over classical computation. We will analyze three

different quantum algorithms:

• a quantum algorithm to estimate partition functions of classical lattice models [20];

• a general class of quantum algorithms containing the Deutsch-Jozsa algorithm [21];

• Simon’s algorithm [18].

The first two classes of quantum algorithms will be proved to be classically simulatable using

the methods developed in this paper. We refer to the relevant sections in the text for a

discussion. For the time being, we limit ourselves to discussing our results in the context of

Simon’s algorithm, which we consider the most interesting application.

Recall that in Simon’s problem one has oracle access to a function f : {0, 1}n → {0, 1}n;

it is promised that there exists an unknown n-bit string a such that f(x) = f(y) if and

only if y = x + a (addition modulo 2). The goal is to find a. Classically one needs at least

O(2
n
2) queries, whereas a quantum computer can solve the problem with O(n) queries—i.e.

Simon’s algorithm achieves an exponential oracle separation between BQP and BPP. In spite

of its computational power, Simon’s algorithm is implemented with very simple circuitry, as

displayed in Fig. 2. What are the essential ingredients responsible for the power of this

algorithm?

In standard considerations, the interplay between the Fourier transform (i.e. the second

layer of Hadamards in Fig. 2) and the oracle f is emphasized. After the oracle is applied,

M. Van den Nest 789

the system is in the state
∑
|x〉|f(x)〉. The Fourier transform then creates interference in

the system and “picks out” the relevant computational basis states, such that a subsequent

measurement of the system yields the desired information about the unknown bit-string a.

This rather delicate relation between oracle and Fourier transform is usually considered to

be among the main origins of the hardness of classically simulating Simon’s algorithm. In

this work we will show that this point of view is not the end of the story: in particular, we

will find that the interplay between the same Fourier transform and the function g computed

during the round of classical postprocessing is an equally important element in the speed-up

achieved by the algorithm. Specifically, we will prove the following result.

Theorem 2 (rough version) Consider a quantum circuit displaying the structure as de-

picted in Fig. 2. If the function g computed in the round of classical postprocessing is promised

to have a sufficiently “peaked” Fourier spectrum, then the entire circuit can be simulated ef-

ficiently classically, independent of the specific forms of the other rounds.

In particular, if the final classical round in Simon’s algorithm happened to regard a function

with sufficiently peaked fourier spectrum, then the entire quantum computation could be

simulated efficiently (i.e. in poly(n) time using poly(n) queries to the oracle f)—independent

of the details of e.g. the oracle computed in an earlier stage of the computation, and indepen-

dent of e.g. the entanglement produced by the quantum circuit. This result hence exposes

the double role played by the Fourier transform, which is to act appropriately on both the

oracle f and the function computed in the postprocessing, in order to achieve a quantum

speed-up. These observations highlight that the power of a quantum algorithm can only be

understood by taking the entire computation into account including the classical postpro-

cessing round, even though the latter may at first sight look rather innocuous. Indeed, note

that—strikingly—in Simon’s algorithm this round ‘only’ involves solving a simple system of

linear equations over Z2! Nevertheless, this simple classical computation is associated with a

function having a very flat spectrum (as we will see), hence ensuring the exponential speed

up achieved by Simon’s algorithm.

Remark: in the formulation of theorem 2, no knowledge of the Fourier spectrum of the

function in question is assumed, except the promise that this spectrum is “peaked”. Using

remarkable results of Boolean learning theory, enough information of the spectrum can be

efficiently reconstructed in order to achieve the polynomial time classical simulation as stated

in the theorem. �
Finally, the factoring algorithm can also be implemented with a circuit displaying the

structure of Fig. 2. Therefore, the classical postprocessing also plays a similar crucial role

in this algorithm. As the technical considerations in Simon’s algorithm are more transparent

than in Shor’s, here we will focus on the former—keeping in mind that our conclusions also

apply to the latter.

Matchgate circuits and polynomial time classical computation

Somewhat unrelated to the above context, we prove a “byproduct result” that we find note-

worthy. We will arrive at a complexity-theoretic result regarding the computational power of

matchgate circuits. Roughly speaking, we will show the following (see theorem 4 for a precise

790 Simulating quantum computers with probabilistic methods

statement):

The class of functions that can be efficiently computed by nearest-neighbor matchgate

circuits is strictly contained within P.

Perhaps the most interesting aspect regarding this result here is its proof method. Surpris-

ingly, the result will be obtained by combining the classical query lower bound of Simon’s

problem with our theorem 1. In particular, we will show that if the class of matchgate-

computable functions comprised all of P, then a quantum algorithm for Simon’s problem

would exist which turns out to be efficiently simulatable classically (using theorem 1). Hence

an efficient classical algorithm would exist which solves Simon’s problem with poly(n) classi-

cal oracle queries, yielding a contradiction. Remark that it is striking how utterly unrelated

matchgate circuits and Simon’s problem seem at first sight!

Some conventions

In this paper, when we refer to a quantum circuit, we will always implicitly mean a uniformly

generated family of quantum circuits. Further, by observable we mean any Hermitian operator

O. When a measurement of an observable is considered at the end of a quantum circuit, we

will always implicitly assume that this regards an observable that can be measured efficiently.

The notion of ‘simulation’ will be synonymous to ‘classical simulation’. The notion ‘efficient’

will be synonymous to ‘in polynomial time’. For clarity, all results are stated in terms of qubit

systems, but generalizations to arbitrary finite-dimensional quantum systems are immediate.

Our standard notation for the computational basis of an n-qubit system will be {|x〉}, where

x = (x1, . . . , xn) ranges over all n-bit strings and |x〉 = |x1〉 ⊗ . . .⊗ |xn〉. Finally, the spectral

norm of an operator A is denoted by ‖A‖.

3 Classical simulation of quantum computation

In this section we discuss the definition of classical simulation that will be adopted in the

present work. Suppose that an n-qubit polynomial size quantum circuit produces an output

state |ψout〉 and is followed by a measurement of an observable O, assuming that O can

efficiently be measured. Then, repeating the computation K = poly(n) times, recording the

measurement outcome oi in each run (i.e. each oi is one of the eigenvalues of O) one obtains

an estimate σ = K−1
∑K
i=1 oi of the expectation value 〈O〉 = 〈ψout|O|ψout〉. The accuracy

of this approximation is dictated by the Chernoff-Hoeffding bound (we refer to the Appendix

for a statement and discussion of this bound). In particular, this bound implies the following:

for every ε = p(n)−1, where p(n) represents an arbitrary polynomial in n, there exists a K

that scales as a suitable polynomial in n such that the inequality |σ − 〈O〉| ≤ ε holds with a

probability that is exponentially (in n) close to 1. In other words, by taking poly(n) runs of

the computation—and this is all that is allowed in an efficient quantum computation—it is

possible to estimate 〈O〉 with an error that scales as an arbitrary inverse polynomial in n. We

denote this type of estimate as an approximation with ‘polynomial accuracy’ or a ‘polynomial

approximation’. Note that a polynomial approximation achieves an estimate of 〈O〉 up to

O(log n) significant bits.

The above method hence represents an efficient quantum algorithm to estimate 〈O〉 with

polynomial accuracy with a success probability that lies exponentially close to 1. We now say

M. Van den Nest 791

that this quantum algorithm can be efficiently simulated classically if there exists an efficient

classical algorithm to provide a polynomial approximation of 〈O〉, again with a probability

that lies exponentially close to 1. That is, we require the classical simulation algorithm to

approximate 〈O〉 in polynomial time with the same accuracy that is achieved by the quantum

algorithm. This notion of simulation is sometimes called weak simulation. The latter is to

be regarded as opposed to the much more stringent requirement of strong simulation, where

it is asked to construct a classical algorithm to approximate 〈O〉 in poly(m,n) time up to m

significant bits (i.e. with exponential precision).

Note that the notion of weak simulation is more true to the concept of what a classical

simulation actually constitutes since, colloquially speaking, it requires the classical simulation

to achieve ‘the same result’ as the quantum algorithm. In contrast, in the strong scenario one

is asked to construct an efficient classical algorithm that approximates 〈O〉 far more accurate

than the quantum algorithm itself could generally achieve in polynomial time. Even though

it has been realized previously that the weak variant is a valid and natural notion of classical

simulation of QC (see e.g. [1, 14]), it seems that this notion is to date largely unexplored.

In particular, the vast majority of classical simulation results use the strong variant. In [10]

it was pointed out that there exists simple examples of quantum circuits for which weak

classical simulation is possible with elementary methods, whereas strong simulation of the

same circuits is a #P-hard problem and hence intractable. This highlights the presence of a

significant gap between strong and weak simulation.

Remark: When the notion of polynomial approximation is used in the following, we

will always mean a polynomial approximation which is achieved with a probability that is

exponentially close to one. �

4 Computationally tractable states

The objective of this section is to develop the notion of computationally tractable (CT) states

and to prove theorem 1. To do this, first we first define CT states and discuss some of their

elementary properties; this is done in section 4.1. In section 4.2 we consider basis-preserving

operations, which are identified as a class of operations that map CT states to CT states.

In section 4.3 we consider sparse operations; the main technical contribution in this section

is theorem 3 regarding the efficient classical estimation of matrix elements 〈ϕ|A|ψ〉, where

|ψ〉 and |ϕ〉 are CT and A is an (efficiently computable) sparse operation. This theorem will

immediately lead to the proof of theorem 1.

4.1 Definition of CT states

Throughout this paper, we will deal with n-qubit state families {|ψn〉 : n = 1, 2, . . .}, where

|ψn〉 is an n-qubit state. When considering such a state family {|ψn〉}, we will mostly refer to

a single state |ψn〉 ≡ |ψ〉 with the silent assumption that this actually denotes a family. We

now consider the following definition.

