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A scheme for optimal deterministic entanglement concentration is proposed, and its
corresponding optical realization based on a cavity-assisted linear optical system is pre-
sented. In this scheme, the quantum circuit devised is simpler than that built in [Y. J.

Gu, et al. (2006), Phys. Rev. A. 73, 022321], as it requires the minimum ancillary di-
mensions and the number of unitary operations. Moreover, we show that, by introducing
a path-polarization entanglement state based on the direct sum extension method, three
elementary controlled phase-flip gates between two photons are sufficient in the design of

its optical realization scheme, making it easy to be implemented from the experimental
point of view. Meanwhile, the scheme is verified effective to recover highly entangled
pairs from mixed states.
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1 Introduction

The high-quality entanglement is an indispensable resource in quantum information process-

ing including quantum communication [1, 2, 3, 4] and quantum computation [5]. However this

resource is very fragile; its quality is easily degraded by decoherence and dissipation processes

during the interaction with the environment, especially considering that the interaction is un-

avoidable because the distribution of entangled particles is necessary in some schemes. This

detrimental effect has prompted the development of entanglement distillation and concentra-

tion protocols [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], which aim to recover highly entangled

pairs from mixed or nonmaximally entangled pairs.

So far, not all of those protocols can be easily realized experimentally; moreover, the

success probability of them being realized is also very low [17, 18, 19, 20, 21, 22, 23, 24]. Con-

sidering to reduce the failing risk of experimental realization, the deterministic entanglement

concentration (DEC) protocol [25, 26] and its implementation scheme in atomic system [27]

have been developed recently. This protocol can deterministically (without gambling) extract

a maximally entangled Einstein-Podolsky-Rosen (EPR) pair shared by two distant people

from two partially entangled pairs under certain conditions theoretically, but this procedure
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is difficult to be implemented in an experiment because there exist too many operations on

qubits.

In this paper we first propose a protocol of DEC, and then design an experimental scheme

in optical systems. In the protocol, a unitary operation used to perform a positive operator-

valued measure (POVM) is constructed in an optimal way, in which the number of ancillary

dimensions used is minimum, as have been proved by Chen et al. [28]. Unlike the protocol

in Ref. [26] that extends the Hilbert space by introducing two ancillary qubits, this protocol

employs two extra dimensions or degrees of freedom of the original system. The latter requires

fewer operations when realized as quantum circuits. Based on the direct sum extension

method [28, 29], several paths of a single photon are encoded as the quantum states to

extend the Hilbert space in the experimental scheme. This further reduces the number of

controlled operations between two photons and only three of them are needed in the end.

The corresponding system is easier to be realized in experiment as fewer steps are required.

In addition, the experimental scheme is more valuable in application because photons usually

act as ’flying’ qubits in the quantum communication.

The paper is organized as follows: in section 2, the DEC protocol is optimally constructed

based on the direct sum extension space, and its corresponding quantum circuit is presented.

In section 3, we propose an optical realization scheme for implementing the protocol in lin-

ear optical systems with the cavity-assisted interaction. It is shown that three elementary

controlled phase-flip gates between two photons are sufficient for the scheme. In section 4,

the DEC protocol is performed on a particular type of mixed states, and its effectiveness is

analyzed. We conclude the paper in Section 5 with a brief summary.

2 Optimal deterministic entanglement concentration protocol

The DEC protocol deterministically extracts an EPR pair from two partially entangled pairs

AB and A′B′, in which particles A, A′ and B, B′ belong to two distant parties Alice and

Bob, respectively. The partially entangled state [6, 20, 25] can be generated by experiment

[30]. Using the Schmidt decomposition [6, 31, 32], this initial state may be written as

|Ψ0〉AA′BB′ = |ψ〉AB ⊗ |ϕ〉A′B′

=
(√
a |00〉AB +

√
1− a |11〉AB

)

⊗
(√

b |00〉A′B′ +
√
1− b |11〉A′B′

)

, (1)

where the Schmidt coefficients a and b are positive real numbers, and without loss of generality,

we can set 1/2 < a ≤ b < 1.

