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We consider crossovers with respect to the weak convergence theorems from a discrete-
time quantum walk (DTQW). We show that a continuous-time quantum walk (CTQW)
and discrete- and continuous-time random walks can be expressed as DTQWs in some
limits. At first we generalize our previous study [Phys. Rev. A 81, 062129 (2010)] on the
DTQW with position measurements. We show that the position measurements per each
step with probability p ∼ 1/nβ can be evaluated, where n is the final time and 0 < β < 1.

We also give a corresponding continuous-time case. As a consequence, crossovers from
the diffusive spreading (random walk) to the ballistic spreading (quantum walk) can be
seen as the parameter β shifts from 0 to 1 in both discrete- and continuous-time cases
of the weak convergence theorems. Secondly, we introduce a new class of the DTQW,

in which the absolute value of the diagonal parts of the quantum coin is proportional to
a power of the inverse of the final time n. This is called a final-time-dependent DTQW
(FTD-DTQW). The CTQW is obtained in a limit of the FTD-DTQW. We also obtain
the weak convergence theorem for the FTD-DTQW which shows a variety of spreading

properties. Finally, we consider the FTD-DTQW with periodic position measurements.
This weak convergence theorem gives a phase diagram which maps sufficiently long-time
behaviors of the discrete- and continuous-time quantum and random walks.
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1 Introduction

A quantum walk (QW) is a quantum analogue of the random walk (RW) [1, 2, 3]. As is the

RW has important roles in various fields, it has been shown that the QW also plays important
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742 Crossovers induced by discrete-time quantum walks

roles in the quantum world, for example, constructing quantum speed-up algorithm [4] and

expressing the energy transfer on the chromatographic network in the photosynthetic sys-

tem [5]. It is shown that approximations of a discrete-time quantum walk (DTQW) give the

Dirac equation or a continuous-time quantum walk (CTQW), i.e., the discretized Schrödinger

equation [6, 7, 8, 9]. The behaviors of the RW and the corresponding QW are quite different.

One of the effective tools to show this difference is the weak convergence theorem [10, 11]. For

simplicity, we restrict the quantum and random walks on the infinite one-dimensional lattice

Z throughout this paper. The diffusive spreadings of a symmetric discrete-time random walk

(DTRW) and a continuous-time random walk (CTRW) follow from the central limit theo-

rems. On the other hand, as shown in Refs. [10, 11, 12], the weak convergence theorems for

the corresponding DTQW and CTQW, give ballistic spreadings of the QWs with inverted

bell shaped limit densities.

The power of the time variable in the weak convergence for the QW doubles RW’s one.

As is seen in Refs. [13, 14, 15] for example, it is shown that random or periodic measurements

of a DTQW induces a sudden transition from the quantum to the random walk. In our pre-

vious study [16], we introduced a toy model as an approximation of the DTQW with periodic

position measurements. We showed a gradual crossover from the DTQW to the DTRW with

respect to the weak convergence when the number of position measurements in the walk is

given by a power of the final time. The state of the DTQW treated here is described by a

direct product of position and coin states [3, 4]. In the DTQW with position measurements

(DTQW with PM), the following procedure are repeated:

Procedure 1. (DTQW with PM)

Let an sequence be (t1, t2, . . . , tM ) with tj =
∑j

i=1 di, where di’s are given by i.i.d. geometric

distribution with a parameter p. We call tj (j-th) measurement time.

(1) Measure the position state of the walk at each measurement time.

(2) Restart the DTQW from the measurement position with the normalized coin state of

the position.

(3) Keep the DTQW by the next measurement time.

(4) Repeat (1)-(3) until the final time tM comes.

On the other hand, we studied in Ref. [16] on the QW given by the following Procedure 2

and gave a crossover from ballistic to diffusive behaviors:

Procedure 2. (Periodic position measurements [16])

Let the sequence of measurement times be (d, 2d, . . . ,Md) with n = Md, limn→∞ d/nβ = 1

(β ∈ [0, 1]). Prepare a fixed coin state ϕ with ||ϕ|| = 1.

(1) Measure the position state of the walk at each measurement time.

(2) Restart the DTQW from the measurement position with the coin state ϕ.

(3) Keep the DTQW by the next measurement time.
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(4) Repeat (1)-(3) until the final time n comes.

In general, the spans between the measurements and the reprepared initial coin states in

Procedure 1 are varied unlike the walk treated in Ref. [16]. In this paper, we improve the

walk of Ref. [16] as follows:

Procedure 3. (The walk treated in this paper)

Let the sequence of measurement times be (s1, s2, . . . , sM ) with s1 < s2 < · · · < sM . Put a

prepared sequence of coin states by (ϕ1,ϕ2, . . . ,ϕM ) with ||ϕj || = 1 (j = 1, 2, . . . ,M).

(1) Measure the position state of the walk at each measurement time sj .

(2) Restart the DTQW from the measurement position with the normalized coin state ϕj .

(3) Keep the DTQW by the next measurement time sj+1.

(4) Repeat (1)-(3) updating the subscript j until the final time sM comes.

In Procedure 3, the measurement times can be taken as a random variable while the coin state

after each measurement is a priori given like Procedure 2. It is remarked that the diffusive

spreading of the DTQW with both position and coin measurements with the parameter of

the geometric distribution p in the weak convergence theorem was shown in Ref. [14]. On

the other hand, we find a crossover from the diffusive to the ballistic spreading through the

sub-ballistic (super-diffusive) spreading in some class of the walks of Procedure 3 including

the walk in Ref. [16] from the weak convergence theorem. We also give a similar result on a

crossover of a corresponding continuous-time case.

The similarity of DTQWs and the corresponding CTQWs can be seen in various QW’s

models on Z [10, 12] and homogeneous trees [17, 18]. Furthermore, the relationship is shown

on Z in Ref. [8] and general graphs in Refs. [19, 20]. To discuss on the similarity between

DTQW and CTQW with PM, in this paper, we introduce a final-time-dependent DTQW

(FTD-DTQW) characterized by the quantum coin whose absolute value of diagonal parts

is in inverse proportion to a power of the final time. This is a modified version of Refs.

[8, 21]. In Ref. [8], the absolute value of diagonal parts of the quantum coin is given by

sufficiently small ǫ which is independent of each time step. It is shown that an asymptotic

expansion of the DTQW with respect to small ǫ gives the corresponding CTQW. Also in Ref.