Definition 1 An n-qubit state |ψ〉 is called ‘computationally tractable’ (CT) if the following

conditions hold:

(a) it is possible to sample in poly(n) time with classical means from the probability distri-

bution Prob(x) = |〈x|ψ〉|2 on the set of n-bit strings x, and

792 Simulating quantum computers with probabilistic methods

(b) upon input of any bit string x, the coefficient 〈x|ψ〉 can be computed in poly(n) time on

a classical computer.

For convenience, in (b) we require the coefficients 〈x|ψ〉 to be computable with perfect preci-

sion, a notion which may lead to rather pathological situations when e.g. irrational numbers

are involved. The results in this paper can however straightforwardly be generalized to the

case where 〈x|ψ〉 can be computed efficiently with exponential precision, i.e. up to m sig-

nificant bits in poly(n,m) time. As in the present work the distinction between these two

types of accuracies is not essential (in contrast to the distinction between polynomial and

exponential precision, which is crucial), for clarity we state all results w.r.t. the notion of

perfect accuracy. Also in other places in the text where we refer to ‘perfect accuracy’, the

results in question immediately generalize to the case of exponential precision.

Note that (a) and (b) are highly dependent on the classical description of the state |ψ〉
that is provided. Therefore, strictly speaking it would be more precise to call a state |ψ〉 CT

relative to this classical description. In this paper we will only encounter situations where each

state has a natural (efficient) description that will be obvious from the context. It will always

be assumed that this particular description is provided. For example, the classical description

of a state generated by a polynomial size quantum circuit acting on, say, the all-zeroes input,

will always be assumed to be the circuit that generates the state. As another example, for

every complete product state |ψ〉 = |ψ1〉 ⊗ . . . ⊗ |ψn〉 we will assume |ψ〉 to be specified in

terms of the ‘obvious’ description of |ψ〉 consisting if the 2n complex coefficients 〈0|ψi〉 and

〈1|ψi〉.
Even though conditions (a) and (b) are similar in nature, we provide evidence that these

conditions are incomparable. In particular, the following complexity theoretic argument im-

plies that it is highly likely that there exists states satisfying (b) but not (a). Consider any

efficiently computable function f : {0, 1}n → {0, 1} for which it is promised that there exists

a unique x0 such that f(x0) = 1, and define the n-qubit state |ψ〉 =
∑
x f(x)|x〉 = |x0〉. Note

that the state |ψ〉 satisfies condition (b). Assuming that (b) implies (a), it follows that it is

possible to efficiently sample from the distribution {|〈x|ψ〉|2}. But this distribution assigns

a zero probability to each bit string x except x0, which has unit probability. Hence, the

possibility of efficiently sampling from this distribution implies that x0 can be determined

efficiently. Regarding f as a verifier circuit for an NP problem, it would immediately follow

that every problem in NP with a unique witness is in P. This last property is not likely to be

true [22].

Next we state a useful sufficient (but not necessary) criterion to assess whether condition

(a) holds for a given state. To state this result, we need the following notation. For an n-qubit

state |ψ〉, let pS,y(|ψ〉) ≡ pS,y denote the probability of obtaining the bit string y = (yi : i ∈ S)

as an outcome when measuring the qubits in the set S ⊆ {1, . . . , n}. We can then state the

following lemma; a proof can be found in e.g. [11].

Lemma 1 Let |ψ〉 be an n-qubit state. Suppose that, on input of an arbitrary S and y, the

probability pS,y can be computed in poly(n) time. Then it is possible to sample in poly(n) time

from the probability distribution {|〈x|ψ〉|2}.

Several important state families turn out to be CT, as illustrated next.

M. Van den Nest 793

• Examples of CT states:

– Product states are trivially CT.

– Every state of the form |ψ〉 ∝
∑
x e

iθ(x)|x〉, where the sum is over all n-bit strings x and

where x→ θ(x) ∈ R represents an arbitrary efficiently computable function, is trivially

CT. Every state obtained by applying a polynomial size circuit family consisting of

Toffoli gates to an arbitrary product state is CT as well, as can easily be proved (this

property will also follow from lemma 2).

– Every matrix product state (MPS) of polynomial bond dimension is CT. A state |ψ〉 is

an MPS of poly bond dimension if there exist 2n N ×N matrices Ai[0], Ai[1] with N =

poly(n) such that 〈x|ψ〉 = Tr(A1[x1] . . . An[xn]), for every n-bit string x = (x1, . . . , xn).

Property (b) follows immediately from this definition. Property (a) holds since the

conditions of lemma 1 are satisfied for all MPS of polynomial bond dimension [23]. Tree

tensor states [24] are generalizations of MPS with similar properties and are also CT.

– A Clifford circuit is a quantum circuit composed of Hadamard, CNOT and PHASE

gates, where PHASE = diag(1, i). An n-qubit stabilizer state is any state that is gen-

erated by applying a polynomial size Clifford circuit to the state |0〉n. Every stabilizer

state is a CT state. Property (a) is the content of the Gottesman-Knill theorem [6].

Property (b) is proved in [7] (see also [10]).

– A (unitary, two-qubit) matchgate G is any two-qubit gate of the form

G =


a b

u v
x y

c d

 , A =

[
a b
c d

]
, B =

[
u v
x y

]
, (1)

where A,B ∈ SU(2). Every state obtained by applying a polynomial size matchgate

circuit to a computational basis state, where all gates are restricted to act on nearest

neighbors (assuming a one-dimensional ordering of the qubits) is a CT state. Properties

(a) and (b) are proved in [11].

– Any n-qubit state that is obtained by applying the quantum Fourier transform (over

the integers modulo 2n) to an arbitrary product state, is a CT state. See e.g. [25] for a

simple proof of this property (see also [26, 27] for related results).

– We briefly mention a general class of classical simulation results related to efficient

tensor contraction schemes. This approach relies on the topology of (a graph associated

with) the quantum circuit in question. If this topology displays a sufficiently tree-like

structure (quantified in terms of the graph invariant tree-width) then classical simulation

of such circuits can be achieved [28]. It can be shown that the output states of quantum

circuits with logarithmically scaling tree-width (acting on product input states), are CT

states; the proof essentially contained in [28] and is omitted here (see also [4] for related

work).

794 Simulating quantum computers with probabilistic methods

4.2 Basis-preserving operations

Next we investigate which operations map the family of CT states to itself. In this context,

the operations that preserve the computational basis play an important role. An n-qubit

operation M is called ‘basis-preserving’ if every computational basis state |x〉 is mapped

to M |x〉 = γx|π(x)〉, for some permutation π of the set of n-bit strings and some complex

number γx. The operation M is efficiently computable if the functions x→ γx, x→ π(x) and

x→ π−1(x) can be evaluated in poly(n) time. For example, every Pauli product bis efficiently

computable basis-preserving, as well as every operation of the form O =
∑
x(−1)f(x)|x〉〈x|,

where f : {0, 1}n → {0, 1} is an efficiently computable function. Every polynomial size circuit

composed of elementary basis-preserving gates (e.g. Toffoli gates, diagonal gates) is also

efficiently computable basis-preserving.

The relevance of efficiently computable basis-preserving unitary operations in the present

context is that these operations preserve the class of CT states:

Lemma 2 If |ψ〉 is a CT n-qubit state and if M is an efficiently computable unitary basis-

preserving operation, then |ψ′〉 = M |ψ〉 is again CT.

Proof: Let the permutation π and the coefficients γx be defined as above. Note that |γx| = 1

for every x since M is unitary. The coefficients of |ψ′〉 are given by 〈x|ψ′〉 = γπ−1(x)〈π−1(x)|ψ〉.
Property (b) now follows immediately from the properties that M is efficiently computable

and that |ψ〉 is CT. To show (a), we have to find an efficient classical method to sample

from the probability distribution defined by Prob(x) = |〈x|ψ′〉|2 = |〈π−1(x)|ψ〉|2. To do so,

consider the following procedure. First sample from the distribution {|〈y|ψ〉|2}, yielding a

bit string y with probability |〈y|ψ〉|2, and subsequently output the bit string x := π(y). This

procedure is efficient since |ψ〉 is CT and y → π(y) is efficiently computable. Moreover, every

bit string x is generated with probability |〈π−1(x)|ψ〉|2 as desired.

Note that the basis-preserving operation M may drastically change the entanglement

properties of |ψ〉. Consider e.g. the case where |ψ〉 is a complete product state and M a

polynomial size circuit of CPHASE and/or Toffoli operations, yielding a state |ψ′〉 that may

be highly entangled. Nevertheless, both |ψ〉 and |ψ′〉 are CT and equal up to a basis-preserving

operation.

4.3 Sparse operations

Next we consider sparse operations. Such operations are sufficiently close to basis-preserving

operations that their action on CT states remains manageable. An n-qubit operation A is

s-sparse if for every basis state |x〉, each of the vectors A|x〉 and AT |x〉 is a linear combination

of at most s computational basis states. The quantity s is called the sparseness of A. We will

consider n-qubit operations A (both unitary operations and observables) with sparseness s ≤
poly(n), which will simply be called ‘sparse operations’. Note that the notion of sparseness is

defined w.r.t. to the number of nonzero entries per row/column and not the total number of

nonzero entries in the matrix, the latter not being required to be small. In particular, a sparse

n-qubit operation generically has a total number of nonzero entries that scales exponentially

bRecall that an n-qubit Pauli operator (or Pauli product) has the form P = P1 ⊗ . . . ⊗ Pn, where each Pi is
either the 2× 2 identity or one of the Pauli matrices X, Y or Z.

M. Van den Nest 795

with n.