Traditionally, the procedure of extracting an EPR pair state ((|00〉+ |11〉) /
√
2) shared by

Alice and Bob includes the following steps [26]. First, Alice executes a local measurement

described by a POVM, then one-way classical communication from Alice to Bob is performed,

and finally Bob’s corresponding local unitary operation or choice between the two pairs is

made. According to Neumark’s theorem [33], to perform the POVM, we need extend the

Hilbert space and construct a unitary operation and then execute an orthogonal measurement.

This process is described in detail as following.

On Alice’s side, the orthonormal basis of the Hilbert space HS = HA ⊗HA′ is {|j〉 , j =

0, 1, 2, 3} ≡ {|00〉AA′ , |01〉AA′ , |10〉AA′ , |11〉AA′}. The first step is to expand the space HA of

particle A into H̃A ≡ {|0〉 , |1〉 , |2〉 , |3〉} using the direct sum extension method by introducing

two extra dimensions |2〉 , |3〉 of particle A. So the space HS is expanded as H̃S = H̃A ⊗HA′ ,
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the orthonormal basis of which is {|k〉 , k = 1, · · · , 8} ≡ {|00〉AA′ , |01〉AA′ , |10〉AA′ , |11〉AA′ ,

|20〉AA′ , |21〉AA′ , |30〉AA′ , |31〉AA′}.
The next step is to unitarily transform the initial state (1) to the state |Ψm〉AA′BB′ , which

can be expressed as

|Ψm〉AA′BB′ =
√

a(1− b) (|0000〉+ |0101〉)
+
√

(1− 2ab) /2 (|1010〉+ |1111〉)
+
√

(2a− 1) (2b− 1) /2 (|2000〉+ |2111〉)
+
√

(2b− 1) /2 (|3000〉+ |3110〉) , (2)

where the particles are arranged in the order of AA′BB′.

The unitary matrix U is constructed as

U =
8

∑

k=1

8
∑

l=1

uk,l |k〉 〈l| , (3)

where u1,1 =
√

1−b
b
, u2,2 = 1, u3,3 =

√

1−2ab
2(1−a)b , u4,4 =

√

1−2ab
2(1−a)(1−b) , u5,1 =

√

(2a−1)(2b−1)
2ab ,

u6,4 =
√

(2a−1)(2b−1)
2(1−a)(1−b) , u7,1 =

√

2b−1
2ab , u8,3 =

√

2b−1
2(1−a)b , and other elements uk,l in the first

four columns of U are equal to 0. Elements from remaining columns can then be constructed

to meet the unitary requirement.

An orthogonal measurement is then performed on particle A. For each measurement result

j, we obtain the following states

1√
2
(|00〉A′B′ + |11〉A′B′)⊗ |0〉B , j = 1,

1√
2
(|00〉A′B′ + |11〉A′B′)⊗ |1〉B , j = 2,

1√
2
(|000〉A′BB′ + |111〉A′BB′) , j = 3,

1√
2
(|00〉A′B + |11〉A′B)⊗ |0〉B′ , j = 4, (4)

and the corresponding probabilities {pj , j = 1, · · · , 4} are

p1 = 2a(1− b), p2 = 1− 2ab, p3 = (2a− 1) (2b− 1) , p4 = 2b− 1. (5)

Because probabilities should be non-negative real numbers, the coefficients a and b need to

satisfy the condition ab ≤ 1/2. The condition can also be obtained by Nielsen’s theorem [31].

This means that in order to ensure the success of the DEC protocol, the states |ψ〉AB and

|ϕ〉A′B′ in Eq. (1) cannot deviate too far from the maximally entangled state simultaneously.

