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Private quantum channels are the quantum analogue of the classical one-time pad. Con-

ditional expectations and trace vectors are notions that have been part of operator
algebra theory for several decades. We show that the theory of conditional expectations

and trace vectors is intimately related to that of private quantum channels. Specifically

we give a new geometric characterization of single qubit private quantum channels that
relies on trace vectors. We further show that trace vectors completely describe the pri-

vate states for quantum channels that are themselves conditional expectations. We also

discuss several examples.

Keywords: private quantum channels, private states, trace vectors, conditional expecta-

tions, completely positive maps, C∗-algebras.

Communicated by: R Jozsa & M Mosca

1 Introduction

Private quantum channels are a basic tool in quantum cryptography [1]. Conditional expecta-

tions and trace vectors are notions that have played a role in the theory of operator algebras

for more than half a century [2, 3]. In this paper we show that there is an intimate relationship

between the two subjects. Specifically we give a new geometric characterization of single qubit

private quantum channels via the Bloch sphere representation for qubit states that relies on

trace vectors. We further show that trace vectors completely describe the private states for

quantum channels that are themselves conditional expectations.
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In the next two sections we introduce private quantum channels, conditional expectations,

and trace vectors. We discuss basic properties and include simple examples of each. We then

consider the single qubit case in detail, giving a trace vector characterization of private states

for unital quantum channels. We finish with a complete characterization of the private states

for channels that are themselves conditional expectations in terms of trace vectors.

2 Private Quantum Channels

We will use H or K to denote Hilbert spaces (which are assumed to be finite dimensional

in this paper) and denote a d-dimensional Hilbert space by Hd. We denote the set of linear

operators on H by L(H), and we use Md to denote the algebra of d × d complex matrices,

which when convenient will be regarded as the matrix representations of operators in L(Hd)
with respect to a given orthonormal basis for Hd. The identity element of an operator space

X will be denoted by 1X , or simply by 1 if the space is implied by the context, and we will

write 1d for the identity of Md.

We will use Dirac notation for vectors |φ〉 and vector duals 〈φ|. Thus pure states are repre-

sented as |φ〉〈φ|. General quantum states are represented by density operators (nonnegative

operators with trace equal to 1), and we will use notation such as ρ, σ in that case. The

adjoint of an operator A will be written A†, and we will reserve the asterisk notation when

discussing abstract C∗-algebras.

A quantum channel is a linear, completely positive, trace preserving map E : L(H) →
L(K). (Channels are generally defined on the set of trace class operators, with their dual

maps defined on the set of bounded operators, but the sets coincide in the finite dimensional

case.) Every channel can be written as

E(ρ) =

n∑
i=1

KiρK
†
i , (1)

for some operators Ki : H → K with
∑n
i=1K

†
iKi = 1, for any density operator ρ. We call a

representation of E as in equation (1) a Kraus decomposition of E . A channel E is called a

random unitary channel if it admits a decomposition

E(ρ) =
∑
i

piUiρU
†
i ∀ρ, (2)

where {pi} form a probability distribution and Ui are unitary operators.

In quantum cryptography, a private quantum channel (PQC) is the quantum analogue to

the classical one-time pad. The following definition gives the mathematical framework for the

notion in quantum information.

Definition 1 Let S ⊆ H be a set of pure states and let E : L(H)→ L(H) be a channel. Let

ρ0 be a density operator acting on H. Then [S, E , ρ0] is a private quantum channel (PQC) if

for any state |φ〉 ∈ S, we have

E(|φ〉〈φ|) = ρ0.

PQCs were first considered in [1], where the authors consider a particular class of random

unitary channels. The most basic example is the following.
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Definition 2 A map E : B(H2n) → B(H2n) is called a depolarizing channel if, for any

density matrix ρ ∈ B(H2n), we have

E(ρ) =
p

n
1 + (1− p)ρ,

where 0 < p ≤ 1 is a probability. When p = 1 the completely depolarizing channel is obtained,

which gives the simplest example of a PQC, where every pure state is a private state. We

denote the completely depolarizing channel by EC.