For every s-sparse n-qubit operation A, define 2s functions αi : {0, 1}n → C and ri :

{0, 1}n → {0, 1}n (i = 1, . . . , s) as follows: the n-bit string ri(x) is defined to be the row index

of A associated with the i-th non-zero entry in the column indexed by x (when traversing this

column from top to bottom), if an i-th nonzero entry exists within this column; we denote

this entry by αi(x). If an i-th nonzero entry does not exist in this column, then ri(x) is set to

be the all-zeroes string and αi(x) is set to zero. With the above definitions, one simply has

A|x〉 = α1(x)|r1(x)〉+ . . .+ αs(x)|rs(x)〉. (2)

Similar definitions can be given regarding the rows of A, leading to 2s functions βi : {0, 1}n →
C and ci : {0, 1}n → {0, 1}n (i = 1, . . . , s) that are the natural counterparts of the αi and ri,

respectively.

A sparse n-qubit operation A is efficiently column-computable if, on input of an arbitrary

n-bit string x, it is possible to list the (at most s = poly(n)) nonzero entries within the

column of A indexed by x together with the row indices associated with each of these non-zero

entries, all in poly(n) time. Equivalently, A is efficiently column-computable if it is possible to

compute the 2s quantities αi(x) and ri(x) (i = 1, . . . , s) in polynomial time. The operation A

is called efficiently row-computable if AT is efficiently column-computable. Finally, A is called

efficiently computable sparse (ECS) if it is both efficiently row- and column-computable. All

ECS unitary operations can be implemented efficiently on a quantum computer [29]. In this

paper we will only consider sparse operations that are efficiently computable.

The following are some examples of ECS operations.

• Examples of ECS operations:

– Every efficiently computable basis-preserving operation is ECS.

– Every d-qubit gate G acting within an n-qubit circuit, represented by the matrix G⊗ I
where I denotes the identity acting on n − d qubits, is 2d-sparse. If d = O(log n) then

such an operation is ECS.

– Every operation that is a linear combination of poly(n) ECS operations, is ECS. It

follows that every operator H =
∑m
i=1Hi which is a sum of m = poly(n) d-local observ-

ables Hi (with d = O(log n)) is ECS. This means that observables such as Hamiltonians

and correlation operators are typically ECS.

– Let U represent an n-qubit polynomial size circuit of basis-preserving elementary gates

(e.g. Toffoli, CNOT, PHASE, CPHASE, etc.), interspersed with k gates V1, . . . , Vk at

arbitrary places in the circuit, each of which acts on at most d qubits. It is required

that kd = O(log n); otherwise the Vi are arbitrary. Then U is ECS. To see this, expand

each gate Vi as a linear combination of 4d Pauli products and note that every Pauli

product is efficiently computable basis-preserving. Consequently, U can be written as a

linear combination of 4dk = poly(n) efficiently computable basis-preserving operations,

showing that U is ECS.

– ECS operations often arise in the context of quantum algorithms, related e.g. to unitary

group representations; see e.g. [29] and references within.

796 Simulating quantum computers with probabilistic methods

– A product of d ECS operations, where d is some constant, is again ECS.

We are now in a position to state the following result, which constitutes the main technical

ingredient in this work regarding the use of sampling techniques in classical simulation.

Theorem 3 Let |ψ〉 and |ϕ〉 be CT n-qubit states and let A be an ECS (not necessarily

unitary) n-qubit operation with ‖A‖ ≤ 1. Then there exists an efficient classical algorithm to

approximate 〈ϕ|A|ψ〉 with polynomial accuracy.

Note that theorem 1 immediately follows from theorem 3. Before proving this result in its

most general form, as a warm-up we prove a special instance, taking A to be the identity.

Hence, we are concerned with the estimation of overlaps between CT states. This special case

is proved beforehand to illustrate the sampling methods used in this work, without the more

technically involved arguments required in the proof of theorem 3. Thus, we set out to prove

the following property, formulated as a lemma.

Lemma 3 Let |ψ〉 and |ϕ〉 be two CT n-qubit states. Then there exists an efficient classical

algorithm to approximate 〈ϕ|ψ〉 with polynomial accuracy.

Proof: Denote px := |〈x|ψ〉|2 and qx := |〈x|ϕ〉|2. Since |ψ〉 and |ϕ〉 are CT states, it is

possible to sample efficiently from the probability distributions {px} and {qx}. Define the

function δ : {0, 1}n → {0, 1} by δ(x) = 1 if px ≥ qx and δ(x) = 0 otherwise, for every n-bit

string x, and define ε = 1− δ. Then δ and ε can be evaluated efficiently since px and qx can

be efficiently evaluated by assumption (b) in the definition of CT states. The overlap 〈ϕ|ψ〉
is therefore equal to

〈ϕ|ψ〉 =
∑
〈ϕ|x〉〈x|ψ〉δ(x) +

∑
〈ϕ|x〉〈x|ψ〉ε(x), (3)

where the sums are over all n-bit strings x. Defining the functions F and G by

F (x) =
〈ϕ|x〉〈x|ψ〉

px
δ(x), G(x) =

〈ϕ|x〉〈x|ψ〉
qx

ε(x), (4)

we have 〈ϕ|ψ〉 = 〈F 〉 + 〈G〉 where 〈F 〉 =
∑
pxF (x) and 〈G〉 =

∑
qxG(x). It follows from

assumption (b) in the definition of CT states that F and G can be efficiently evaluated.

Furthermore, both |F (x)| and |G(x)| are not greater than 1. It thus follows from the Chernoff-

Hoeffding bound that both 〈F 〉 and 〈G〉 can be approximated efficiently with polynomial

accuracy. This implies that 〈ϕ|ψ〉 can be estimated with polynomial accuracy as well. This

completes the proof.

Lemma 3 shows that the overlap 〈ϕ|ψ〉, representing a ‘joint’ property of the states |ψ〉 and

|ϕ〉, may be estimated efficiently classically even when only an efficient simulation of quantum

processes resulting in |ψ〉 and |ϕ〉 individually is available—in particular, the techniques lead-

ing to the proofs of (a)-(b) (cf. definition of CT states) for |ψ〉 and |ϕ〉, may be completely

different. For example, the overlap between a matrix product state and a stabilizer state can

be estimated efficiently classically with polynomial accuracy, even though such states are CT

due to very different argumentations.

M. Van den Nest 797

We are now in a position to prove theorem 3.

Proof of theorem 3: consider CT states |ψ〉 and |ϕ〉. Let s = poly(n) denote the

sparseness of A. Using the notation of (2), we have 〈ϕ|A|ψ〉 =
∑n
i=1 σi, where we denote

σi :=
∑
x

αi(x)〈ϕ|ri(x)〉〈x|ψ〉. (5)

Note that |αi(x)| ≤ 1. It is sufficient to prove that each of the s quantities σi can be estimated

efficiently with polynomial accuracy, for then
∑s
i=1 σi can also be estimated with polynomial

accuracy as s = poly(n). To do so, write px := |〈x|ψ〉|2 and qx := |〈x|ϕ〉|2. Define a function

δi by δi(x) = 1 if px ≥ qri(x) and δi(x) = 0 otherwise, for every n-bit string x, and define

εi = 1 − δi. Then δi and εi can be evaluated efficiently since |ψ〉 and |ϕ〉 are CT and A is

ECS. We split σi in two parts by inserting δi(x) + εi(x) = 1:

σi =
∑
〈ϕ|ri(x)〉〈x|ψ〉αi(x)δi(x) +

∑
〈ϕ|ri(x)〉〈x|ψ〉αi(x)εi(x). (6)

The function Fi defined by

Fi(x) =
〈ϕ|ri(x)〉〈x|ψ〉

px
αi(x)δi(x) (7)

is efficiently computable and satisfies |Fi(x)| ≤ 1 for every x. The first term in the r.h.s.

of (6) is hence equal to 〈Fi〉 =
∑
pxFi(x), which can be estimated to polynomial accuracy

efficiently due to the Chernoff-Hoeffding bound. To estimate the second term in the r.h.s. of

(6), one needs to be careful since the function ri may not be injective. We proceed as follows.

Define the following function Gi:

Gi(y) =
∑

x: ri(x)=y and αi(x)6=0

〈ϕ|y〉〈x|ψ〉
qy

αi(x)εi(x) (8)

with the additional convention that Gi(y) is zero if there are no x such that ri(x) = y and

αi(x) 6= 0. With this definition, the second term in the r.h.s. of (6) is equal to 〈Gi〉 =∑
y qyGi(y). We now make the following claims. Claim 1: the function Gi is efficiently

computable; and Claim 2: |Gi(y)| ≤ s for every y. A proof of claims 1 and 2 implies that 〈Gi〉
can be estimated in polynomial time with polynomial accuracy due to the Chernoff-Hoeffding

bound. But then σi can also be estimated efficiently, thus completing the proof.

We now prove Claim 1. Since A is s-sparse, every row y has at most s non-zero entries.

Equivalently, the following set contains at most s strings x:

{x : ∃j ∈ {1, . . . , s} s.t. y = rj(x) and αj(x) 6= 0}. (9)

Hence, a fortiori, for every fixed i there are at most s different x such that ri(x) = y and

αi(x) 6= 0. Moreover, given an arbitrary y it is possible to efficiently determine all these x’s

and the corresponding coefficients αi(x). This is done in two steps: first, since A is efficiently

(row-)computable, given a row index y it is possible to compute all (at most s) strings x in

the set (9) in polynomial time; second, for all those x one computes ri(x) and αi(x)—this

is possible in polynomial time since A is efficiently column-computable—and verifies whether

ri(x) is equal to y; those x for which ri(x) = y are kept, the others discarded.