It can be seen from Fig. 1, the fidelity F between the initial state |Ψ0〉AA′BB′ and the two EPR

pairs state |E〉 ⊗ |E〉 (|E〉 = (|00〉+ |11〉) /
√
2) can’t be too small, as the fidelity represented

by red stars (corresponding to ab ≤ 1/2) is larger than that represented by blue points

(corresponding to ab > 1/2) for specific values of b.

It is worth noting that linearly independent vectors are formed by eight rows of the first

four columns in the unitary matrix U . This means the number of ancillary dimensions used
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Fig. 1. The fidelity between the initial state and the state of two EPR pairs. Red stars and
blue points correspond to ab ≤ 1/2 and ab > 1/2, respectively. a and b satisfy the condition
1/2 < a ≤ b < 1.

here to accomplish the DEC task is minimum [28], securing that the protocol is optimal. Fur-

thermore, the U here contains a small number of controlled operations, only three controlled-U

gates and one C-NOT gate. This is also much simpler than the traditional one in Ref. [26],

in which seven controlled gates among more than three qubits are contained. The quantum

circuit is shown in Fig. 2, in which operators Xa, U1, U3, U4 are defined as

Xa =









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









,

U1 =















√

1−b
b

0
√

(1−b)(2b−1)
b(2ab−2b+1) −

√

(2a−1)(2b−1)
2ab−2b+1

0 1 0 0
√

(2a−1)(2b−1)
2ab 0

√

(2a−1)(2b−1)2

2ab(2ab−2b+1)

√

2a(1−b)
2ab−2b+1

√

2b−1
2ab 0 −

√

2ab−2b+1
2ab 0















,

U3 =













1 0 0 0

0
√

1−2ab
2(1−a)b 0 −

√

2b−1
2(1−a)b

0 0 1 0

0
√

2b−1
2(1−a)b 0

√

1−2ab
2(1−a)b













,

U4 =













1 0 0 0

0
√

1−2ab
2(1−a)(1−b) −

√

(2a−1)(2b−1)
2(1−a)(1−b) 0

0
√

(2a−1)(2b−1)
2(1−a)(1−b)

√

1−2ab
2(1−a)(1−b) 0

0 0 0 1













.
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Fig. 2. Quantum circuit realizing the DEC by the direct sum extension method. Particle A is a

four-level ‘qudit’ with logical states {|i〉 , i = 0, 1, 2, 3}, and all others are qubits. The open (closed)
circle indicates the conditioning on the qubit or qudit being set to zero (one).

Finally, Alice and Bob succeed in obtaining an EPR pair by choosing two suitable particles

when the measurement result j is 1, 2, or 4 according to Eq. (4). For example, when j = 4 their

choice is A′ and B. For j = 3, Bob needs to measure either of his particles, say particle B, on

the basis |+〉 = (|0〉B + |1〉B) /
√
2, |−〉 = (|0〉B − |1〉B) /

√
2 to obtain |+〉 or |−〉. Meanwhile,

the particles A′ and B′ collapse into (|00〉A′B′ + |11〉A′B′) /
√
2 or (|00〉A′B′ − |11〉A′B′) /

√
2 to

form an EPR pair. As has been noted, the entanglement concentration is always successful

with unit success probability, no matter what the measurement result is. In particular, the

minimum additional dimensions are added based on the direct sum extension method. As a

result, the quantum circuit described here is simpler and easier to be realized in actual physical

systems compared with that presented in Ref. [26]. Additionally, instead of using two extra

dimensions of particle A, the protocol also can be constructed through the introduction of

one ancillary qubit based on the tensor product extension method, but there will be more

operations between two particles in its quantum circuits than that in Fig. 2. This means the

direct sum extension method used here is more convenient when its physical realization is

considered, especially in optical systems, which can be seen in the next section.

3 Optical realization scheme of DEC

In the following section, we propose a detailed physical scheme for implementing the optimal

DEC protocol mentioned above via linear optical systems with the cavity-assisted interaction.