[21], the absolute value of diagonal parts of the time dependent quantum coin is in inverse

proportion to a power of each time. Various spreading properties of this walk, i.e., ballistic,

sub-ballistic, diffusive, sub-diffusive, and localized, are shown. We show that a limit of the

FTD-DTQW gives the corresponding CTQW and a relation between the discrete final time

n and the corresponding continuous time t: the ratio n/t is an important value to give the

weak convergence theorems associated with the spreading properties. We find that both the

discrete- and continuous-time QWs with position measurements are described as special cases

of the FTD-DTQW in the long time limit.

The remainder of this paper is organized as follows. In Sect. 2, we give definitions of the

discrete- and continuous-time QWs. Section 3 treats the walk following Procedure 3, which

is an extended model of Ref. [16]. In the walk following Procedure 2, we showed in Ref. [16]

that a crossover from the DTQW to the DTRW with periodic position measurements (PPM)
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appeared. We find that even if the measurements are not periodic, and re-preparing initial

coin states are varied, the crossover can be also seen in some conditions. Furthermore, we also

give a similar result on the crossover of the CTQW corresponding to the DTQW [16]. Section

4 presents an FTD-DTQW. As shown in Ref. [8], we give a CTQW corresponding to the FTD-

DTQW. We see a crossover from the ballistic to the localized spreading of the FTD-DTQW in

the weak convergence theorem. To clarify the relation between the crossovers in the discrete-

and continuous-time models, we consider a hybrid type of the walks, i.e., the FTD-DTQW

with PPM in Sect. 5. Our analytical method is based on the Fourier analysis [23, 24].

As a consequence, the weak convergence theorem for the FTD-DTQW with PPM shows

that the DTQW is one of the fundamental processes which give asymptotic behavior of the

corresponding CTQW and CTRW and DTRW. Section 6 is devoted to summary.

2 Definition of discrete- and continuous-time QWs on Z

(1) DTQW: The state space of the one dimensional DTQW with a two dimensional coin

is defined as a tensor product of the position-state space HP and the coin-state space

HC , where HP and HC are associated with the orthogonal bases {δx : x ∈ Z} and

{eL, eR}, respectively. The one-step unitary time evolution for the DTQW is given by

U = S(1P ⊗ H), where S is a shift operator such that S(δx ⊗ eR) = δx+1 ⊗ eR and

S(δx ⊗ eL) = δx−1 ⊗ eL, 1P is the identity operator on HP , and H is a 2-dimensional

unitary operator called “quantum coin” on HC described by

H =

[
a b
c d

]
(1)

with abcd 6= 0. Here eL ≡ [1, 0]† and eR ≡ [0, 1]† throughout this paper, where A†

means the conjugate and transpose of A. Put Ψ(D)
n (x) as the coin state at time n and

position x. Then the coin state Ψ(D)
n (x) has the following recurrence relation, that is,

Ψ(D)
n (x) = QΨ

(D)
n−1(x− 1) + PΨ

(D)
n−1(x+ 1) (n ≥ 1),

Ψ
(D)
0 (x) = δ0(x)ϕ0, (2)

where P = eLe
†
LH, Q = eRe

†
RH, δ0(x) is the Dirac delta function of x, and ϕ0 is the

initial coin state: ϕ0 = qLeL + qReR with |qL|2 + |qR|2 = 1. Let X
(D)
n be the DTQW

at time n. The distribution of X
(D)
n is defined by µn(x) ≡ P (X

(D)
n = x) = ||Ψ(D)

n (x)||2.
Note that by the unitarity of the time evolution U and the normality of the initial state,

the distribution sequence (µ0, µ1, µ2, . . . ) for each time is defined. It is shown that if an

initial coin state ϕ(s) = q
(s)
L eL + q

(s)
R eR satisfies the symmetric condition [10, 11],

|q(s)R | = |q(s)L | = 1/
√
2, aq

(s)
L bq

(s)
R + aq

(s)
L bq

(s)
R = 0, (3)

where c is the complex conjugate to c ∈ C, then X
(D)
n /n converges weakly to K(a)

whose density is explicitly expressed as [10, 11]

ρK(x; a) =

√
1− |a|2

π(1− x2)
√

|a|2 − x2
χ(−|a|,|a|)(x), (4)

where, χΩ(x) is the indicator function of the region Ω of x. Remark that ρK depends

only on the norm of the left top element of the quantum coin defined in Eq. (1).
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(2) CTQW: The state space is defined as the position state space HP only in contrast with

the DTQW. Let Ψ
(C)
t (x) be the state at time t at position x. The time evolution is

given by the discretized Schrödinger equation:

−i
∂Ψ

(C)
t (x)

∂t
=

1

2

(
γΨ

(C)
t (x− 1) + γΨ

(C)
t (x+ 1)

)
(t > 0),

Ψ
(C)
0 (x) = δ0(x), (5)

where γ is a complex number. Let X
(C)
t be the CTQW at time t. The distribution

of X
(C)
t is given by P (X

(C)
t = x) = |Ψ(C)

t (x)|2. It is shown in Ref. [12] that X
(C)
t /t

converges weakly to Z(γ) whose density corresponds to a scaled arcsine law [12]:

ρZ(x; γ) =
χ(−|γ|,|γ|)(x)

π
√
|γ|2 − x2

. (6)

3 Crossover from QW to RW

To give the relation between RW and QW, we consider the QW with position measurements

in the following. Let (d1(s), d2(s), . . . ) be a sequence of functions of a parameter s, where

in the case of discrete (resp. continuous) time, s is a natural (resp. non-negative real) num-

ber. The value dj(s) corresponds to the span between (j − 1)-th and j-th measurements.

According to Ref. [17], we take sβ as dj(s) for all j ∈ {1, 2, . . . } with 0 ≤ β ≤ 1. In this

paper, we consider the more general setting by imposing dj(s) under the following assumption:

Assumption: For all j ∈ {1, 2, . . . },

(1) dj(s) ≤ s,

(2) dj(s) → ∞ as s → ∞,

(3) d2j (s)/{
∑M(s)

l=1 d2l (s)} → 0 as s → ∞,

where M(s) ≡ sup{m :
∑m

j=1 dj(s) ≤ s}.

From Assumption (2) and (3), both dj(s) and M(s) go to infinity as s → ∞ simul-

taneously. We measure the position state of a QW at times d1(s), d1(s) + d2(s),...,d1(s) +

d2(s)+ · · ·+dM(s)(s), and restart the QW by the next measurement time after each measure-

ment. Thus M(s) corresponds to the number of measurements. It should be noted that there

is no difference of the behavior between the RW with and without position measurements.