798 Simulating quantum computers with probabilistic methods

It follows that Gi(y) is a sum of at most s = poly(n) terms, each of which is efficiently

computable. Thus, Claim 1 is proved. Moreover, Claim 2 now immediately follows as well,

since the modulus of every term in the sum (8) is smaller than one and there are at most s

terms in the sum. This proves theorem 3.

Remark: poly-ECS operations.— In the definition of ECS operations and in the

subsequent statement of theorem 3, we have required that the non-zero entries of A can be

computed efficiently with perfect precision. Theorem 3 also holds for sparse operations where,

instead, these coefficients can be estimated efficiently with polynomial accuracy, which is a

significant relaxation. Call an n-qubit operation A (‖A‖ ≤ 1) poly-ECS if it is sparse, and if

(i) on input of an arbitrary column index x, it is possible to determine in polynomial time all

those row indices y such that 〈y|A|x〉 6= 0 and if the corresponding nonzero entries 〈y|A|x〉
can be estimated in polynomial time with polynomial accuracy, and (ii) similarly for the

row indices y. Theorem 3 then also holds for poly-ECS operations. The proof is completely

analogous to the above proof of theorem 3. The only difference is that now the functions Fi(x)

and Gi(x) can no longer be computed exactly, but only with polynomial accuracy. However,

this suffices to invoke the Chernoff-Hoeffding bound (cf. the Appendix). This remark will

play an important role in the discussion of Simon’s algorithm i.e. in the proof of theorem 2.�

We conclude this section with two corollaries of theorem 3. Corollary 1 shows that expec-

tation values of local observables can be estimated efficiently classically for every CT state.

This result may potentially be of use in e.g. variational Monte Carlo studies of strongly

correlated systems (this is work in progress). Corollary 2 will be of use when we discuss the

Deutsch-Jozsa algorithm in section 6.2.

Corollary 1 Let |ψ〉 be an n-qubit CT state and let O be a d-local observable with d =

O(log n) and ‖O‖ ≤ 1. Then there exists an efficient classical algorithm to estimate 〈ψ|O|ψ〉
with polynomial accuracy.

Proof: this result follows immediately from theorem 3 since every d-local O with d = O(log n)

is ECS. Here we provide a short alternative proof that does not require the formalism used in

the proof of theorem 3. Every observable O of the form considered can be written as a linear

combination of N = poly(n) Pauli operators: O =
∑N
i=1 aiPi, with |ai| ≤ 1. Consequently,

〈O〉 := 〈ψ|O|ψ〉 =
∑

ai〈ψ|Pi|ψ〉. (10)

As each Pi is an efficiently computable basis-preserving unitary operation, each state Pi|ψ〉 is

CT due to lemma 2. Invoking lemma 3, the overlap between Pi|ψ〉 and |ψ〉 can be estimated

classically with polynomial accuracy. Hence, 〈O〉 can also be estimated classically with poly-

nomial accuracy. This proves the result.

Corollary 2 Let |ψ〉 and |ϕ〉 be CT n-qubit states, let |ξ〉 and |χ〉 be CT k-qubit states (with

k ≤ n) and let A and B be ECS n-qubit operations with ‖A‖, ‖B‖ ≤ 1. Then there exists an

efficient classical algorithm to approximate 〈ϕ|A[|ξ〉〈χ| ⊗ I]B|ψ〉 with polynomial accuracy.

M. Van den Nest 799

Proof: The proof uses a technique related to the SWAP test. Denote |ψ′〉 := B|ψ〉 and

|ϕ′〉 := A†|ϕ〉 (which are potentially unnormalized states) and consider the following identity:

〈ϕ′|[|ξ〉〈χ| ⊗ I]|ψ′〉 = [〈χ|〈ϕ′|]USWAP[|ξ〉|ψ′〉], (11)

where the unitary operator USWAP swaps qubit i with qubit i+ k, for every i = 1, . . . , k. The

identity (11) can easily be verified. Hence, we have

〈ϕ|A[|ξ〉〈χ| ⊗ I]B|ψ〉 = [〈χ|〈ϕ|][I ⊗A]USWAP[I ⊗B][|ξ〉|ψ〉]. (12)

Note that the (k+n)-qubit states |ξ〉|ψ〉 and |χ〉|ϕ〉 are CT. Moreover, it can easily be verified

that USWAP is ECS. This implies that the operation [I⊗A]USWAP[I⊗B] is ECS as well, being

a product of three ECS operations. Theorem 3 can now be applied.

Note that, as a special case of this last result, it follows that partial overlaps 〈ϕ|[|ξ〉〈χ| ⊗
I]|ψ〉 between CT states can be estimated efficiently classically.

5 Applications of theorem 1

Next we discuss three applications of theorem 1 as announced in the introduction. These

applications regard sparse circuits, composability, and CNOT-eiθX circuits.

5.1 Classical simulation of sparse circuits

The following is a formal statement of the classical simulation of sparse circuits which was

announced in the introduction.

Corollary 3 Let U be a circuit composed of m efficiently computable s-sparse unitary opera-

tions with sm = poly(n). The circuit acts on an arbitrary product input state and is followed

by a Z measurement of the first qubit. Then this quantum computation can be simulated

efficiently classically.

Proof: Let |ψ〉 denote the product input state and let Z1 denote the Z observable acting on

the first qubit. The expectation value of Z1 is given by 〈Z1〉 = 〈ψ|U†ZU |ψ〉. Note that U is

ECS due to the restrictions on s and m; but then the observable O := U†ZU is also ECS,

being a product of three ECS operations. Moreover, |ψ〉 is a product state and hence CT.

Theorem 1 can now be applied.

As briefly alluded to in the introduction, sparse operations highlight the role of interference—

as opposed to entanglement—in quantum computation. Note that sparse operations may

generically produce highly entangled states. Consider e.g. the simple case where the input

is |+〉n and the entire circuit U is composed of poly(n) CPHASE gates (which are basis-

preserving gates and thus particularly simple examples of sparse operations). With such

circuits, it is possible to efficiently generate e.g. the highly entangled cluster states [30]. On

the other hand, if a sparse operation U acts on a state |ψ〉 then each coefficient of U |ψ〉 in

the standard basis is a linear combination of at most poly(n) coefficients of |ψ〉. Hence, the

“interference” in the process |ψ〉 → U |ψ〉 is limited (we use the notion of interference in a

800 Simulating quantum computers with probabilistic methods

colloquial sense and do not adopt any technical definition). Corollary 3 states that quan-

tum computational processes where the interference is “small” in this sense, cannot offer any

speed-up compared to classical computers, in spite of the high degrees of entanglement that

may be generated throughout the computation. Corollary 3 may thus be regarded as comple-

mentary to a class of results stating that quantum computations that generate a low amount

of entanglement (quantified appropriately) can be classically simulated efficiently (see e.g.

[1, 2, 3, 4, 5]).

Finally, note that in corollary 3 one cannot hope for an improvement of the bound sm =

poly(n) to e.g. m = poly(n) and s constant (unless BQP = BPP) since every polynomial size

quantum circuit is a product of m = poly(n) single- and two-qubit gates, each of which is an

s-sparse operation with s constant.

5.2 Composability

Theorem 1 immediately leads to a criterion to assess when the composition of two quantum

circuits can be simulated classically. Formally, we have:

Corollary 4 Consider polynomial size n-qubit quantum circuits U1 and U2, an input state

|ψin〉 and an observable O with ‖O‖ ≤ 1 such that: (i) the state U1|ψin〉 is CT and (ii)

the operation U†2OU2 is ECS. Then the circuit U = U2U1, acting on |ψin〉 and followed by

measurement of O, can be simulated efficiently classically.

Next we provide some illustrations of this result. First we provide some examples of pairs

(U,O) such that U†OU is ECS. All circuit families U below are polynomial size.

• Examples of pairs (U,O) where U†OU is ECS:

– Let U be a circuit of constant depth and let the observable O act nontrivially on O(log n)

qubits. Then U†OU also acts nontrivially on O(log n) qubits and is hence an ECS

observable.

– Let U represent a Clifford circuit and let O be any observable that is a linear combination

of N = poly(n) Pauli products: O =
∑N
i=1 aiP

i with |ai| ≤ 1 and P i Pauli operators.

Then U†OU is again a linear combination of N Pauli products, and hence ECS.

– Let U be a circuit composed of nearest-neighbor matchgates and let Z1 denote the Pauli

Z operation acting on the first qubit. Then U maps Z1 (under conjugation) to a linear

combination of poly(n) Pauli products (see e.g. [14]), which is an ECS operation.

Next we explicitly describe two concatenated circuits that can be simulated efficiently using

our results; see also Fig 1. In both examples, the circuit acts on the all-zeroes computational

basis state and is followed by measurement of Z on the first qubit.

• Examples of corollary 4:

– Consider a quantum circuit V = V4V3V2V1 where V1 is an arbitrary local unitary oper-

ation, V2 represents the quantum Fourier transform (over Z2n), V3 is an arbitrary ECS

unitary, and V4 is an arbitrary polynomial size (nearest-neighbor) matchgate circuit.

M. Van den Nest 801

Then this circuit can be simulated efficiently classically due to corollary 4. In particu-

lar, we show that corollary 4 can be applied by taking U1 ≡ V2V1 and U2 ≡ V4V3. To see

this, note first that V2V1 acting on the input yields a CT state. Further, (V4V3)†Z(V4V3)

is ECS: indeed, V †4 ZV4 is a sum of poly(n) Pauli products and hence ECS, and thus

(V4V3)†Z(V4V3) is ECS as well, being a product of three ECS operations. Corollary 4

can now be applied.