The DEC protocol only requires the design of a scheme for the realization of U and orthogonal

measurement, the quantum circuit of which is described in Fig. 2.

We first redefine the basis states introduced to fit actual optical systems. Because the

quantum states of photons can be encoded into either their polarization or paths, we shall let

the two states |0〉, |1〉 denote respectively the horizontal and vertical polarization of photons,

and hereby rename them as |H〉 and |V 〉. For instance, the initial state |Ψ0〉AA′BB′ can be

expressed as
(√
a |HH〉AB +

√
1− a |V V 〉AB

)

⊗
(√

b |HH〉A′B′ +
√
1− b |V V 〉A′B′

)

. In the

expanded space H̃A, different paths (named T , S or R) are used to identify distinct states

of photon A. For example, we encode
{∣

∣HRi
〉

, i = 0, 1, 2, 3
}

as four levels of qudit A, which

means photon A is in path Ri with the horizontal polarization.

Through the direct sum extension method, we now introduce a new entangled state with
{∣

∣HSi
〉

, i = 1, 2, 3, 4
}

as quantum basis states of photon A, named path-polarization entan-
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glement state. The state can be expressed as

|ΨS〉AAA′BB′ =
√
ab

∣

∣HS1HHH
〉

+
√

a(1− b)
∣

∣HS2V HV
〉

+
√

(1− a)b
∣

∣HS3HVH
〉

+
√

(1− a)(1− b)
∣

∣HS4V V V
〉

, (6)

where the particles are arranged in the order of AAA′BB′.

The state (6) is prepared by applying a unitary operation E on the initial state |Ψ0〉AA′BB′

in Eq. (1), as E |Ψ0〉AA′BB′ = |ΨS〉AAA′BB′ . This can be achieved by using the cavity and

linear optical devices in real experiment. The schematic setup is shown in Fig. 3, and the

detailed implementation process can be seen as the two steps. First, the state |H〉 (|V 〉) of

photon A is converted into the basis state
∣

∣HT 2
〉

(
∣

∣HT 4
〉

) of the expanded space by using

a polarization beamsplitter and a polarization rotator, the function of which is to divide the

photon A into the path T 2 (T 4) and flip the polarization of photon A in the path T 4 from

vertical to horizontal, respectively. The state |Ψ1〉AAA′BB′ obtained here can be expressed

as
(√
a
∣

∣HT 2H
〉

AAB
+
√
1− a

∣

∣HT 4V
〉

AAB

)

⊗
(√

b |HH〉A′B′ +
√
1− b |V V 〉A′B′

)

. In the

second step, the state |Ψ1〉AAA′BB′ is continuously converted into |ΨS〉AAA′BB′ by dividing

photon A into four different paths Si (i = 1, 2, 3, 4), whereby it can be seen that these paths

are in one-to-one correspondence with the four initial basis states in Eq. (1). As a result, this

makes it possible to execute controlled gates for two photons using single photon gates.

E
A‘

A

A‘

S
3

S

S

S

E
1

E
1

i1

i2

i1

i2

o1

o2

o1

o2

A‘

A

A‘

S

S

S
3

S

T

T

Fig. 3. Schematic setup of implementing operation E. Two photons in entangled state |Ψ0〉AA′BB′

enter gate E from left. Photon A can exit from the right side with four possible paths Si

(i = 1, 2, 3, 4) and A′ exits through the remaining outlet path. The polarization beamsplitters
(PBS) transmit photons in the |H〉 state, while reflect photons in the |V 〉 state. The angles of the
polarization rotators are either −π/2 or π/2.

The operation E1 can be realized using either the nonlinear sign shift (NS) gate proposed

by Knill, Laflamme, and Milburn [34, 35] or the controlled quantum phase-flip (CPF) gate

proposed by Duan et al. [36]. We choose the latter gate because when compared with the

first gate, the latter one is deterministic and does not need single-photon detectors with high

efficiency. The schematic setup is shown in Fig. 4. The purpose of E1 is to change the state

of the photon entering via i2 from |H〉 (|V 〉) to − |V 〉 (− |H〉), if the state of the photon via

i1 is |H〉. In all other cases, there is no state change.
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Fig. 4. Schematic setup of implementing operation E1. It has two Hadamard gates H and one
CPF gate implemented by the cavity-assisted interaction. The operation process of the optical
cavity is the same as in Ref. [36].