3 Conditional Expectations and Trace Vectors

We recall a basic definition from operator algebras. Suppose there exists an orthogonal direct

sum decomposition of a Hilbert space as H =
⊕

i(Mi ⊗ Ni) ⊕ K. Let A be an algebra of

operators in L(H) consisting of all operators that belong to the set A =
⊕

i(1Mi
⊗L(Ni))⊕0K ,

where 0K is the zero operator on K. We call A a (concrete finite dimensional) C∗-algebra.

A is unital if 1H ∈ A; i.e., K is the zero subspace. A ∗-subalgebra B of A is a subset that is

also a C∗-algebra. See [4] for basic C∗-algebra theory.

Definition 3 Let A be a C∗-algebra and let B ⊆ A be a unital ∗-subalgebra. We call a linear

map EB : A → B a conditional expectation of A onto B if

(i) EB(b) = b for all b ∈ B;

(ii) EB(b1ab2) = b1EB(a)b2 for all b1, b2 ∈ B and for all a ∈ A;

(iii) a ∈ A, a ≥ 0 implies EB(a) ≥ 0.

Conditional expectations were first considered in [2]. We are interested in conditional

expectations from Mn onto a subalgebra that are also quantum channels and hence trace

preserving. We will therefore restrict ourselves to trace preserving conditional expectations.

We will call such maps conditional expectation channels.

More examples of conditional expectation channels will be discussed below, but for the

reader familiar with quantum information, we note here that the n-qubit completely depo-

larizing channel EC is the conditional expectation onto the trivial scalar algebra C · 12n . One

way to see how conditional expectations inevitably arise in the theory is through trace inner

products.

Definition 4 A linear functional τ : A → C is a faithful trace if

(i) τ(a1a2) = τ(a2a1)

(ii) τ(a†a) > 0 for all a ∈ A with a 6= 0.

Given a faithful trace τ on A we can define an inner product 〈a1, a2〉 = τ(a†1a2). We

note that if A has a faithful trace τ , the orthogonal projection onto B with respect to this

inner product is the unique τ -preserving conditional expectation from A to B. The essential

structure of this argument can be found in [2]. The most well-known example is the so-called

Hilbert-Schmidt inner product 〈A,B〉 = Tr(A†B) on Mn.
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3.1 Trace vectors

We now consider trace vectors, a notion that initially arose in work of Murray and von

Neumann [3], and has more recently been studied in the field of matrix theory.

Definition 5 Let A be a ∗-subalgebra of L(Hn). A vector |v〉 is a trace vector of A if

〈v|a|v〉 =
1

n
Tr a ∀a ∈ A.

More generally, given a density operator ρ0, we say |v〉 is a trace vector with respect to ρ0

of A if

〈v|a|v〉 = Tr(ρ0a) ∀a ∈ A. (3)

Thus by “trace vector”, we really mean “trace vector with respect to 1
n1n”.

By letting a = 1 in the definition of a trace vector, we find 〈v|v〉 = 1; a trace vector has

unit length. It is easy to build a trace vector from other trace vectors in order to create a more

general class of examples. Indeed, if |vi〉 is a trace vector of the algebraAi = (1Mi
⊗L(Ni))⊕0K

for i ∈ {1, . . . , q}, then |v〉 =
⊕q

i=1 |vi〉 is a trace vector of the algebra A =
⊕q

i=1Ai. In

this way, trace vectors behave predictably. This also allows us to consider each summand

separately, as we will do later.

Example 1 As a fundamental example for quantum information, consider a maximally en-

tangled state |ϕe〉 ∈ Hm ⊗Hn. That is, a state |ϕe〉 = 1√
d

∑d
i=1 |ei〉 ⊗ |fi〉, where {|ei〉} and

{|fi〉} form orthonormal sets in Hm and Hn respectively, and d = min{m,n}. If m ≥ n, then

one can check via direct calculation that |ϕe〉 is a trace vector for the algebra 1m ⊗ L(Hn).