– Consider a quantum circuit V = V4V3V2V1 where V1 is an arbitrary polynomial size

matchgate circuit, V2 is a polynomial size circuit of Toffoli gates, V3 is an arbitrary

polynomial size Clifford circuit and V4 is an arbitrary log-depth circuit consisting of

nearest-neighbor gates. We show that corollary 4 can be applied by taking U1 ≡ V1
and U2 ≡ V4V3V2. To see this, note first that V1 acting on the input yields a CT

state. Further, (V4V3V2)†Z(V4V3V2) is ECS: V †4 ZV4 acts nontrivially on O(log n) qubits

and is hence is a linear combination of poly(n) Pauli products; but then V †3 V
†
4 ZV4V3

is also a linear combination of poly(n) Pauli products (and hence ECS) since V3 is a

Clifford operation; finally, it follows that (V4V3V2)†Z(V4V3V2) is ECS as this operation

is a product of three ECS operations. Corollary 4 thus again yields the desired result.

Several other examples of the above nature can easily be generated.

5.3 Rotated bases and CNOT-eiθX circuits

In our definition of CT states and sparse operations, as well as in the resulting theorem 1,

we have singled out a particular basis—i.e. the computational basis. Note, however, that

in the vast majority of all arguments we have never relied on the specific form of this basis.

Therefore, we may consider a generalized definition of CT states, sparse operations, etc.,

stated relative to a arbitrary basis B, and carry out an analogous program as done so far,

leading a much broader class of results. Results such as theorem 1 can be transferred in an

obvious way, and will be omitted. Here we limit ourselves to discussing an example that can

be understood using this generalized notion of CT states. This example regards the simulation

of circuits composed of CNOTs and eiθX gates. Other examples of similar nature can easily

be constructed.

Let B = {|bx〉} denote the |±〉 product basis, defined by |bx〉 ∝
⊗n

i=1[|0〉 + (−1)xi |1〉]
for every n-bit string x = (x1, . . . , xn). A state is called ‘computationally tractable in the

basis B’ if it is possible to sample in poly(n) time with classical means from the probability

distribution Prob(x) = |〈bx|ψ〉|2, and if the coefficients 〈bx|ψ〉 can be computed in poly(n)

time classically. It is clear that |ψ〉 is CT in B iff H⊗n|ψ〉 is CT in the computational basis.

For example, it can easily be shown that every stabilizer state, as well as any MPS |ψ〉 is CT

in the |±〉-basis B as H⊗n|ψ〉 is in both cases CT in the computational basis.

Similarly, the notion of ECS operations w.r.t. B is defined in the natural way. Obviously,

A is ECS w.r.t. B iff H⊗nAH⊗n is ECS in the computational basis. For example, let U denote

an arbitrary polynomial size n-qubit circuit composed of CNOT and eiθX gates, where θ may

be any (real) angle. Whereas U is generally not ECS in the computational basis, this circuit

is always ECS in the |±〉 basis B. This can be seen as follows. Let CNOTab denote a CNOT

gate with control a and target b. One then has the pair of identities

H⊗2CNOTabH
⊗2 = CNOTba and HeiθXH = eiθZ , (13)

802 Simulating quantum computers with probabilistic methods

both of which are easily verified. These identities imply that M := H⊗nUH⊗n is a polynomial

size circuit consisting entirely of CNOT and eiθZ gates and is thus ECS (even basis-preserving)

in the computational basis. This shows that U is ECS in the |±〉 product basis.

One can now consider a generalized form of theorem 1, now stated relative to the |±〉 basis

(or any other basis):

Theorem 1’ Let |ψin〉 be an n-qubit state, let U denote a polynomial size n-qubit circuit

and let O denote an observable with ‖O‖ ≤ 1. If |ψ〉 is CT in B and if U†OU is ECS

in B, then the circuit U , acting on |ψin〉 and followed by measurement of O, can be

simulated efficiently classically.

Now consider a CNOT-eiθX circuit U as above. The circuit U acts on an arbitrary prod-

uct input |α〉 and is followed by measurement of Z1. We now claim that this computation

can be simulated efficiently classically, using the above variant of theorem 1. To see this,

first note that |α〉 is CT in B. Second, O := U†Z1U is ECS in B: to show this, note that

H⊗nOH⊗n = M†X1M. Here, as before, M := H⊗nUH⊗n is a polynomial size circuit con-

sisting entirely of CNOT and eiθZ gates, and X1 denotes the Pauli X operation acting on

the first qubit. The operation M†X1M is basis-preserving in the computational basis, hence

O = H⊗n[M†X1M]H⊗n is basis-preserving in B. This proves the claim; note that we have

hence proved:

Corollary 5 Every polynomial size circuit composed of CNOT and eiθX gates (for arbitrary

real θ), acting on an arbitrary product input and followed by measurement of Z1, can be

simulated efficiently classically.

6 Simulating quantum algorithms

In this section we apply our results in the context of quantum algorithms. The idea is to

consider e.g. theorems 1 and 3 and corollary 2 as a collection of ‘tests’ that every quantum

algorithm claiming to achieve an exponential speed-up needs to pass. We will consider the

three classes of algorithms mentioned in the introduction.

6.1 Potts models

Here we point out that a recently proposed quantum algorithm [20], concerned with estimat-

ing partition functions of classical spin systems such as the Potts model, can be simulated

efficiently classically. Letting Z denote the Potts model partition function defined on some

(arbitrary) lattice, the quantum algorithm in [20] provides a polynomial approximation of

the quantity Z/∆. Here ∆ denotes a particular, easy-to-compute normalization factor that

depends on the couplings of the model (see [20], Cor. 5.9, for the precise form of ∆); ∆ is

sometimes called the ‘approximation scale’ of the algorithm. On the other hand, in [31] map-

pings were established which allow to express the same quantity Z/∆ as the overlap between

a suitable product state |α〉 and stabilizer state |ψ〉: Z/∆ = 〈α|ψ〉. Note that both stabilizer

states and product states are CT (see section 4). Using theorem 3 (in fact: the special instance

A = I of lemma 3, dealing with overlaps between CT states), we find that overlaps between

stabilizer states and product states can also efficiently be estimated with polynomial accu-

racy with classical methods. Hence, the quantity Z/∆ can also be estimated with polynomial

M. Van den Nest 803

accuracy in polynomial time using classical means, showing that the quantum algorithm in

question can be simulated efficiently classically.

We emphasize that the work [20] contains several quantum algorithms besides the partition

function algorithm focused on here (in particular, the latter does not constitute the main result

of [20]), including algorithms for BQP-complete problems, to which our classical simulation

techniques do not apply.

6.2 Deutsch-Jozsa

An application of corollary 2 is found by considering the Deutsch-Jozsa (DJ) algorithm [21].

Recall that in the DJ problem one considers a black-box function f : {0, 1}n → {0, 1} which is

promised to be either constant or balanced c. The task is to determine which possibility holds.

Classically, any deterministic solution to the problem requires exponentially many oracle

calls, whereas a randomized classical algorithm can solve the DJ problem with exponentially

small probability of failure using O(n) queries. The DJ quantum algorithm constitutes a

deterministic solution to the problem using a single query of the oracle.

Thus, it is well known that DJ has an efficient classical solution when an exponentially

small probability of failure is allowed. Here we will reproduce this result, showing that it im-

mediately follows from corollary 2. Moreover, we will find that a large class of generalizations

(to be specified below) can be efficiently simulated as well. The argument is very general and

mainly regards the structure of the involved circuits.

Going through the steps in the DJ algorithm, it is easily verified that DJ is implemented

by a circuit belonging to the following general class (the system is initialized in the state |0〉n):

Round 1: apply a local unitary operator V1 (i.e. V1 = V11 ⊗ . . .⊗ V1n);

Round 2: apply an ECS operation V2;

Round 3: apply another local unitary operator V3 ;

Round 4: measure the observable O = |0〉〈0|k ⊗ I, for some k ≤ n.

Using corollary 2, we now immediately find that such a computation can be simulated effi-

ciently classically. Indeed, the state obtained after Round 1 is a a product state and hence

CT. Moreover, the operation in round 2 is ECS. Finally, the observable O′ := V †3 OV3 has the

form |γ〉〈γ| ⊗ I for some k-qubit product—and hence CT—state |γ〉. Corollary 2 now implies

that the circuit can be simulated efficiently.

Remark. Strictly speaking, in DJ the operation V2 is ECS in a slightly more general sense

compared to the definition in section 4.3, due to the presence of the oracle. That is, V2 is

sparse with matrix elements that are classically computable in poly(n) time using poly(n)

queries to the oracle. Remark that the results of section 4 carry over straightforwardly to the

oracular case. In this context an “efficient” classical simulation of a quantum circuit involving

oracles refers to a classical simulation that runs in poly(n) time using poly(n) queries to the

classical oracle. �

cA function f is constant if f(x) = f(0) for every n-bit string x; f is balanced if exactly 2n−1 inputs x satisfy
f(x) = 0.

804 Simulating quantum computers with probabilistic methods

Note that, in the argument, the specific form of the function f (computed in Round 2) is

completely irrelevant. This shows that the lack in computational power of the DJ algorithm

is a structural feature of the circuit. In particular, this computational weakness cannot be

overcome by e.g. changing the form of the oracle, but must involve a more drastic alteration

of the circuit structure.

6.3 Simon’s algorithm

Lastly, we consider Simon’s algorithm [18]. As this algorithm has the admirable feature of

being a very simple quantum algorithm that nevertheless achieves an exponential speed-up,

it is an ideal candidate to compare quantum and classical computational power. Simon’s

algorithm is worth investigating from a number of angles. As a comprehensive study would

lead us too far, here we single out one particular aspect, namely the surpising role of the round

of classical postprocessing in the algorithm taking place after the measurement. We will show

that this seemingly innocuous round of classical computation plays a rather determining role

in the performance of the algorithm.

