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Coherence preservation of a multilevel system subject to Markovian decoherence is stud-

ied. A Λ-type three-level atom is selected as the system model. Coherence preservation
between a ground state and the excited state of such a system is defined as the control
object. A control field is designed by means of constraining the constant coherence con-

dition. For the singularities of the control field, we qualitatively analyze the breakdown
time, i.e. the time of control diverging. We obtain the region in which the state stays to
maintain coherence forever in the case that the three-level system is reduced to a two-
level one. For other cases, we investigate how different parameters affect the breakdown

time qualitatively. Numerical experiments are implemented on a three-level quantum
system and the experimental results are analyzed.
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1 Introduction

Decoherence is a serious obstacle against the preservation of quantum superposition and en-

tanglement over long periods of time [1]. Decoherence entails non-unitary evolutions [2, 3, 4],

and results in the loss of information and/or probability leakage toward the environment. This

issue is recently attracting much attention and a number of interesting schemes have been

proposed to preserve coherence. Among these schemes, there are quantum error-correcting

codes [5-10], error-avoiding codes [11, 12, 13], decoherence-free subspaces [14-20], Bang-Bang

control [21-30], and combinations thereof [31]. Error-avoiding codes encode information into

the degenerate subspace of the error operators so that the information will not be affected by

the error operators, while error-correcting codes restore the loss of information due to decoher-

ence or quantum dissipation by monitoring the system and conditionally carrying on suitable

feedback control. Their applications are limited by the requirement of using redundant qubit

resources. Bang-Bang control uses high-frequency pulses to average out the decoherence ef-

fect. However, it requires in an essential manner that the bath retains some memory of its

interaction with the system. So it is useless to Markovian open system. Therefore, reference

[32] proposed a new method: tracking-control, to solve the problem of stabilizing the coher-

ence of a single qubit subject to Markovian decoherence. Recently, J Zhang et al [33] proposed

a feedback control strategy based on quantum weak measurements to protect coherence of a
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qubit system, where the stochastic noise was considered. However, their works were restricted

to the single qubit system and they only considered the unital-decoherence channel. In fact,

on the one hand, as three-level and higher dimension systems have attracted much interest

for their applications in quantum control and quantum computation [34, 35], preserving the

coherence of such a multilevel system has become a hot topic. On the other hand, non-unital

decoherence channels are also frequently used, e.g. spontaneous emission, and they exhibit

completely distinct properties from the unital one does. So we take the two points mentioned

above into account and study coherence preservation of higher dimension system subject to

Markovian decoherence characterized by non-unital decoherence channels. As reference [32]

pointed out in their open questions, the controllability could be improved if one expands the

Hilbert space of the quantum system by including additional levels, which is profitable to

maintain the coherence. So the expected answer of our previous question is definite positive.

We consider a simple but typical problem: preserving the coherence between two levels of a

Λ-type three-level atom subject to Markovian decoherence. This problem involves two issues:

the feasibility of coherence preservation of multilevel system and the singularities issues as

encountered in [32].

First we wish to demonstrate the feasibility of preserving coherence of Markovian open

quantum systems. For this goal, we choose the coherence between a ground state and the

excited state as the control object, and apply a classical field to drive the states between the

two levels. By imposing the constant coherence condition, the control parameters involving

initial phase and the envelope of the field are designed. It is proven that such a control field

does exist. Second, the critical factor in our work is the singularity issue that the control field

diverges after the breakdown time. Namely, the coherence can be maintained only within

the breakdown time. Although it is obtained analytically in the case of pure dephasing for a

single qubit system in [32], we find in our case that the analytical solution of breakdown time

cannot be derived. Nonetheless, we qualitatively analyze the breakdown time, and obtain the

region in which the initial state resides to maintain coherence for a long time under the special

condition. At the same time it is proved by the numerical experiment that the coherence can

be maintained longer in the case that the initial state resides in this region than that in other

cases.