And if m = n an analogous calculation works for L(Hm)⊗ 1n.

The general case is clarified by the following theorem of the third author. We recall that

a vector |v〉 is a separating vector of an algebra A if a|v〉 = 0 for some a ∈ A implies a = 0.

Theorem 2 If A is a unital ∗-subalgebra of Mn, then the following conditions are equiv-

alent:

1. A is unitarily equivalent to ⊕qi=1 (1mi ⊗Mni) , where mi ≥ ni for all i and
∑q
i=1mini =

n.

2. A has a separating vector.

3. A has a trace vector.

4. There exists a set of trace vectors of A that form an orthonormal basis of Cn.

This result is proved in [5]. A related infinite dimensional open problem goes all the

way back to von Neumann [6]. Consider two simple cases. It is clear that Mn has no trace

vectors – from both the theorem and the definition of trace vectors. On the other hand,

let ∆2 be the algebra of 2 × 2 diagonal matrices with respect to a basis {|0〉, |1〉}. One can

readily check that the trace vectors for ∆2 are (up to complex phase) all vectors of the form

|ψ〉 = 1√
2
(|0〉 + eiθ|1〉), for 0 ≤ θ < 2π; in other words, the set of all states that lie on the

equator in the Bloch sphere representation for qubits (this point is further elucidated in the

next section).
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4 Private Quantum Channels on the Bloch Sphere

In this section we give a geometric characterization of single qubit unital PQCs in terms of the

Bloch sphere representation [7] for single qubit states. We also show how the private states

for such PQCs are determined by trace vectors. An alternative description was discussed in

[8], where the entropy of sets of such private states was considered.

Every unital quantum channel is a random unitary channel in the single qubit case [9].

Thus, our private quantum channel [S, E , ρ0] in this case is given by a random unitary channel

E : M2 → M2, a set of pure states S, and an output density matrix ρ0. More precisely, we

have E(|v〉〈v|) = ρ0 for all |v〉 ∈ S. We would like to allow for the possibility of orthonormal

vectors in S. As the channel is unital this can only occur if ρ0 = 1
n1, and hence we shall focus

on this case here.

Using the Bloch sphere representation, we can associate to any density matrix ρ ∈ M2 a

Bloch vector ~r ∈ R3 satisfying ‖~r‖ ≤ 1, where

ρ =
1 + ~r · ~σ

2
. (4)

We use ~σ to denote the Pauli vector, that is, ~σ = (σx, σy, σz)
T . Note that the set {1, σx, σy, σz}

forms a basis for the real vector space of Hermitian matrices in M2. We recall that a state is

pure if and only if ‖~r‖ = 1 and that the maximally mixed state 1
n has Bloch vector ~r = ~0.

As discussed in [10], every linear map Φ : M2 → M2 can be represented in the basis

{1, σx, σy, σz} by a 4 × 4 matrix T, and Φ preserves the trace if and only if the first row of

the matrix T satisfies t1k = δ1k; i.e.,

T =

(
1 0
~t T

)
(5)

where T is a 3× 3 matrix, 0 is a row vector, and ~t is a column vector. The transformation Φ

maps the subspace of Hermitian matrices into itself iff T is real; finally, the map Φ is unital

iff ~t = ~0.

Thus, every unital qubit channel E can be represented as

E
(

1

2
[1 + ~r · ~σ]

)
=

1

2
[1 + (T~r) · ~σ] , (6)

where T and ~t are real, and we recall any density matrix can be written as in equation

(4). Here, the submatrix T represents a deformation of the Bloch sphere, while the vector ~t

represents a translation. This affine mapping of the Bloch sphere into itself is also discussed

in section 8.3.2 of [7].

We are of course interested in cases where S is nonempty. This is easily seen to occur

precisely when T in equation (6) has non-trivial nullspace.

Thus we consider the cases in which T has non-trivial nullspace; that is, the subspace of

vectors ~r such that T~r = 0 is one, two, or three-dimensional.