However, we will see that the both DTQW and CTQW give essential changes in the weak

convergence theorems by the position measurements in the following subsections.

3.1 DTQW with position measurements

Let Y
(D)
j be the DTQW at time dj(n) with a quantum coin H and with an initial coin state

ϕj (j = 1, 2, . . . ). We consider a convolution of an independent sequence {Y (D)
j }M(n)

j=1 de-

noted as X̃
(D)
n ≡ Y

(D)
1 + Y

(D)
2 + · · ·+ Y

(D)
M(n). The walk following Procedure 3 with the spans

between measurements satisfying Assumption is equivalent to X̃
(D)
n . The walk treated in
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Ref. [16] is a special case of X̃
(D)
n because the walk is a convolution of the independent and

identically distributed (i.i.d.) sequence in Ref. [16]. In a general definition of the DTQW

with position measurements, however, the position state of the DTQW alone is measured at

the decided/random times. Thereafter, the DTQW is restarted from the measured position

remaining the coin state by the next measurement time. Thus the initial coin state at each

measurement time is varied in general and depends on the measured position. The walk

treated here, X̃
(D)
n , is an estimation of the DTQW with PM in that reprepared initial coin

state is varied but independence of the measurement position. The following theorem gives

an estimation of the DTQW with the position measurements through the weak convergence

of the scaled X̃
(D)
n as the convolution of the independent and not identically distributed se-

quence of {Y (D)
j }∞j=1.

Theorem 1 Let Θ(n) =
√∑M(n)

j=1 dj(n)2 and σ2(a) = 1 −
√
1− |a|2. Then we have as

n → ∞,

X̃
(D)
n − E[X̃

(D)
n ]

Θ(n)
⇒ N(0, σ2(a)), (7)

where N(a, b) is the normal standarddistribution with mean a and variance b.

In heuristic arguments, Theorem 1 evaluates the time scaling order Θ(n) for DTQW with

position measurements per each time with probability p ∼ 1/nβ (0 < β < 1) in the follow-

ing meaning. The range between measurements, Dj , is given by the geometric distribution

with the success probability p, that is, P (Dj = d) = (1 − p)d−1p. If we evaluate Dj as

its average d(n) ≡ E[Dj ] = 1/p ∼ nβ , then M(n) ∼ n1−β , which is satisfying Assump-

tion. Thus Θ(n) ∼
√
n1+β . Here, for arbitrary functions f and g, f(x) ∼ g(x) means

limx→∞ f(x)/g(x) = 1. This argument is used in Ref. [22] to show dynamics of the survival

probability for the multi-particle DTQW on the ring with the trap cites. As a consequence,

Theorem 1 reduces to the result in Ref. [16]:

Corollary 1 (Ref. [16]) Assume ϕj = ϕ0 ≡ qReR + qLeL satisfying the symmetric condi-

tion (3) (j ∈ {1, 2, . . . }). Let dj(n) ∼ d(n) ≡ nβ with 0 ≤ β ≤ 1 (j ∈ {1, 2, . . . }). So we have

as n → ∞,

X̃
(D)
n√
n1+β

⇒





N(0, 1) : β = 0,

N(0, σ2(a)) : 0 < β < 1,

K(|a|) : β = 1.

(8)

Remark that from Theorem 1, as long as both d(n) and M(n) are infinite for n → ∞,

that is 0 < β < 1, X̃
(D)
n converges to N(0, σ(a)2) in distribution with the power of the time

variable d(n)
√

M(n). At β = 0 (resp. β = 1), d(n) (resp. M(n)) is finite in the limit of large

n. The DTQW with PPM always has the discontinuity of the above limit theorem at β = 0

and β = 1.

As a preparation for the proof of Theorem 1, we give the useful lemma as follows. The

proof is given at the end of this section.
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Lemma 1 Let Y
(D)
j be a DTQW with the quantum coin H and with an initial coin state ϕj.

Then we have

E
[
eiξ(Y

(D)
j

−E[Y
(D)
j

])/Θ(n)
]
∼ e

− ξ2

2

(
σ(a)dj(n)

Θ(n)

)2

, (9)

where an explicit expression for the average E[Y
(D)
j ] is described in [10, Proposition 2].

Then by using the above lemma, we can give the proof of Theorem 1 in the following.

Proof. [Proof of Theorem 1] Since {Y (D)
j }M(n)

j=1 is an independent sequence, the characteristic

function for (X̃
(D)
n −E[X̃

(D)
n ])/Θ(n) can be written as a product of E[eiξ(Y

(D)
j

−E[Y
(D)
j

])/Θ(n)]

(j ∈ {1, 2, . . . }). Thus from Lemma 1 and the definition of Θ(n), we can give the asymptotic

expression for E[eiξ(X̃
(D)
n −E[X̃(D)

n ])/Θ(n)] as follows.

E
[
eiξ(X̃

(D)
n −E[X̃(D)

n ])/Θ(n)
]
=

M(n)∏

j=1

E[eiξ(Y
(D)
j

−E[Y
(D)
j

])/Θ(n)]

∼ exp

[
−ξ2

2

σ2(a)
∑M

j=1(d
(n)
j )2

Θ(n)2

]
∼ e−ξ2σ2(a)/2. (10)

Then we have the desired conclusion.

Finally, we give the proof of Lemma 1.

Proof. [Proof of Lemma 1] Let us omit the suffix of dj(n) as d(n). We consider the DTQW

Y
(D)
j at time d(n) with the initial coin state ϕ0, where d(n) satisfies Assumption (1) and

(2). The spatial Fourier transform for Ψd(n)(n) is described by Ψ̂d(n)(k) ≡ Ĥd(n)(k)ϕ0, where

Ĥ(k) ≡ (eikeRe
†
R+ e−ikeLe

†
L)H. According to [24, Equation (7)], the characteristic function

for Y
(D)
j can be expressed as

E[eiξY
(D)
j ] =

∫ 2π

0

Λ(k, ξ)
dk

2π
, (11)

where Λ(k, ξ) = 〈Ψ̂d(t)(k), Ψ̂d(t)(k + ξ)〉. Here, 〈u,v〉 means an inner product between two

vectors u and v. From now on, we evaluate E[eiξY
(D)
j

/Θ(t)]. Note that Y
(D)
j is defined at

time d(t) from the definition. Let the eigenvalue and the corresponding eigenvector of Ĥ(k)

be denoted as eiφl(k) and vl(k), respectively (l ∈ {±}). By using eiφl(k) and vl(k), Λ(k, ξ)

can be decomposed as

Λ(k, ξ) =
∑

l,m∈{±}

exp [id(t) {φl (k + ξ)− φm(k)}]