The paper is arranged as follows. In Sec. 2, the models of a Λ-type three-level atom

subject to Markovian decoherence is described and the control objectives in terms of the

coherence are defined. The parameters of the control field are designed in Sec. 3 so as to

realize coherence preservation of the system. In Sec. 4, we discuss the nature of the singularity

of the control field. In Sec. 5, simulation examples are made to verify the effectiveness of the

method proposed. We conclude in Sec. 6 with a brief summary.

2 Models and objectives

As is well known, the dynamics of a Markovian open quantum system can be described by

the following master equation [36]:

∂ρ

∂t
= − i

h̄
[H, ρ] + L(ρ) (1)

where the quantum state is represented by the density matrix ρ. The system Hamiltonian H

is comprised of field-free Hamiltonian H0 and the control Hamiltonian HC . The Lie-bracket
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on the operator space is defined as [A,B] = AB − BA. The Lindbladian L(ρ) is induced by

interactions between the system and the environment. It can be written as

L(ρ) = 1

2

∑

k

γk

{[

Lk, ρL
†
k

]

+
[

Lkρ, L
†
k

]}

(2)

with the system operator Lj with damping rates γj representing decoherence channels. Dif-

ferent decoherence channels exhibit distinct dynamics [37]. For instance, the unital Lindblad

generator, i.e. L(I) = 0, can make the purity function be decreasing regardless of Hamilto-

nian control existing. The situation is different for non-unital decoherence channels. These

channels can increase the purity even without the action of control. For example, under spon-

taneous emission an arbitrary qubit mixed state is gradually purified to the ground state. In

this work, we consider only non-unital Lindbladian over finite dimensional Hilbert space.

We consider the atom in the Λ-type as shown in Fig. 1, in which two ground states

namely |1〉, and |2〉 are coupled to an excited state |e〉 with resonance frequencies ω1, and

ω2, respectively. The corresponding eigenvalues are labeled as E1, E2, and Ee, where ω1 =

(Ee−E1)/h̄, and ω2 = (Ee−E2)/h̄. Similarly, we define ω3 = (E1−E2)/h̄ to be the resonant

frequency between |1〉 and |2〉 for the atom and the laser field though it does not correspond

to an available transition here.

*,
+,

.

*

+

*-

+-

Fig. 1. Atomic configurations: two ground states coupled to an excited state |e〉 with coupling
constant ω1 and ω2.

The following notations are defined as

δ(j)z = | e〉 〈e | − | j〉 〈j | , δ(j)x = |e〉 〈j|+ |j〉 〈e| , δ(j)y = −i |e〉 〈j|+ i |j〉 〈e|

δ
(j)
− = |j〉 〈e| , δ(j)+ = |e〉 〈j| , j = 1, 2 (3)

Then, the field-free Hamiltonian of such a system can be written as

H0 =
ω1

3
δ(1)z +

ω2

3
δ(2)z +

ω3

3
δ(3)z (4)

where δ
(3)
z = |1〉 〈1|−|2〉 〈2|, and the constant energy term (E1 + E2 + Ee)/3 has been ignored.
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The excited state is not stable, it decays to the two ground states at rates γ1 and γ2,

respectively, as shown in Fig. 1. Assume the decay process is Markovian, then the decoher-

ence channel can be characterized by the Lindblad operator δ
(j)
− = |j〉 〈e|, j = 1, 2, and the

Lindbladian can be expressed as

L(ρ) = 1

2

∑

k=1,2

γk

{[

δ
(k)
− , ρδ

(k)
+

]

+
[

δ
(k)
− ρ, δ

(k)
+

]}

(5)

One can verify L(I) 6= 0, indicating the Lindbladian is non-unital.