Finally, we note that in the single qubit case the unital subalgebras of the algebra A = M2

can be easily classified. They are M2, C · 12 (the two trivial cases), and, up to unitary

conjugation, ∆2, the subalgebra of all diagonal matrices in M2. To be precise, this third case

refers to the subalgebras B of the form U†∆2U , where U ∈ A is unitary.
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Theorem 3 Let E : M2 →M2 be a unital qubit channel, with T the mapping induced by E
as in equation (6). Then there are three possibilities for a private quantum channel [S, E , 1

21]

with S nonempty:

1. If the nullspace of T is 1-dimensional, then S consists of a pair of orthonormal states.

2. If the nullspace of T is 2-dimensional, then the set S is the set of all trace vectors of

the subalgebra U†∆2U of 2× 2 diagonal matrices up to a unitary equivalence.

3. If the nullspace of T is 3-dimensional, then E is the completely depolarizing channel and

S is the set of all unit vectors. In other words, S is the set of all trace vectors of C · 12.

Fig. 1. Case (1)

Proof: We shall write ~rφ for the Bloch sphere vector representation of a single qubit state

|φ〉. It is clear from equation (6) that E(|φ〉〈φ|) = 1
21 if and only if T~rφ = 0. Hence the

relevant set that yields private states here is the intersection of the nullspace of T and the

surface of the Bloch sphere.

Case (1): The nullspace of T is 1-dimensional. In this case, the nullspace is a single line

through the origin of the Bloch sphere and the range of T is a plane through the origin.

Obviously this line meets the surface of the Bloch sphere in two antipodal points. These two

antipodal points correspond to a pair of orthonormal single qubit states. Figure 1 gives an

example.

Case (2): The nullspace of T is 2-dimensional. In this case, the nullspace is a plane through

the origin of the Bloch sphere. This plane meets the surface of the sphere in a great circle.
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Fig. 2. Case (2)

The pure states corresponding to the points on this circle are precisely the private states for

the channel. See an illustration in Figure 2.

To see how these private states arise from the trace vector perspective, let us consider

the action of the channel more directly. As the nullspace of T is 2-dimensional, its range is

a line through the origin. For simplicity we shall assume this line is the z-axis; other cases

are unitarily equivalent to this case. Thus, the range of T intersects the sphere in the north

and south poles, corresponding to the pure states |0〉〈0| and |1〉〈1| respectively. The action of

T here will be a possible rotation of the Bloch sphere followed by a projection of the sphere

onto the z-axis, followed by a possible contraction. By unitary equivalence, we only need

consider the case where there is no initial rotation of the Bloch sphere. In terms of the Pauli

matrices σx, σy, σz, this means the action of the channel is given by E(σx) = 0, E(σy) = 0 and

E(σz) = pσz for some 0 < p ≤ 1.

Now ∆2 is the algebra of all diagonal matrices with respect to the ordered basis {|0〉, |1〉};
explicitly, ∆2 is the set of all operators of the form a|0〉〈0|+ b|1〉〈1| for arbitrary scalars a, b.

Then the projection onto the z-axis is a conditional expectation onto the subalgebra ∆2; call

it E∆. Explicitly,

E∆
([
a b
c d

])
=

[
a 0
0 d

]
, for any matrix

[
a b
c d

]
.

One can check directly that E = pE∆ + (1 − p)EC, where EC is the completely depolarizing

channel.
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As EC adds no restrictions to the private states for E , it suffices to show that the trace

vectors for ∆2 are precisely the pure states that lie on the equator of the Bloch sphere. But

the equator states are precisely the states that satisfy |〈φ||0〉| = 1√
2

= |〈φ||1〉|. And it is easy

to see that these are the states which do indeed satisfy the trace vector condition for the

algebra ∆2.