× 〈ϕ0,vm(k)〉〈vm(k),vl(k + ξ)〉〈vl(k + ξ),ϕ0〉. (12)
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By replacing ξ with ξ/Θ(n), the term corresponding to the eigenvalues and eigenvectors in

Eq. (12) is evaluated as

exp [id(n) {φl (k + ξ/Θ(n))− φm(k)}]

= eid(n){φl(k)−φm(k)} × exp

[
iξ

d(n)

Θ(n)
hl(k) +O

(
d(n)

Θ2(n)

)]
, (13)

〈ϕ0,vm(k)〉〈vm(k),vl(k + ξ/Θ(n))〉〈vl(k + ξ/Θ(n)),ϕ0〉

= δlmpl(k) +
ξ

Θ(n)
〈ϕ0,vm(k)〉

〈
vm(k),

∂

∂k
πl(k)ϕ0

〉
+O(Θ−2(n)), (14)

where hl(k) ≡ ∂φl(k)/∂k, pl(k) ≡ |〈ϕ0,vl(k)〉|2, and πl(k) ≡ vl(k) vl(k)
†. Here f(n) =

O(g(n)) means that there exists 0 ≤ c < ∞ such that limn→∞ f(n)/g(n) = c. So by the

orthonormality of eigenvectors and defining h(k) ≡ h+(k) = −h−(k), we obtain

Λ(k, ξ/Θ(n)) = 1− ξ2

2

(
d(n)

Θ(n)
h(k)

)2

+ i
ξ

Θ(n)
µd(n)(k) + o(η(n)), (15)

where f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0. Here, µm(k) ≡ 〈Ψ̂m(k), DkΨ̂m(k)〉
with Dk = −i∂/∂k and η(n) = d2(n)/Θ2(n) (if Θ(n)/d2(n) = o(1)), = 1/Θ(n) (otherwise).

Since it is known that (see more details in Eq. (16) of Ref. [23], for example. )

E[(Y
(D)
j )r] =

∫ 2π

0

〈Ψ̂d(n)(k), D
r
kΨ̂d(n)(k)〉

dk

2π
(r ∈ {1, 2, . . . }), (16)

one obtains ∫ 2π

0

µd(n)(k)
dk

2π
= E[Y

(D)
j ]. (17)

We can compute the explicit expression for
∫ 2π

0
h2(k)dk/2π as σ2(a) = 1 −

√
1− |a|2. We

have

∫ 2π

0

Λ(k, ξ/Θ(n))
dk

2π
= 1 + i

ξ

Θ(n)
E[Y

(D)
j ]− ξ2

2

(
d(n)

Θ(n)

)2

σ2(a) + o

(
1

Θ(n)

)
. (18)

By multiplying e−iξE[Y
(D)
j

]/Θ(n) to both sides of Eq. (18), we have

E[eiξ(Y
(D)
j

−E[Y
(D)
j

])/Θ(n)] ∼ e−
ξ2

2 (d(n)/Θ(n))2σ2(a). (19)

Then we obtain the desired conclusion.

3.2 CTQW with position measurements

Let Y
(C)
j be the CTQW at time dj(t) (j = 1, 2, . . . ) defined in Eq. (5) with parameter

γ. We consider a convolution of an independent sequence {Y (C)
j }M(t)

j=1 denoted as X̃
(C)
t ≡

Y
(C)
1 + Y

(C)
2 + · · · + Y

(C)
M(t). We obtain the following theorem for the continuous-time case in

analogy to Theorem 1 in the discrete-time case.
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Theorem 2 Let Θ(C)(t) =
√∑M(t)

j=1 d2j (t). We have as t → ∞,

X̃
(C)
t

Θ(t)
⇒ N(0, |γ|2), (20)

where γ ∈ C is the parameter of the CTQW defined in Eq. (5).

Proof. Let the spatial Fourier transform Ψ̂
(C)
s (k) ≡ ∑

x∈Z
Ψ

(C)
s (x)eikx. From Eq. (5), the

solution has

Ψ̂(C)
s (k) = ei|γ|s cos(k+arg(γ)), (21)

where arg(z) is the argument of the complex number z. Therefore we have

E[eiξY
(C)
j

/Θ(t)] =

∫ 2π

0

〈Ψ̂(C)
dj(t)

(k), Ψ̂
(C)
dj(t)

(k + ξ/Θ(C)(t))〉dk
2π

= 1− ξ2

2

(
dj(t)

Θ(C)(t)

)2

+ o

(
dj(t)

Θ(C)(t)

)2

. (22)

From the independence of {Y (C)
j }∞j=1, we have

E[eiξX̃
(C)
t /Θ(C)(t)] =

M(t)∏

j=1

E[eiξY
(C)
j

/Θ(C)(t)]

∼ exp

[
−ξ2

2

∑M(t)
j=1 (dj(t))

2

Θ(C)(t)2

]
→ e−ξ2/2 (23)

as t → ∞ .

It is emphasized that the CTQW with position measurements is nothing but expressed by

X̃
(C)
t without approximation in contrast with the previous discrete-time case, since the CTQW

is described only by the position-state space.

Corollary 2 Let dj(t) ∼ tβ with 0 ≤ β ≤ 1 (j ∈ {1, 2, . . . }). So we obtain as t → ∞,

X̃
(C)
t√
t1+β

⇒
{
N(0, |γ|2) : 0 ≤ β < 1,

Z(γ) : β = 1.
(24)

There is no discontinuous point at β = 0 unlike the DTQW with PPM. According to Theorem

2, the CTQW with PPM always has the discontinuity of the above limit distribution at β = 1

(corresponding to “finite measurements”) and continuity at β = 0 (corresponding to “finite

span between measurements”).