The path-polarization entanglement state |ΨS〉AAA′BB′ undergoes the following four state

evolutions to implement the operations described by the quantum circuit in Fig. 2.

√
ab

∣

∣HS1HHH
〉

→ 1√
2
(
√

2a(1− b)
∣

∣HR0
〉

+
√

(2a− 1) (2b− 1)
∣

∣HR2
〉

+
√
2b− 1

∣

∣HR3
〉

) |HHH〉 , (7)
√

a(1− b)
∣

∣HS2V HV
〉

→
√

a(1− b)
∣

∣HR0V HV
〉

, (8)
√

(1− a)b
∣

∣HS3HVH
〉

→ 1√
2
(
√
1− 2ab

∣

∣HR1H
〉

+
√
2b− 1

∣

∣HR3V
〉

) |V H〉 , (9)

√

(1− a)(1− b)|HS4V V V 〉 → 1√
2
(
√
1− 2ab

∣

∣HR1
〉

+
√

(2a− 1) (2b− 1)
∣

∣HR2
〉

) |V V V 〉 .

(10)

The third evolution in Eq. (9) corresponds to the first two controlled gates in Fig. 2, and

evolutions (7) and (10) correspond to the two remaining controlled gates. Here, the particles

are arranged in the order AAA′BB′.
{∣

∣HRi
〉

, i = 0, 1, 2, 3
}

are four levels of qudit A.

These four evolutions are carried out as follows. Firstly, equations (7), (9) and (10),

corresponding to controlled gates U1, U3, and U4 of the quantum circuits in Fig. 2, are

executed by polarized rotation gates θi (i = 1, 2, 3, 4) of single photon A in paths S1, S3,

and S4, respectively. Meanwhile the remaining controlled gate (C-NOT gate), corresponding

to Eq. (9), is executed by the interaction E1 between two photons A and A′, as shown in

Fig. 5. The resultant states of these operations will divide photon A into the sub-paths

Ri
k(k = 1, 2); the optical length of paths Ri

1 and Ri
2 must be equal so as to make sure they

can be re-combined into paths Ri by the single-photon interference [37]. For example, the

process related with R0 is expressed as

√

a(1− b)
∣

∣HR0
1HHH

〉

+
√

a(1− b)
∣

∣HR0
2V HV

〉

→
√

a(1− b)
∣

∣HR0H
〉

AAB
(|HH〉A′B′ + |V V 〉A′B′) . (11)

And the results correspond to state |Ψm〉AA′BB′ in Eq. (2). It is worth noting that a minus

symbol appears in path R3. It is easy to verify that this has no impact on the realization of

the protocol.
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Finally, the states in Eq. (4) are achieved after photon A is detected in different paths

Ri. Results obtained from the four detectors Di(i = 1, 2, 3, 4) correspond to j = 1, 2, 3, 4,

respectively. The complete optical schematic setup for implementing the DEC protocol is

shown as Fig. 5.

D
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D
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θ4

θ1

PBS
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D
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R

R

R

R

R

R
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Fig. 5. Optical schematic setup for implementation of DEC protocol. Within dashed boxes
IF, the sub-paths are re-combined by the single-photon interference. Angles of polarization

rotators θi(i = 1, 2, 3, 4) are defined as sin (θ1) =
√

(1− b) /b, tan (θ2) =
√

1/ (2a− 1),

tan (θ3) =
√

(2b− 1) /(1− 2ab), cot (θ4) =
√

(2a− 1) (2b− 1) / (1− 2ab).