Fig. 3. Case (3)

Case (3): The nullspace of T is 3-dimensional, in other words T is the zero operator. In this

case T maps the entire Bloch sphere to its origin, which corresponds to the maximally mixed

state 1
21, as shown in Figure 3. It is clear in this case that E is the completely depolarizing

channel EC. Moreover, the set S has no restrictions; that is, S is the set of all unit vectors.

In other words, S is the set of all trace vectors of C · 12.

5 Private States for Conditional Expectation Channels

The following result clarifies the general connection between conditional expectation chan-

nels, trace vectors and private states.

Theorem 4 Let E : Mn → A be a conditional expectation channel. Then [S, E , ρ0] is a

private quantum channel if and only if S is a set of trace vectors of A with respect to ρ0 ∈ A.

Proof: Let us first assume that [S, E , ρ0] is a PQC. Then E(|v〉〈v|) = ρ0 for all |v〉 ∈ S,

and in particular note that ρ0 belongs to A. Thus for all |v〉 ∈ S and for all a ∈ A, we have

〈v|a|v〉 = Tr(|v〉〈v|a)

= Tr(E(|v〉〈v|a))

= Tr(E(|v〉〈v|)a) = Tr(ρ0a),
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where the second and third identities follow from the trace preservation and conditional

expectation properties of E respectively. It follows that the states of S are trace vectors of A
with respect to ρ0.

For the converse, observe that when the vector states of S are trace vectors of A with

respect to ρ0, a similar calculation shows for all |v〉 ∈ S and for all a ∈ A that

Tr(ρ0a) = 〈v|a|v〉
= Tr(|v〉〈v|a)

= Tr(E(|v〉〈v|a)) = Tr(E(|v〉〈v|)a).

As ρ0 belongs to A, it follows that [S, E , ρ0] forms a private quantum channel.

Example 5 Of course the three cases of Theorem 3 when applied to a unital single qubit

conditional expectation channel EA : M2 → A are covered by this theorem. Indeed, applying

Theorem 4 to EA and letting ρ0 = 1
21 yields [S, EA, 1

21] is a PQC if and only if A = U†∆2U

or A = C ·12 and S is a set of trace vectors of A. Case 1 of Theorem 3 is an example of when

S is a proper subset of the set of all trace vectors of U†∆2U , whereas Case 2 occurs when S
is the entire set. Case 3 occurs when S is the set of all trace vectors of C · 12.

Example 6 Conditional expectations arise as the most basic non-trivial examples of private

quantum communication using a private shared Cartesian frame [11]. Let H = (C2)⊗N , and

for simplicity suppose N is even. Decompose the space as

(C2)⊗N =

N/2⊕
j=0

Hj ⊗Kj ,

where the special unitary group SU(2) acts irreducibly on Hj and trivially on Kj. As formu-

lated in [11], if Alice and Bob share a reference frame to which Eve does not have access, and

Alice prepares N qubits in a state ρ and sends them to Bob, Eve will see the resulting state

simply as a mixture of all rotations Ω ∈ SU(2). This situation can be summed up with the

channel E, defined by

E(ρ) =

N/2∑
j=0

(ECj ⊗ idKj
)(ΠjρΠj),

where ECj is the completely depolarizing channel on Hj and Πj is the projection onto Hj.
One can see immediately that E is in fact a conditional expectation channel that maps onto

the algebra ⊕j(1Hj
⊗L(Kj)). Thus, as noted in Theorem 4, private states for E can be found

using trace vectors, which in this case can be constructed on the summands of the direct sum

in a manner analogous to Example 1.

6 Outlook

We see two main potential outcomes of the present work. Firstly, it is clear even just from the

examples we have discussed here that there are numerous conditional expectation channels of

relevance in quantum information, though they have not been viewed from this perspective

before. It should be possible to use the conditional expectation and trace vector machinery

to construct other new and useful examples of private quantum channels. Secondly, this
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work raises the intriguing possibility that a much more extensive theory of private quantum

channels and private states could be developed. With few exceptions, the work on private

channels appearing in the literature has focused primarily on specific instances and channels,

rather than an overarching theory. We intend to continue these investigations elsewhere.
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