We first give a short review of Simon’s algorithm in section 6.3.1. In section 6.3.2 we

take small detour, discussing aspects of Fourier analysis of Boolean functions, which will be

necessary to prove theorem 2; the latter is done in section 6.3.3.

6.3.1 Review of Simon’s algorithm

Here we will focus on a decision problem version of Simon’s problem, where it is asked to

determine the i-th bit ai of the unknown string a for some i. We will fix i = 1 in the following

for concreteness.

Simon’s quantum algorithm consists of the following steps. There are two registers, each

consisting of n qubits, each initially prepared in the state |0〉n. First a Hadamard operation

is applied to every qubit in the first register. Second, the oracle operator Uf is applied,

yielding
∑
x |x〉|f(x)〉. Third, again a Hadamard operation is applied to every qubit in the

first register. This yields a state of the form |ψout〉 ∝
∑
u∈V |u〉|ψu〉. Here the sum is over all

n-bit strings u that are orthogonal to a (w.r.t. modulo-2 arithmetic). We denote by V the

subspace over Z2 of all such u. The |ψu〉 are (irrelevant) normalized states. Next, all qubits

in the first register are measured in the computational basis, yielding a bit string u which

is drawn uniformly at random from the subspace V. Running this procedure N times, one

generates the (Nn)-qubit state |ψout〉N and one subsequently obtains N bit strings u1, . . . , uN ,

each drawn randomly from V. We assemble these vectors as the rows as an N × n matrix,

denoted by u. If N = O(n) then the probability that u1, . . . , uN do not span the entire space

V is exponentially small in n. In the final step in the algorithm, one uses a classical computer

to compute a solution x to the linear system of equations ux = 0. More precisely, in the

decision problem version of Simon’s algorithm, a function g : {0, 1}nN → {0, 1} is computed

which takes the entries of the matrix u as input and which outputs 1 if there exists a solution

x where the first bit of x is equal to 1; the output is zero otherwise. Note that g is efficiently

computable classically. If the matrix u has rank n − 1—which happens in all cases except

for an exponentially small fraction—then there is a unique nontrivial solution i.e. x = a, in

which case the function g(u) correctly outputs the first bit of a.

In summary, Simon’s algorithm can be implemented with an (Nn)-qubit circuit (where

Nn = poly(n)) displaying the following structure; the circuit acts on the all-zeroes computa-

M. Van den Nest 805

tional basis state.

Round 1: apply a Hadamard gate to some subset of qubits;

Round 2: apply an efficiently computable basis-preserving unitary operation;

Round 3: apply another round of Hadamard gates to some subset of the qubits; the

latter subset is denoted by S;

Round 4: perform a computational basis measurement on all qubits in S. Denote by

u the bit string containing all measurement outcomes.

Round 5: classically compute the value g(u)—which represents the output of the

algorithm—where g is some efficiently computable Boolean function with a single-bit

output.

In Simon’s algorithm, round 2 is efficiently computable basis-preserving in a generalized sense

due to the oracle, see the remark in section 6.2 regarding ECS operations in the presence of

oracles.

For the time being, we will consider the above class of 5-round circuits in full generality,

and ignore the specific forms of e.g. the functions f and g needed in Simon’s algorithm.

6.3.2 Intermezzo: learning theory

In order to formally state and prove theorem 2, we briefly need to discuss some elementary

concepts related to learning theory of Boolean functions (see e.g. [32]). Readers familiar with

these concepts may immediately skip to section 6.3.3.

1. A Boolean function is any function g : {0, 1}m → {0, 1}. Every Boolean function can be

written in a unique way as a multivariate polynomial g(x) =
∑
S aSx

S over Z2. In this

expression, the sum ranges over all subsets S ⊆ {1, . . . ,m}. Moreover one has aS ∈ Z2

and xS :=
∏
i∈S xi for every S, and arithmetic is performed over Z2. The (Z2-)degree

of g is the size of the largest set S such that aS = 1.

2. The Fourier transform ĝ : {0, 1}m → R of g is defined as follows:

ĝ(u) =
∑
x

(−1)u
T x+g(x), (14)

for every m-bit string u. The quantities ĝ(u) are called the Fourier coefficients of g. If

the function g is computable in polynomial time (or provided as an oracle), and if a

bit string u is provided as an input, then there exists an elementary polynomial time

classical algorithm to estimate the quantity 2−mĝ(u) with polynomial accuracy. To see

this, simply note that 2−mĝ(u) coincides with the expectation value of the (efficiently

computable) function x → (−1)g(x)+u
T x w.r.t. the uniform distribution, such that a

polynomial approximation of 2−mĝ(u) can be achieved in polynomial time due to the

Chernoff-Hoeffding bound.

3. A Boolean function is said to be s-sparse if it has precisely s nonzero Fourier coefficients.

It is easily verified that every linear function is 1-sparse. In addition, it has been

shown that every Boolean function corresponding to a polynomial of degree d is at least

806 Simulating quantum computers with probabilistic methods

2d-sparse [33]. In this sense the sparseness of a Boolean function is an indication of

its nonlinearity, since high-degree polynomials necessarily have many nonzero Fourier

coefficients d. A (family of) function(s) g is simply called ‘sparse’ if its sparseness satisfies

s ≤ poly(m).

4. Interestingly, there exists an efficient algorithm to determine all Fourier coefficients of

g that are greater than a given threshold value, in the following sense:

Lemma 4 [35, 34] Suppose that one has access to an oracle computing a Boolean func-

tion g. Let p(m) denote an arbitrary polynomial in m. Then there exists a polynomial

time algorithm that outputs a collection of m-bit strings T ⊆ {0, 1}m of size poly(m)

containing all u such that 2−m|ĝ(u)| ≥ (p(m))−1.

Together with the remark made in 2, it follows that there exists a polynomial time

algorithm that outputs the set T together with polynomial approximations of all the

quantities 2−mĝ(u), for every u ∈ T . Note that lemma 4 is a nontrivial result: indeed,

a priori it is not obvious that the coefficients ĝ(u) that lie above a certain threshold can

be determined efficiently, since in principle there is an exponentially large space of bit

strings u to be searched.

6.3.3 Proof of theorem 2

We are now in a position to formally state theorem 2:

Theorem 2 Consider a quantum circuit displaying the 5-round structure as in section 6.3.1.

If the function g computed in the round of classical postprocessing is sparse, then the entire

circuit can be simulated efficiently classically.

An important ingredient in the proof of theorem 2 will be the m-qubit operator Wg (where

m denotes the number of bits on which g acts) defined by

〈u|Wg|v〉 = 2−mĝ(u+ v) for every u, v ∈ {0, 1}m. (15)

Note that each row and each column of Wg contains precisely s non-zero entries, where s is

the sparseness of g; in other words, the Boolean sparseness of g and the sparseness of the

operator Wg coincide. This correspondence prompts the question of when the operator Wg

is efficiently computable sparse. It can easily be seen that Wg is ECS if and only if (i) g is

sparse and (ii) there exists an efficient algorithm to determine all those strings u such that

ĝ(u) 6= 0 and the values of the corresponding coefficients ĝ(u). Note however, that finding

all u such that ĝ(u) 6= 0 is highly nontrivial since some of the non-zero Fourier coefficients

may be exponentially small, yet nonzero. Moreover, for general (efficiently computable) g the

problem of computing ĝ(u) with exponential precision is #P-hard. Therefore, requiring Wg

to be ECS is highly stringent.

dThe converse, however, is not true. For example, there exist degree-2 polynomials with sparseness s = 2n

(the inner product function is an example of this).

M. Van den Nest 807

Fortunately, for our purposes the relevant question will be whenWg can be well-approximated

by an ECS operation A with polynomial accuracy; moreover, A itself need not be ECS in

the exact sense, but poly-ECS as discussed in the remark below theorem 3—these are much

less stringent demands. Approximating Wg by such an A is actually possible for every sparse

function g. This is shown in the following lemma; the proof relies on lemma 4.

Lemma 5 Let g be a sparse Boolean function acting on m bits that is provided as an oracle,

let the operator Wg be defined as in (15) and let p(m) be an arbitrary polynomial. Then there

exists a polynomial time classical algorithm that outputs a poly-ECS m-qubit operation A such

that ‖Wg −A‖ ≤ p(m)−1.

Proof: Let s ≤ poly(m) denote the sparseness of g. Let θ > 0 and let W θ
g denote the matrix

obtained by replacing all entries of Wg that are smaller in absolute value than θ, by zero.

That is: 〈u|W θ
g |v〉 is equal to 2−mĝ(u + v) if |2−mĝ(u + v)| ≥ θ, and zero otherwise. For

now, θ is arbitrary but below we will choose θ to be a suitable polynomial in m. Since Wg is

s-sparse, the matrices W θ
g and Wg−W θ

g are s-sparse as well. Due to lemma 4 and the remark

below it, for every θ = 1/poly(m), the operator W θ
g is poly-ECS. Next we show that θ can be

tuned appropriately such ‖Wg −W θ
g ‖ ≤ p(m)−1 is satisfied. To do so, let ‖ · ‖r (‖ · ‖c) denote

the maximum row (column) sum norm e; these norms are related to the spectral norm ‖ · ‖ via

the inequality ‖X‖2 ≤ ‖X‖r‖X‖c for every matrix X [36]. As the matrix W −W θ
g is s-sparse

and as every entry of this matrix is at most θ in absolute value, it holds that ‖W −W θ
g ‖r ≤ sθ

and ‖W −W θ
g ‖c ≤ sθ, and hence

‖W −W θ
g ‖2 ≤ ‖W −W θ

g ‖r‖W −W θ
g ‖c ≤ (sθ)2. (16)

By choosing θ := (sp(m))−1 and setting A := W θ
g with this choice of θ, we have found a

matrix A satisfying the desired conditions. This completes the proof.