4 Crossover from DTQW to CTQW

To give some insights into the similarity of the results on the position measurements for

discrete-time and continuous-time cases, in this section, we introduce a final-time-dependent

walks which are modified walks initiated by Strauch [8]. Let n be the final time, that is,

a particle keeps walking until the final time comes. At first, we show a construction of the

CTRW from final-time-dependent DTRWs. Secondly, we give CTQWs in some limit of the

FTD-DTQW which is a quantum analogue of the final time dependent RW. Throughout

this paper, we assume the parameter r(n) > 0 with r(n) → 0 as n → ∞ for the final-time

dependent DTRW and DTQW.
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4.1 RW case

We consider the final-time-dependent RW on Z, where the “final time” means the time that

a particle stops the walk. The average of the waiting time of particle movement is 1/r(n),

where r(n) is the probability that the particle moves by the final time n. The number of

particle movements in the walk by the final time n is evaluated as r(n)n. A particle spends

her most time being lazy since the rate of movements r(n) tends to 0 as n → ∞. This is called

a lazy RW. In the following, we will show that the lazy RW with the number of particle’s

movements nr(n) can be taken as the CTRW with the final time t for sufficiently large n.

Let Z
(F )
m be the lazy RW at time m ∈ {0, 1, 2, . . . , n} defined by

pm(x) = (1− r(n))pm−1(x) +
r(n)

2

{
pm−1(x− 1) + pm−1(x+ 1)

}
, p0(x) = δ0(x), (25)

where pm(x) ≡ P (Z
(F )
m = x). This means that a particle stays at the same place with

the probability 1 − r(n), and the particle jumps left or right with probability 1/2 when the

moving opportunity comes with probability r(n). Put µm = T [. . . , pm(−1), pm(0), pm(1), . . . ].

Equation (25) is equivalent to

µm = {1+ r(n)(A/2− 1)}µm−1, µ0 = δ0, (26)

where Aδx = δx+1 + δx−1 and 1 is the identity operator. Therefore we have under the

assumption of nr2(n) → 0 as n → ∞,

µn ∼ enr(n)(A/2−1)µ0. (27)

Replace the particle movements nr(n) with a continuous parameter t. We can express pn(x) ∼
mt(x) for sufficiently large n, where ms(x) satisfies

∂

∂s
ms(x) =

1

2
{ms(x+ 1) +ms(x− 1)} −ms(x), m0(x) = δ0(x) (s ≤ t). (28)

This differential equation corresponds to the CTRW with the final time t. We have the central

limit theorem by using the Fourier transform in the following: if nr(n) → ∞, as n → ∞, then

Z
(F )
n√
nr(n)

⇒ N(0, 1) (n → ∞). (29)

It is remarked that Eq. (29) can be shown without nr(n) → 0 as n → ∞ In particular, in

the case of r(n) ∼ r/nα with 0 < r < 1 and 0 ≤ α, we obtain a crossover from the diffusive

to the localized spreading: as n → ∞, if 0 ≤ α < 1, then

Z
(F )
n√
n1−α

⇒ N(0, r) (30)

and if α = 1, then

P (Z(F )
n = x) ∼ e−rIx(r), (31)

where Iν(z) is the modified Bessel function of order ν. As for the modified Bessel function,

see Ref. [25]. Note that Eq.(31) comes from the correspondence between nr(n) and t, and

the Fourier transform for Eq. (28): for large n,

pn(x) ∼ mt(x) = e−tIx(t). (32)
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If α > 1, then we can easily see that P (Z
(F )
n = x) → δ0(x). The limit theorem for the lazy

RW will be used in Sect. 5.

4.2 QW case

In this subsection, we will consider a quantum analogue of the above method of continuum

approximation to the lazy RW. The final-time-dependent quantum coin is defined by

Hn =

[ √
r(n)

√
1− r(n)√

1− r(n) −
√
r(n)

]
. (33)

The quantum coin is a quantum analogue to the final-time-dependent stochastic coin of the

correlated RW [26]. We give a relation between the correlated RW and the FTD-DTQW,

and the limit theorems for the correlated RW in Appendix A. According to Ref. [8], the

absolute values of diagonal parts of the quantum coin are sufficiently small and independent

of the final time n. According to Ref. [21], the quantum coin is changed at each time, and its

diagonal parts at time m(< n) are given in proportion to 1/mα (0 ≤ α ≤ 1). On the other

hand, in our model, all elements of the quantum coin depend on the final time n. The above

quantum coin (33) shows that a particle moves the same direction of the previous step with

the probability amplitude
√

r(n) (left case) and −
√
r(n) (right case), and the opposite one

with
√

1− r(n) (left and right cases). This is called an FTD-DTQW. We give the follow-

ing lemma which shows that the FTD-DTQW is expressed as a linear combination of some

CTQWs for sufficiently large n. The following lemma is consistent to Refs. [8, 21] except for

the time scaling. Let n be the final time for the FTD-DTQW and t be the final time for the

corresponding CTQWs. We define a quantum analogue of the waiting time of a quantum

particle movement by n/t.

Lemma 2 Let Ψ(F )
n (x) be the coin state of the FTD-DTQW at time n and position x. Put

t = n
√
r(n) with nr(n) = o(1) for large n. Ψ(F )

n (x) is asymptotically expressed by

Ψ(F )
n (x) ∼ 1

2

(
Ψ

(+)
t (x) + (−1)nΨ

(−)
t (x)

)
(34)

with t = n
√

r(n), where Ψ(±)
s (x) (0 < s < t) satisfies the following Schrödinger equation:

−i
∂

∂s
Ψ(±,J)

s (x) = ±1

2

(
iΨ(±,J)

s (x− 1)− iΨ(±,J)
s (x+ 1)

)
, (J ∈ {L,R}) (35)

Ψ
(±,L)
0 (x) = qLδ0(x)± qRδ1(x), Ψ

(±,R)
0 (x) = qRδ0(x)± qLδ−1(x), (36)

where Ψ
(±,J)
s (x) = 〈eJ ,Ψ(±)

s (x)〉, (J ∈ {R,L}).
It is noted that Eq. (35) can be taken as the CTQW with γ = ±i and the modified initial

condition Eq. (36).

Proof. By the spatial Fourier transform for Eq. (33), we obtain

Ĥ2
n(k) = 1− 2i

√
r(n) sin kVσx

(k) +O(r(n)), (37)

with Vσx
(k) =

(
e−ikeLe

†
L + eikeRe

†
R

)
σx, where σx is x comportment of the Pauli matrix.