Without loss of generality, we aim to preserve the coherence between the ground state |1〉
and the excited state |e〉, then the coherence function can be characterized by

C1(ρ) =

√

〈

δ
(1)
x

〉2

ρ
+
〈

δ
(1)
y

〉2

ρ
(6)

where 〈A〉ρ = Tr(Aρ). The loss of coherence between two levels |1〉 and |e〉 is due to decay

process from the higher level |e〉 to the lower level |1〉. So one can apply a classical field to

drive the states between |1〉 and |e〉, thus the decay process may be inhibited.

We assume here that the transition dipole moments for the linearly polarized field are real.

Then the control field, in the dipole approximation, can be expressed as [38]

E(t) = ε(t) cos(ωdt+ φd)

The resulting expression for control Hamiltonian is

HC = ε(t)
(

eiφd |1〉 〈e|+ e−iφd |e〉 〈1|
)

cosωdt (7)

where the parameters ωd and φd are the frequency and initial phase of the driving field; the

parameter ε(t) is the envelope of the field. They are the control parameters of the field to be

designed. So according to (2), (4), (5) and (7), the decoherence equation under the action of

control can be written as

∂ρ

∂t
= −i [H0 +HC , ρ] +

1

2

∑

k=1,2

γk

{[

δ
(k)
− , ρδ

(k)
+

]

+
[

δ
(k)
− ρ, δ

(k)
+

]}

(8)

where the Planck constant has been assigned to be 1. Equation (8) is just the mathematic

model of the control system. To keep the coherence constant during the whole evolution, we

impose the following constraint:

C1(ρ(t)) = C1(ρ0) (9)

The following thing is to design the control parameters to satisfy constraint (9).

3 Design of the control field

In this section, we investigate the first issue as mentioned in the introduction, i.e. to design

a control field to preserve the coherence of high-dimension system. One can see from (8)

evidently that the drift Hamiltonian H0 complicates the derivation of the control. So, for the

sake of simplicity, we are going to analyze the system dynamics in the interaction picture,

where an operator X in Hilbert space is transformed into

XI = eiH0tXe−iH0t (10)
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Then the dynamics equation of ρI(t) in the interaction picture can be obtained:

∂ρI

∂t
= −i

[

HI
C , ρ

I
]

+
1

2

∑

k

γk

{[

δ
(k)
−

I
, ρIδ

(k)
+

I
]

+

[

δ
(k)
−

I
ρI, δ

(k)
+

I
]}

(11)

And the coherence constraint (9) turns to be

C1(ρ
I(t)) = C1(ρ0) (12)

The transformation maps the system states into a rotational coordinates, i.e. the local

phases of the states are rotary. It can be verified that such transformation does not change

the population distribution of the system state and the expectation value of operator [39]. In

the interaction picture, the system Hamiltonian H turns to be

HI
C = eiH0tHce

−iH0t = ε(t)eiφd |1〉 〈e|+ ε(t)e−iφd |e〉 〈1| = ε(t)
(

cosφdδ
(1)
x + sinφdδ

(1)
y

)

(13)

where we assume the resonance condition, i.e. ωd = ω1. Further, one can derive that

δ
(1)I
− = e−iω1tδ

(1)
− , δ

(2)I
− = e−iω2tδ

(2)
− (14)

Thus, substituting (14) into (11), equation (11) can be re-expressed as

∂ρI

∂t
= −i

[

HI
C , ρ

I
]

+
1

2

∑

k=1,2

γk

{[

δ
(k)
− , ρIδ

(k)
+

]

+
[

δ
(k)
− ρI, δ

(k)
+

]}

(15)

which is just the models of the controlled system dynamics under the Markovian decoherence

in the interaction picture. The transformation of the interaction picture is used to facilitate

the mathematical treatment of the problem. The system after the transformation becomes

more concise, in which the drift item H0 disappears, and consequently greatly reduces the

difficulty and complexity of the control design.