Lemma 5 will be the key ingredient in the proof of theorem 2, which is provided next.

Proof of theorem 2: The analysis will be simplified by considering a slightly alternative version

of the 5-round circuits in question, where now the entire computation is performed coherently

and there is only a single measurement at the end of the computation. To achieve this, first one

goes through rounds 1-3 as indicated. Second, the function u→ g(u) is computed coherently

on the relevant registers, realized by a unitary operation Ug mapping Ug : |u〉 → |g(u)〉|ξu〉 for

some (irrelevant) states |ξu〉 f. Finally, the first qubit is measured in the computational basis.

The overall circuit is denoted by UT . Letting g be an arbitrary sparse function, we thus have

to show that there exists an efficient classical algorithm to approximate 〈Z1〉 = 〈0|U†TZ1UT |0〉
(where |0〉 = |00 . . .〉) with polynomial accuracy. For further reference, we denote by |ψ2〉 the

state obtained after round 2; furthermore, H denotes the tensor product of Hadamard gates

applied in round 3. Moreover, let p(n) denote an arbitrary polynomial in n.

eThat is, ‖X‖r := maxi

∑N

j=1
|Xij | and ‖X‖c := maxj

∑N

i=1
|Xij |, for every N ×N matrix X.

fWe remark that in the definition of Ug , in the most general case one must allow Ug to usem = poly(n) ancillary
qubits prepared in, say, the state |0〉, i.e. Ug : |u〉|0〉m → |g(u)〉|ξu〉. For clarity, we have not incorporated
this in the proof; the argument can be generalized appropriately without significant complications.

808 Simulating quantum computers with probabilistic methods

First, remark that the state |ψ2〉 is CT. Denoting O := HU†gZ1UgH, one has 〈Z1〉 =

〈ψ2|O|ψ2〉. It is now crucial to note that O = Wg, where Wg is defined in Eq. (15); this

identity can easily be verified. This allows us to invoke lemma 5, yielding in polynomial time

a poly-ECS operation A satisfying ‖Wg − A‖ ≤ p(n)−1. Since A is poly-ECS and since |ψ2〉
is CT, according to theorem 3 (cf. also the remark below it) it is possible to approximate

〈ψ2|A|ψ2〉 with polynomial accuracy in polynomial time with classical means. In particular,

it is possible to efficiently generate a number c such that |c − 〈ψ2|A|ψ2〉| ≤ p(n)−1. Since

〈Z1〉 = 〈ψ2|Wg|ψ2〉, we then have

|c− 〈Z1〉| ≤ |c− 〈ψ2|A|ψ2〉|+ |〈ψ2|(Wg −A)|ψ2〉|
≤ p(n)−1 + ‖Wg −A‖ ≤ 2p(n)−1. (17)

In the first inequality we have used the triangle inequality; in the second inequality we have

used that |〈ψ2|(Wg − A)|ψ2〉| is not greater ‖Wg − A‖; in the third inequality, we have used

that ‖Wg −A‖ ≤ p(n)−1. This hence shows that a polynomial approximation of 〈Z1〉 can be

achieved in polynomial time, thus proving the claim.

We now specialize the discussion to Simon’s algorithm. Note that the classical postpro-

cessing in this algorithm is particularly simple, as it merely involves solving a system of linear

equations over Z2. Nevertheless, the function g needed in Simon’s algorithm is highly non-

sparse. The intuition of the argument is that the function g(u) is related to the computation

of the determinant of a suitable matrix (or an analogous function in the case of non-square

matrices), since the function g decides whether there exists a nontrivial solution to a certain

system of linear equations. It is known that the determinant function X → det(X) corre-

sponds to a polynomial of degree k in the case of k × k matrices X, i.e. the degree of the

polynomial is the square root of the input size k2 of the determinant function. As the degree of

a polynomial provides a lower bound to the logarithm of the sparseness (see point 3 in section

6.3.2), it follows that the determinant function has exponentially high sparseness s ≥ 2k. An

analogous argument can be used to show that the function g considered in Simon’s algorithm

has high sparseness parameter s.

Looking at the problem differently, one can in fact use the proved O(2
n
2) classical oracle

lower bound for Simon’s problem to immediately infer that the function g cannot be sparse.

Indeed, if g were sparse then our classical simulation results would imply the existence of a

classical algorithm to solve Simon’s problem using poly(n) classical oracle queries, which is

provably not possible. Note that it is remarkable that the classical query lower bound for the

oracle f can hence be used to infer properties of another function g!

7 Matchgates and polynomial time classical computation

We conclude this paper with a result regarding the computational power of matchgate circuits.

While seemingly disconnected from the rest of the paper, this result will actually follow from

our discussion of Simon’s algorithm.

Call a family of functions fn : {0, 1}n → {0, 1} efficiently matchgate-computable if there

exists a family of nearest-neighbor matchgate-circuits Un acting on Mn = poly(n) qubits

(n = 1, 2, . . .), such that Un, acting on |x〉|0〉Mn−n and followed by a {|0〉, |1〉} measurement

on the first qubit, yields the output f(x) with probability p ≥ 2/3, for all n-bit strings x. The

M. Van den Nest 809

circuit family is to be polynomial time uniformly generated in the sense that the description

of Un is to be polynomial time computable from the number n. Our result is the following.

Theorem 4 There exist functions that are efficiently computable classically (i.e. functions

in P) that are not efficiently matchgate-computable.

An interesting feature of this result is its proof method. Surprisingly, the proof will follow

from our analysis of Simon’s algorithm—even though the latter seems to have nothing to do

with matchgates! Roughly speaking, we will show that if theorem 4 were false, then there

would exist a quantum circuit to solve Simon’s problem that can be simulated classically with

our methods—hence resulting in a classical algorithm for Simon’s problem that requires only

poly(n) queries to the oracle. As the latter has been proved to be an impossibility, this will

show that theorem 4 has to be true.

In the proof of theorem 4 we will need the following simple application of corollary 4.

Fact 1: Consider an n-qubit quantum circuit V = V4V3V2V1 where both V1 and V3
represent collections of Hadamards applied to subsets of the qubits, V2 is efficiently

computable basis-preserving, and V4 is a polynomial size (nearest-neighbor) matchgate

circuit. Then any such circuit (acting on |0〉n and followed by measurement of Z1) can

be simulated efficiently classically due to corollary 4, taking V2V1 ≡ U1 and V4V3 ≡ U2.

Indeed, V2V1|0〉n is CT and (V4V3)†Z1(V4V3) is a linear combination of poly(n) Pauli

products [14] and hence ECS.

Proof of theorem 4: Consider the following variant g̃ of the function g computed in the

classical postprocessing in Simon’s algorithm: g̃ takes an N × n matrix u together with an

integer i between 1 and n (specified in terms of log n bits) as its inputs, and outputs 1 if and

only if there exists a bit string x = (x1, . . . , xn) satisfying ux = 0 and xi = 1. Note that g̃ is

efficiently computable classically. We claim that g̃ is not efficiently matchgate-computable. To

prove this, we show that the converse leads to a contradiction. Suppose that g̃ is matchgate-

computable and let U denote the (family of) matchgate circuit(s) that computes g̃. Now

consider the following quantum algorithm A: first prepare the state |i〉 ⊗ |ψout〉⊗N , where

N = O(n) and where |ψout〉 ∝
∑
u∈V |u〉|ψu〉 as in section 6.3.1; up to a permutation of the

qubits, at this point the state of the quantum register has the form
∑

u |i〉|u〉|χu〉 for some

(irrelevant) normalized |χu〉, and where the sum is over all N × n matrices u for which each

row belongs to V. Second, apply the matchgate circuit U on the relevant registers in order to

compute |i,u〉 → |g̃(i,u)〉 in superposition—note that at this point it is crucial that U only

depends on the input size but not on the entire input. Finally, measure Z1 and let 〈Z1〉 denote

the expectation value of Z1. Recall that all but an exponentially small fraction of the matrices

u have rows which span the space orthogonal to a. Therefore, if the i-th bit of the unknown

string a in Simon’s problem is equal to 1, g̃ will evaluate to 1 for all but exponentially few

|u〉. Since U computes g with success probability at least 2/3 (cf. definition of matchgate-

computability), the total probability p(1) that the quantum circuit outputs 1 satisfies p(1) ≥
2/3 − δ for some exponentially small δ ≥ 0, so that 〈Z1〉 = 1 − 2p(1) ≤ −1/3 + O(δ). On

the other hand, if the i-th bit of a is 0 then 〈Z1〉 ≥ 1/3−O(δ). It is now easily verified that

the algorithm A is implemented with a circuit displaying the structure considered in Fact

810 Simulating quantum computers with probabilistic methods

1. Hence a polynomial approximation of 〈Z1〉 can be classically achieved in polynomial time

with exponentially small probability of failure, for every i. Note that such an approximation

allows to decide whether 〈Z1〉 lies exponentially close to 1/3 or −1/3. This hence leads to

a polynomial time classical algorithm to determine a. This comprises a contradiction, given

the O(2
n
2) classical query lower bound for Simon’s problem. Hence, g cannot be efficiently

matchgate-computable.

Acknowledgements

I am very grateful to R. Jozsa for discussions and suggestions on the manuscript, and to H.

Briegel, I. Cirac, W. Dür, G. Giedke, B. Kraus, R. Renner, N. Schuch and K. Vollbrecht for

discussions. Work supported by the excellence cluster MAP.

References

1. R. Jozsa and N. Linden (2002), On the role of entanglement in quantum computational speed-up,
arXiv:quant-ph/0201143.

2. G. Vidal (2003), Efficient Classical Simulation of Slightly Entangled Quantum Computations, Phys.
Rev. Lett. 91, 147902.