It is noteworthy that only three elementary CPF gates are needed in the above scheme

to implement the operations described by the quantum circuit in Fig. 2, which contains more

than seven C-NOT gates that can be shown easily. This simplification should be attributed

to the usage of the path-polarization entanglement state, which is obtained based on the

direct sum extension method. This makes the controlled unitary operations with photon A

as the target qudit implemented by performing single photon polarization rotations on A,

thus further reducing the number of the controlled unitary operations between two photons

to three. That is difficult to be achieved using the tensor product extension method. So, this

scheme is easy to be implemented from an experimental point of view.

Since the controlled quantum phase flip gate is robust to practical noise and experimental

imperfections in current cavity-QED setups (the cavity decay rate κ, the spontaneous emission

rate γs of the atom, and the coupling rate g are typically (κ, γs) /2π ≈ (8, 5.2) and g/2π ≈
25MHz) [36], and the phase stability in single-photon interference can be guaranteed by

keeping corresponding path lengths of the photon stable at subwavelength levels [37], the

scheme is possible to be realized in an actual experiment. Especially, for the photon losses

due to detector inefficiencies, numerical analysis made in section 4.1 shows that the single-

photon detectors nowadays are good enough to have negligible impact on the viability of the

scheme. Furthermore, the precision required by the detectors in this scheme is low as they

are only used to distinguish between the vacuum and nonvacuum Fock number states.
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4 Analysis and discussion

4.1 Discussion of success probabilities with imperfect detectors

In the section, we will study the impact of imperfect detectors on the probability of successfully

realizing the DEC scheme. Here, photon loss and dark counts need to be considered when

the photons are registered by the detectors. Using the distribution models in Ref. [35], we

can calculate the success probabilities Pi = psi/pdi, where i = 1, 2, 3, 4 correspond to the

four measurement results (j = 1, 2, 3, 4) of photon A. psi represents the probability that

the operation of the DEC scheme will succeed and the detectors will correctly detect the ith

measurement result. pdi represents the probability that the detectors report that the ith

measurement result is obtained and the corresponding operation has succeeded, but in fact

they may have failed.

Through the numerical simulation, we obtain the relationship between success probabilities

Pi, (i = 1, 2, 3, 4) and the parameters (η, g) of the imperfect detectors, shown in Fig. 6, in the

case that a = 0.51, b = 1/
√
2. It can be seen that the success probabilities are higher than 99%

if the single photon quantum efficiency η is more than 50% and the dark count probability g

is lower than 10−4 for each detector.
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Fig. 6. The contour charts of success probabilities plotted as a function of the dark count
probability g in logarithmic coordinate and the quantum efficiency η. The success probabili-
ties Pi, (i = 1, 2, 3, 4) correspond respectively to the four measurement results (j = 1, 2, 3, 4) of

photon A. The height labels in the contour charts represent different levels of success probabilities.

According to a recent report [38], the quantum efficiency η and the dark count probability g
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of a type of photon number detector are 73.8% and 1.1×10−6, respectively. By assuming that

photon A is detected by this kind of detectors, we ran a numerical simulation of the scheme,

and manage to obtain the failed probabilities pfi (pfi = 1− Pi, i = 1, 2, 3, 4) as a function of

a and b, shown below in Fig. 7. We found that the success probability Pi, (i = 1, 2, 3, 4) is

higher than 99.5% when a and b satisfies the following conditions 0.505 ≤ a ≤ b ≤ 0.999 and

ab ≤ 0.499. On the other hand, when a and b satisfy 0.5 < a ≤ b < 0.505 (0.499 < ab ≤ 0.5),

P3 (P2) will sometimes be lower than 90%. This, however, does not affect the successful

realization of the scheme since ps3 (ps2) is nearly equal to 0 in that case according to Eq. (5),

i.e. the photon A is almost never detected by D3 (D2) as it virtually almost never takes route

R2 (R1).