When |det(
√

r(n) sin kVσx
(k))| < 1, so log(Ĥ2

n(k)) = −2i
√
r(n) sin kVσx

(k) +O(r(n)), where
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det(A) is the determinant of A. Therefore we have under the assumption of nr(n) → 0 as

n → ∞,

Ĥn(k) = (Vσx
(k))ne−in

√
r(n) sin kVσx (k)+O(nr(n)) ∼ (Vσx

(k))ne−in
√

r(n) sin kVσx (k). (38)

Because of (1±Vσx
(k))e−is sin kVσx (k) = e∓is sin k(1±Vσx

(k)) for any real number s, we obtain

Ĥn(k) ∼ 1

2

(
e−in

√
r(n) sin k(1+ Vσx

(k)) + (−1)nein
√

r(n) sin k(1− Vσx
(k))

)
. (39)

To see a relation between the FTD-DTQW and the CTQW, we define Ψ̂
(±)

s (k) ≡ e∓is sin kΨ̂
(±)

0 (k)

with Ψ̂
(±)

0 (k) ≡ (1 ± Vσx
(k))ϕ0. It is noted that Ψ̂n(k) =

(
Ψ̂

(+)

t (k) + (−1)nΨ̂
(−)

t (k)

)
/2,

with t = n
√

r(n) and Ψ̂
(±)

s (k) obeys

±i
d

ds
Ψ̂

(±)

s (k) = sin kΨ̂
(±)

s (k). (40)

By the inverse Fourier transform for Eq. (39) and the definition of the Bessel function, we

get the following theorem.

Theorem 3 Let X
(F )
n be the FTD-DTQW at time n. Put t = n

√
r(n). When the initial

coin state is ϕ0 = qLeL + qReR with |qL|2 + |qR|2 = 1, then we have

P (X(F )
n = x) ∼ 1 + (−1)n+x

2
J (x; t), (41)

where

J (x; t) =

{
1− (qRqL + qRqL)

2x

t

}
J2
x(t) + |qL|2J2

x−1(t) + |qR|2J2
x+1(t). (42)

Here Jν(z) is the Bessel function of the first kind of order ν. As for the Bessel function, see

Ref. [25].

The following theorem shows that the weak convergence theorem of the FTD-DTQW also

holds without the assumption of nr(n) → 0 as n → ∞.

Theorem 4 Let the initial coin state be ϕ0 = qLeL+qReR with |qL|2+|qR|2 = 1. Assume

n
√
r(n) → ∞ as n → ∞. Then we have as n → ∞,

X
(F )
n

n
√
r(n)

⇒ Aϕ0(1), (43)

where Aϕ0(r) has the following density:

ρ(x; r) = {1− (qLqR + qLqR)x/r}
χ(−|r|,|r|)(x)

π
√
r2 − x2

. (44)



K. Chisaki, N. Konno, E. Segawa, and Y. Shikano 753

Proof. We show that Eq. (43) holds without assumption nr(n) → 0 as n → ∞. The Fourier

transform for the quantum coin Hn (33) is described as

Ĥn(k) =

[
e−ik

√
r(n) e−ik

√
1− r(n)

eik
√

1− r(n) −eik
√
r(n)

]
. (45)

Let the eigenvalue and corresponding eigenvector of Ĥn(k) be eiθ
(±)
n (k) and v

(±)
n (k). Then we

obtain

cos θ(±)
n (k) = ±

√
1− r(n) sin2 k, sin θ(±)

n (k) = −
√
r(n) sin k, (46)

π(±)
n (k) ≡ v(±)

n (k)v(±)
n (k)

†
=

1

2
(I ± Vσx

(k)) +O
(√

r(n)
)
. (47)

Let X
(F )
s be the FTD-DTQW at time s with the initial coin state ϕ0 = qLeL + qReR. It is

noted that

θ(±)
n (k + ξ/t)− θ(±)

n (k) = ∓ξ

√
r(n)

t
cos k +O

(
(
√

r(n))3

t

)
, (48)

where t = n
√
r(n). We have

E[eiξX
(F )
n /t] =

∫ 2π

0

〈Ĥn(k)ϕ0, Ĥ
n(k + ξ/t)ϕ0〉

dk

2π

=

∫ 2π

0

∑

j∈{0,1}

e
−(−1)jiξ cos k+O

(√
r(n)

)

× 1

2
〈ϕ0,

(
I + (−1)jVσx

(k)
)
ϕ0〉

dk

2π
+O(

√
r(n))

→
∫ ∞

−∞

eiξx
{
1− (qLqR + qLqR)x

}
χ(−1,1)(x)

π
√
1− x2

dk (n → ∞), (49)

where t = n
√
r(n). Then we get the desired conclusion. .

From Theorems 3 and 4, we obtain the following limit theorem which shows a crossover from

the localized to the ballistic spreading.

Corollary 3 If
√
r(n) = r/nα with 0 < r < 1, then as n → ∞,

X
(F )
n

n1−α
⇒
{
K(r) if α = 0,

Aϕ0(r) if 0 < α < 1,
(50)

and if α = 1, then

P (X(F )
n = x) ∼ 1 + (−1)n+x

2
J (x; r). (51)

and if α > 1, then P (X
(F )
n = x) → δ0(x) as n → ∞.

Proof. Since α = 0 case corresponds to the DTQW, X
(F )
n /n ⇒ K(r) as n → ∞. The√

r(n) = nα with 0 < α < 1 satisfies the condition n
√

r(n) → 0 as n → ∞. Therefore it

follows from Theorem 4 that X
(F )
n /n1−α ⇒ Aϕ0 with 0 < α < 1. The result on α ≥ 1 case

derives from Theorem 3. .
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5 From DTQW to CTQW with PPM

We give a relation between the DTQW with PPM and the corresponding CTQW. In this

section, for simplicity, let dj(n) = d(n) for all j ∈ {1, 2, . . . } and ϕj = eL with probability

1/2, = eR with probability 1/2. We consider a hybrid type walk, that is, the position of

the FTD-DTQW is measured per d(n)th step analogues to Ref. [16]. To give the following

relation to the lazy RW discussed in the previous section, here we assume that d(n) is even.

Assume that the final time n is even. Let W
(F )
n be the FTD-DTQW with PPM at time n.

The following two cases correspond to the lazy RW and the FTD-DTQW, respectively:

(1) d(n) = 2 (⇔ M(n) = n/2) case: This case does not satisfy Assumption (2) in Sect. 3.

This walk corresponds to the FTD-DTQW with position measurements per two steps

(not each step). Let Z
(F )
m be the lazy RW at time m defined in Eq. (25). If x is even,

then we have P (W
(F )
n = x) = P (Z

(F )
n/2 = x/2).