3. N. Yoran and A. Short (2006), Classical simulation of limited-width cluster-state quantum compu-
tation, quant-ph/060117.

4. R. Jozsa (2006), On the simulation of quantum circuits, arXiv:quant-ph/0603163 .
5. M. Van den Nest, W. Dür, G. Vidal and H. J. Briegel (2007), Classical simulations versus univer-

sality in measurement-based quantum computation, Phys. Rev. A 75, 012337.
6. D. Gottesman (1998), The Heisenberg Representation of Quantum Computers, talk at Interna-

tional Conference on Group Theoretic Methods in Physics, arXiv:quant-ph/9807006.
7. J. Dehaene and B. De Moor (2003), The Clifford group, stabilizer states, and linear and quadratic

operations over GF(2), Phys. Rev. A 68, 042318.
8. S. Aaronson and D. Gottesman (2004), Improved Simulation of Stabilizer Circuits, Phys. Rev. A

70:052328.
9. S. Clark, R. Jozsa, N. Linden (2007), Generalised Clifford groups and simulation of associated

quantum circuits, arXiv:quant-ph/0701103.
10. M. Van den Nest (2010), Classical simulation of quantum computation, the Gottesman-Knill the-

orem, and slightly beyond, Quant. Inf. Comp. 10 No. 3-4, pp0258-0271.
11. L. G. Valiant (2002), Quantum Computers that can be Simulated Classically in Polynomial Time,

SIAM J. Comput. 31, No. 4, p. 1229.
12. D. DiVincenzo and B. Terhal (2002), Classical simulation of noninteracting-fermion quantum

circuits, Phys. Rev. A 65, 032325/1-10.
13. S. Bravyi (2009), Contraction of matchgate tensor networks on non-planar graphs, Cont. Math.,

Vol. 482, pp. 179-211.
14. R. Jozsa and A. Miyake (2008), Matchgates and classical simulation of quantum circuits, Proc. R.

Soc. A 464, 3089-3106.
15. R. Jozsa, B. Kraus, A. Miyake, J. Watrous (2010), Matchgate and space-bounded quantum com-

putations are equivalent, Proc. R. Soc. A 466, 809-830.
16. D. J. Brod and E. F. Galvao (2011), Extending matchgates into universal quantum computation,

arXiv:1106.1863.
17. A. Y. Kitaev (1995), Quantum measurements and the Abelian Stabilizer Problem, quant-

ph/9511026.
18. D. Simon (1997), On the power of quantum computation, SIAM J. Computing 26, 1474-1483.
19. Y. Shi (2002), Both Toffoli and Controlled-NOT need little help to do universal quantum compu-

tation, arXiv:quant-ph/0205115.

M. Van den Nest 811

20. I. Arad and Z. Landau (2008), Quantum computation and the evaluation of tensor networks,
arXiv:0805.0040.

21. D. Deutsch and R. Jozsa (1992), Rapid solution of problems by quantum computation, Proc. Roy.
Soc. A 439: 553.

22. L. G. Valiant and V. V. Vazirani (1985), NP is as easy as detecting unique solutions, ACM Press
New York, NY, USA.

23. D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac (2007), Matrix Product State Representa-
tions, Quantum Inf. Comput. 7, 401.

24. Y. Shi, L.-M. Duan and G. Vidal (2006), Classical simulation of quantum many-body systems with
a tree tensor network, Phys. Rev. A 74, 022320.

25. D. E. Browne (2007), Efficient classical simulation of the semi-classical Quantum Fourier Trans-
form, New J. Phys. 9 146.

26. N. Yoran and A. Short (2007), Efficient classical simulation of the approximate quantum Fourier
transform, Phys. Rev. A 76, 042321.

27. D. Aharonov, Z. Landau and J. Makowsky (2006), The quantum FFT can be classically simulated,
quant-ph/0611156.

28. I. Markov and Y. Shi (2008), Simulating quantum computation by contracting tensor networks,
SIAM J. Comp., 38(3):963-981.

29. S. P. Jordan and P. Wocjan (2009), Efficient quantum circuits for arbitrary sparse unitaries,
arXiv:0904.2211.

30. M. Hein et al., Entanglement in Graph States and its Applications, In Proceedings of the Interna-
tional School of Physics ‘Enrico Fermi’ on ‘Quantum Computers, Algorithms and Chaos’ (2005);
arXiv:quant-ph/0602096.

31. M. Van den Nest, W. Dür and H. J. Briegel (2007), Classical spin models and the quantum stabilizer
formalism, Phys. Rev. Lett. 98, 117207.

32. Y. Mansour (1994), Learning Boolean Functions via the Fourier Transform, Theoretical Advances
in Neural Computation and Learning, 391-424, Kluwer Academic Publishers.

33. A. Bernasconi and B. Codenotti (1999), Spectral Analysis of Boolean Functions as a Graph Eigen-
value Problem, IEEE Trans. Computers 48, 3, 345351.

34. Oded Goldreich and Leonid A. Levin (1989), A hard-core predicate for all one-way functions, In
Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pp. 2532.

35. E. Kushilevitz and Y. Mansour (1993), Learning decision trees using the Fourier spec- trum, Siam
J. Comput. 22, no. 6, 13311348.

36. R. A. Horn and C. R. Johnson (1990), Matrix Analysis, Cambridge Univ. Press.

Appendix A Sampling and the Chernoff-Hoeffding bound

The Chernoff-Hoeffding bound is a tool to assess with which precision the expectation

value of a random variable may be approximated in terms of ‘sample averages’. This bound

asserts the following. Let X1, . . . XK be i.i.d. real-valued random variables with E := EXi

and Xi ∈ [−1, 1]. Then

Prob

{∣∣∣∣∣ 1

K

K∑
i=1

Xi − E

∣∣∣∣∣ ≤ ε
}
≥ 1− 2e−

Kε2

4 . (A.1)

In the case of complex-valued random variables Xi, a similar bound can be obtained for

|Xi| ≤ 1 by splitting Xi in its real and imaginary part and using (A.1) on both of these

parts. In this work we will consider the Chernoff-Hoeffding bound in the following context.

Let P := {px} be a probability distribution on the set of n-bit strings x ∈ {0, 1}n and let

x→ F (x) ∈ C be a complex function such that |F (x)| ≤ 1 for every x. Let 〈F 〉 =
∑
x pxF (x)

812 Simulating quantum computers with probabilistic methods

denote the expectation value of F . The goal is to approximate 〈F 〉 by sampling from the

distribution P. To do so, consider K n-bit strings x1, . . . , xK drawn (independently) from

the distribution P, and denote the average σ := K−1
∑K
i=1 F (xi). The Chernoff-Hoeffding

bound then implies the following. For every ε = p(n)−1, where p(n) represents an arbitrary

polynomial in n, there exists a K that scales at most polynomially with n, such that the

inequality |σ − 〈F 〉| ≤ ε holds with a probability that is exponentially (in n) close to 1. In

other words, by taking poly(n) samples xi it is possible to estimate 〈F 〉 with an error that

scales as p(n)−1 for every choice of p(n). We will henceforth denote this type of estimate as

an approximation with ‘polynomial accuracy’ or a ‘polynomial approximation’. Note that a

polynomial approximation achieves an estimate of 〈F 〉 up to O(log n) significant bits.

Moreover, if the function F can be evaluated in polynomial time and if it is possible to

sample in polynomial time from P, then the quantity σ can be computed in polynomial time.

Hence, an overall efficient method is achieved to compute a polynomial approximation of 〈F 〉
with exponentially small probability of failure. In this paper we will mostly ignore the fact

that the Chernoff-Hoeffding bound yields polynomial approximations that do not succeed

with unit probability but rather with a probability that is exponentially close to one. When

the notion of a polynomial approximation is considered in the text, we will mean a polynomial

approximation that is achieved with a probability that is exponentially close to one.

We discuss two immediate generalizations of the above arguments. First, above we have

required that the function F can be evaluated with perfect precision in polynomial time.

Such perfect accuracy is in this context not necessary. In particular, with similar methods

as above, a polynomial approximation of 〈F 〉 can be achieved in polynomial time if F (x)

itself can be approximated with polynomial accuracy in polynomial time. This can be seen

as follows. Suppose that, on input of an arbitrary x, a polynomial approximation of F (x)

can be achieved in polynomial time. Let p(n) be an arbitrary polynomial and consider K

n-bit strings x1, . . . , xK drawn from the distribution P as before. Then for large enough K

(where K scales as a polynomial in n with suitably high degree), K−1
∑K
i=1 F (xi) lies ε-close

to 〈F 〉, where ε = (2p(n))−1. As each of the K quantities F (xi) can be approximated with

polynomial accuracy in polynomial time by assumption, it is possible to efficiently generate

K complex numbers ci (i = 1, . . . ,K) such that |ci − F (xi)| ≤ (2p(n))−1. Using the triangle

inequality and denoting c := K−1
∑K
i=1 c

i, it then easily follows that |〈F 〉 − c| ≤ p(n)−1.

Second, so far we have considered functions F satisfying ‖F‖ := maxx |F (x)| ≤ 1. Note

that similar conclusions can be reached for functions satisfying ‖F‖ ≤ poly(n).

The discussion in the present section can be summarized as follows.

Theorem 5 (Chernoff-Hoeffding bound) Suppose that it is possible to sample in polyno-

mial time with classical means from a probability distribution {px} on the set of n-bit strings.

Let F : {0, 1}n → C denote a function satisfying ‖F‖ ≤ poly(n). Moreover, suppose that it is

possible to efficiently estimate x → F (x) with polynomial accuracy on a classical computer.

Then there exists an efficient classical algorithm to estimate 〈F 〉 with polynomial accuracy.