Fig. 7. The failed probabilities with imperfect detectors in logarithmic coordinate plotted as a
function of a and b. The quantum efficiency η and the dark count probability g are 73.8% and
1.1× 10−6 , respectively. a and b satisfy the conditions 0.505 ≤ a ≤ b ≤ 0.999 and ab ≤ 0.499.

4.2 Analysis of mixed states

We now illustrate an analysis of the performance of the DEC protocol for the mixed states by

considering the following scenario. Suppose that Alice and Bob share two pairs of entangled

photons. They know a priori that each pair is in the state |ψa〉 with probability p, and in the

state |ψb〉 with probability 1 − p, but they do not know which state each pair is in. In this



602 Optimal deterministic entanglement concentration of polarized photons through direct sum extension

situation, the state of the photon pair can be described by

ρ10 = p |ψa〉 〈ψa|+ (1− p) |ψb〉 〈ψb| , (12)

where, |ψa〉 =
√
a |HH〉 +

√
1− a |V V 〉, |ψb〉 =

√
b |HH〉 +

√
1− b |V V 〉, 0 ≤ p ≤ 1, 1/2 <

a ≤ b < 1, ab ≤ 1/2.

In order to use the DEC protocol, Alice and Bob have to assume that the first pair is in

the state |ψa〉 and the second pair is in the state |ψb〉. After performing the DEC protocol on

these two photon pairs, we obtain the final state

ρj1f = p2 |φ1j〉 〈φ1j |+ p (1− p) (|φ2j〉 〈φ2j |+ |φ3j〉 〈φ3j |) + (1− p)
2 |φ4j〉 〈φ4j | , (13)

where, |φij〉 =
(

∑8
k=1 u2j−1,kSk,i |HH〉+∑8

k=1 u2j,kSk,i |V V 〉
)

/Nj , (i, j = 1, 2, 3, 4); j here

denotes the measurement results of the DEC protocol; u2j,k and u2j−1,k are the elements of

the unitary matrix U in Eq. (3), and Nj is the normalization constant. The four columns of

the matrix S correspond to the four states, |S1〉 = |ψa〉 |ψa〉 ⊕ |O〉, |S2〉 = |ψa〉 |ψb〉 ⊕ |O〉,
|S3〉 = |ψb〉 |ψa〉 ⊕ |O〉, |S4〉 = |ψb〉 |ψb〉 ⊕ |O〉, |O〉 = [0 0 0 0]′.

Fig. 8. The fidelities between the state |E〉 and the mixed states ρ10 and ρj
1f

. During the

calculation, b is set to 1/
√
2. The fidelities about ρ10 and ρj

1f
are represented by blue point arrays

and red grids, respectively.

We then calculate the fidelities between the state |E〉 and the mixed states ρ10 and ρj1f .

Results are illustrated in Fig. 8. We can see that the DEC protocol is very effective when a
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and p are close to 1/
√
2 and 0 respectively. However, the effect is not good when a (p) is close

to 0.5 (1), as the states ρ10 are very close to the maximally entangled state |E〉.

5 Conclusion

In summary, an optimal deterministic entanglement concentration protocol is proposed in

this paper and its corresponding optical realization scheme is designed. The advantage of

this protocol is illustrated not only from the fact that the ancillary dimensionality added

and controlled operations needed are minimum, but also from the aspect that the quantum

circuits built here are simpler than those in Ref. [26]. The optical realization scheme is

designed following the evolution processes from the initial basis states to the final states. Based

on the direct sum extension method, a path-polarization entanglement state is introduced

to further reduce the number of controlled unitary operations between two photons. The

simplification makes it sufficient to implement the protocol using only three CPF gates of two

photons. The proposed scheme is possible to implement in experiment, and these strategies

have critical applications for the design of the large-scale quantum computation and other

quantum communication schemes. Finally, through the analysis of one kind of mixed states,

it is verified that the DEC protocol is an effective way of recovering highly entangled pairs

from some mixed states.
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