(2) d(n) = n (⇔ M(n) = 1) case: This case dose not satisfy Assumption (3) in Sect. 3.

This walk corresponds to the FTD-DTQW without position measurements by the final

time, i.e., P (W
(F )
n = x) = P (X

(F )
n = x).

The next theorem is our main result which gives limit theorems for the FTD-DTQW with

PPM when both the span between measurements d(n) and the number of measurements M(s)

go to infinity as n → ∞, simultaneously in contrast with Remark 5.

Theorem 5 Let S = {(α, β) ∈ [0, 1]2 : 2α < 1 + β, 0 < α < 1, 0 ≤ β < 1} ∪ {(0, 0)} and

S′ = {(α, β) ∈ [0, 1]2 : 2α = 1 + β, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1}. When we take d(n) ∼ 21−βnβ and

r(n) ∼ r2/n2α with 0 ≤ α, β ≤ 1 and 0 < r < 1, we obtain an α-β phase diagram with respect

to limit distribution (see Fig. 1 (1)):

W
(F )
n√

21−βnβ−2α+1
⇒





K(r) : (α, β) = (0, 1),

Z(r) : β = 1, 0 < α < 1,

N(0, σ2(r)) : α = 0, 0 < β < 1,

N(0, r) : (α, β) ∈ S.

(52)

If (α, β) ∈ {(α, β) ∈ [0, 1]2 : 2α ≥ 1 + β}, then

lim
n→∞

P (W (F )
n = x) =





I(x; r) : (α, β) ∈ S′, 0 ≤ β < 1,

J(x; r) : (α, β) ∈ S′, β = 1,

δ0(x) : otherwise,

(53)

where J(x; r) = χ{x:even}(x)×
{
J2
x(r) +

(
J2
x−1(r) + J2

x+1(r)
)
/2
}
and I(x; r) = χ{x:even}(x)×{

e−r2/2Ix/2
(
r2/2

)}
.

The limit distributions in the case of 0 ≤ α, β ≤ 1 for the FTD-DTQW with PPM can be

illustrated in Fig. 1 (1) as the phase diagram. Theorem 5 shows that in the limit of n → ∞,

the FTD-DTQW with PPM parametrized by α and β corresponds to the walks which have

been treated in this paper like Fig. 1 (2).

The following lemma is essential to the proof of Theorem 5. The proof of the lemma is given
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Fig. 1. (1) The α-β diagram with respect to limit distributions in Theorem 5 is shown. The

corners, (α, β) = (0, 1) and (α, β) = (0, 0), correspond to the DTQW and DTRW, respectively.

If (α, β) ∈ S, then W
(n)
n /

√

21−βnβ − 2α+ 1 converges weakly to N(0, r2) as n → ∞. (2) The
boundary of S is mapped to the DTQW with PPM (α = 0), the FTD-DTQW (β = 1) and the
lazy RW (β = 0). If 0 < α < 1, the CTQW (resp. CTRW) corresponds to the FTD-DTQW (resp.
lazy RW) with the continuous final time t ∼ n1−α (resp. s ∼ n1−2α). Therefore the CTQW is

mapped to the point (α, 1) while the CTRW is (α/2, 0) with 0 < α < 1. Thus the CTQW with
PPM can be seen as a line which connects the point (α, 1) to (α/2, 0) with 0 < α < 1.
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at the end of this section.

Lemma 3 Define Θ̃(n) = d(n)
√

r(n)M(n). We assume that d(n) is even and satisfies As-

sumption (1) - (3). Then we have

(1) When Θ̃(n) → ∞ as n → ∞,

W
(F )
n

Θ̃(n)
⇒ N(0, 1). (54)

(2) When Θ̃(n) → c0 < ∞ as n → ∞, if x is odd, then we have P (W
(F )
n = x) = 0, and if

x is even, then we have

lim
n→∞

P (W (F )
n = x) = χ{x:even}(x)×

{
e−c20/2Ix/2

(
c20/2

)
: c0 > 0,

δ0(x) : c0 = 0.
(55)

We show how the CTQW with PPM can be seen from Lemma 3 in the following. Let X̃
(C)
t

be the CTQW with PPM at time t defined in Eq. (5). Define the span between measurements

of the CTQW by d(t). Then we have from Theorem 2, as t → ∞,

X̃
(C)
t

d(t)
√

M(t)
⇒ N(0, 1). (56)

As we have already seen in Sect. 3, the quantum analogue of the waiting time is evaluated

as 1/
√

r(n). Then we can evaluate t ∼ n
√

r(n), d(t) ∼
√
r(n)d(n), and M(n) = n/d(n) ∼

n
√
r(n)/d(t) ∼ t/d(t) = M(t). Therefore combining the above estimations with Lemma 3,

we obtain Eq. (56).

Proof. [Proof of Theorem 5] The DTQW with PPM corresponds to α = 0, 0 ≤ β ≤ 1

with the quantum coin reLe
†
L +

√
1− r2eRe

†
L + reLe

†
R −

√
1− r2eRe

†
R. So Corollary 1 and

Remark 5 (1) give the desired conclusion in the case of α = 0 and 0 ≤ β ≤ 1. In a sim-

ilar way, both “β = 0, 0 ≤ α ≤ 1/2” and “β = 1, 0 ≤ α ≤ 1” cases correspond to the

lazy RW and the FTD-DTQW, respectively. Thus the results on these two cases follow from

Eqs. (30), (31) and Corollary 3. Finally, Lemma 3 implies the other cases, i.e., 0 < α, β < 1.

We now give the proof of Lemma 3.

Proof. [Proof of Lemma 3] Let {Y (F )
j }M(n)

j=1 be an i.i.d. sequence of the FTD-DTQW at

time d(n) with W
(F )
n = Y

(F )
1 + Y

(F )
2 + · · ·+ Y

(F )
M(n).

(1) Θ̃(n) → ∞ case: The Fourier transform for the quantum coin Hn (33) is expressed as

Ĥd(n)(k) = e
−id(n) arcsin

(√
r(n) sin k

)

π(+)
n (k)

+ (−1)d(n)e
id(n) arcsin

(√
r(n) sin k

)

π(−)
n (k). (57)
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Note that

π(l)
n (k + ξ/Θ̃(n)) · π(m)

n (k)
†
= δlmπ(l)

n (k) +O(1/Θ̃(n)) (l,m ∈ {±}), (58)

arcsin
(√

r(n) sin(k + ξ/Θ̃(n))
)
− arcsin

(√
r(n) sin k

)

=
ξ

d(n)
√

M(n)
cos k +O

(
r(n)

d(n)
√

M(n)

)
. (59)

From Eq. (57), we have

E[eiξY
(n)
j

/Θ̃(n)] =

∫ 2π

0

〈Ĥd(n)(k)ϕ0, Ĥ
d(n)(k + ξ/Θ̃(n))ϕ0〉

dk

2π

=
∑

j∈{±}

∫ 2π

0

eijξ{cos k+O(r(n))}/
√

M(n) × 1

2
Tr(π(j)

n (k))
dk

2π

∼ 1− ξ2

2
× 1

M(n)
+ o

(
1

M(n)

)
. (60)

Since {Y (F )
j }M(n)

j=1 is an i.i.d. sequence, we have as n → ∞,

E[eiξW
(F )
t /g(n)] → e−ξ2/2. (61)

(2) Θ̃(n) → c0 < ∞ case: Combining d(n)
√

r(n) = o(1) with Theorem 3, we obtain

P (Y
(F )
1 = x) ∼ 1 + (−1)d(n)+x

2
J(x; d(n)

√
r(n)), (62)

where J(x; s) = J2
x(s) +

(
J2
x−1(s) + J2

x+1(s)
)
/2.

Note that J2
x(s) ∼ δ0(x) + {δ0(x− 1)/2 + δ0(x+ 1)/2− δ0(x)} s2 for sufficiently small

s. Thus the characteristic function of Y
(F )
1 is evaluated as

E[eiξY
(F )
1 ] =

∑

x:even

J2
x(s)e

iξx+cos ξ
∑

x:odd

J2
x(s)e

iξx = 1−d2(n)r(n)
{
sin2 ξ + o(1)

}
. (63)

So we have as n → ∞,

E[eiξW
(F )
n ] ∼

{
1− d2(n)r(n) sin2 ξ

}M(n) →
{
e−c20 sin2 ξ : c0 > 0,

1 : c0 = 0.
(64)

It is noted that because of
∑

x∈Z
e−rIx(r)e

2iξx = e−2r sin2 ξ and Remark 5 (1), the value

e−2r sin2 ξ is the limit of the characteristic function of the scaled lazy RW: 2×Z
(F )
n/2 with

nr(n) → r as n → ∞. Then we complete the proof.
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6 Summary

We have analyzed long-time behaviors for DTQWs with position measurements from the view

point of the weak convergence theorem. In the situation that both the span of the position

measurements and its number are simultaneously infinite as the final time goes to infinity; n →
∞, we have shown a crossover from ballistic spreading to diffusive spreading of the particle.

Physically speaking, we have analytically seen the long-time behavior in the decoherence

model of the discrete- and continuous-time QWs. Our main result is summarized in Theorem 5

and is illustrated in Fig. 1. To show this crossover, we have given the estimation of the

limit theorems for the DTQW with position measurements per each time with probability

p ∼ 1/nβ (Theorem 1). This result generalizes our previous study [16]. Also, we have

obtained the similar result on the corresponding CTQW (Theorem 2). Furthermore, we have

introduced a new class of the QW, FTD-DTQW, inspired by Refs. [8, 21]. We have given

the estimation of the limit theorem for the FTD-DTQW. This means that the DTQW and

CTQW are connected for the sufficiently long-time behavior (Corollary 3). We have presented

the relationship between the FTD-DTQW with position measurements per two steps and the

lazy RW (Remark 5 (1)). These analytical results are our contributions in this paper.
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Appendix A Correlated RW

Because of the No-Go Lemma [3], we cannot construct the quantum analogue of the lazy RW

directly. The final-time-dependent quantum coin is a quantum analogue to the stochastic coin

Cn which determines the behavior of the correlated RW:

Cn =

[
r(n) 1− r(n)

1− r(n) r(n)

]
. (A.1)

The coin of the correlated RW depends on the previous time: a particle moves to the opposite

direction of the previous time with probability 1− r(n) and moves to the same direction with

probability r(n). According to the assumption for r(n); r(n) → 0 as n → ∞, a particle tends

to walk zigzag. The number of opportunities in the walk by the final time that a particle moves

the same direction of the previous time is evaluated as nr(n). Let Z̃
(F )
m be the correlated RW

at time m. The distribution is determined by P (Z̃
(F )
m = x) = 〈e,pm(x)〉, where e = eL + eR.

Here pm(x) = ueL+ veR with 0 ≤ u, v ≤ 1 and 0 ≤ u+ v ≤ 1 satisfies the following relations:

pm(x) = Q̃npm−1(x− 1) + P̃npm−1(x+ 1), p0(x) = δ0(x)φ0, (A.2)

where P̃n = eLe
†
LCn, Q̃n = eRe

†
RCn, and φ0 = T [pL, pR] ∈ [0, 1]2 with pL + pR = 1. The

detailed asymptotic estimation of pn(x) for sufficiently large n is almost similar to the FTD-

DTQW case, so we give the results without the proof. Let t = nr(n) under the assumption

nr2(n) = o(1), and the initial state is p0(x) = δ0(x) (pLeL + pReR). Then we have for

sufficiently large n,

pn(x) ∼
1

2

{
p
(+)
t (x) + (−1)tp

(−)
t (x)

}
, (A.3)
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where p
(±)
t (x) = p(±,R)eR + p(±,L)eL satisfies

∂

∂t
p
(±,J)
t (x) = ±1

2

(
p
(±,J)
t (x+ 1) + p

(±,J)
t (x− 1)

)
− p

(±,J)
t (x) (J ∈ {L,R}), (A.4)

p
(±,L)
0 (x) = pLδ0(x)± pRδ1(x), p

(±,R)
0 (x) = pRδ0(x)± pLδ−1(x). (A.5)

Here, the “+” part corresponds to the CTRW given by Eq. (28). We obtain the asymptotic

behavior of P (Z̃
(F )
n = x) as follows. Let nr2(n) → 0 as n → ∞. For sufficiently large n, we

have

P (Z̃(F )
n = x) ∼ 1 + (−1)n+x

2
e−t

{
pLIx−1(t) + Ix(t) + pRIx+1(t)

}
, (A.6)

where t = nr(n). Analogous to the lazy RW, we also get the following weak convergence

theorem: for any initial state p0(x) = δ0(x)φ0, we have with nr(n) → ∞,

Z̃
(F )
n√
nr(n)

⇒ N(0, 1) (n → ∞). (A.7)