Then what flows is to design the parameters φd, ε(t) of the control field so as to satisfy

the coherence constraint (12). We start from deriving the equations of motion of
〈

δ
(1)
x

〉

ρI

,

and
〈

δ
(1)
y

〉

ρI

. According to (15), one has

d
〈

δ
(1)
y

〉

ρI

dt
= Tr(δ(1)y ρ̇I)

= Tr
(

δ(1)y

(

−i
[

HI
C , ρ

I
]

+ L(ρ)
)

)

= −iTr
([

δ(1)y , HI
C

]

ρI
)

+Tr
(

δ(1)y L(ρ)
)

= −2ε(t) cosφd

〈

δ(1)z

〉

ρI

− γ1 + γ2
2

〈

δ(1)y

〉

ρI

(16)

Likewise, the motion of equation for
〈

δ
(1)
x

〉

ρI

can be obtained:

d
〈

δ
(1)
x

〉

ρI

dt
= Tr(δ(1)x ρ̇I) = 2ε(t) sinφd

〈

δ(1)z

〉

ρI

− γ1 + γ2
2

〈

δ(1)x

〉

ρI

(17)
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Obviously, by setting the phase φd and the amplitude ε(t) as the following form:

ε(t) =
(γ1 + γ2)C1(ρ0)

4
〈

δ
(1)
z

〉

ρI

(18)

φd =































arctan

(

−
〈

δ
(1)
x

〉

ρ0

/

〈

δ
(1)
y

〉

ρ0

)

,
〈

δ
(1)
y

〉

ρ0

< 0

π

/

2,
〈

δ
(1)
y

〉

ρ0

= 0

π + arctan

(

−
〈

δ
(1)
x

〉

ρ0

/

〈

δ
(1)
y

〉

ρ0

)

,
〈

δ
(1)
y

〉

ρ0

> 0

(19)

we have d
〈

δ
(1)
y

〉

ρI

/

dt ≡ 0 and d
〈

δ
(1)
x

〉

ρI

/

dt ≡ 0, this means that
〈

δ
(1)
x

〉

ρI

=
〈

δ
(1)
x

〉

ρ0

and
〈

δ
(1)
y

〉

ρI

=
〈

δ
(1)
y

〉

ρ0

, which naturally lead to C1(ρ
I(t)) = C1(ρ0), i.e. the coherence between

|1〉 and |e〉 is preserved under the control field with parameters φd, ε(t) specified by (18) and

(19).

The purity and the coherence are both important quality of quantum dynamics. The for-

mer reflects the entire unitary dynamics, and the latter reflects the partial quantum dynamics

[33]. So the purity in general comprises of coherence and other variables related to diagonal

elements of density matrix. In the uncontrolled dynamics, the coherence keeps decreasing

under decoherence effect until it vanishes. In the controlled scenario, the control fields trade

changing variation trend of other variables in purity for fixing the coherence. In general,

the purity for N -dimension quantum system can be defined as p = Ntr(ρ2)−1
N−1 . By the defi-

nition, the purity of the pure state and the maximum mixed state IN/N are one and zero,

respectively. In our case, the purity can be computed as

p =
3

2
tr(ρI

2
)− 1

2
=

3

2

∑

i,k=1,2,e

∣

∣ρIik
∣

∣

2 − 1

2
=

3

4

∑

j=1,2,3

(

〈

δ(j)x

〉2

ρI

+
〈

δ(j)y

〉2

ρI

)

+
1

2

∑

j=1,2,3

〈

δ(j)z

〉2

ρI

(20)

where δ
(3)
x = |1〉 〈2| + |2〉 〈1| and δ

(3)
y = −i | 1〉 〈2 | + i | 2〉 〈1 | . Considering (6), equation (20)

can be expressed as

p =
3

4
C2

1 +
3

4

∑

j=2,3

(

〈

δ(j)x

〉2

ρI

+
〈

δ(j)y

〉2

ρI

)

+
1

2

∑

j=1,2,3

〈

δ(j)z

〉2

ρI

(21)

Thus, the purity related to not only the coherence function we concerned, but also the

coherence between |2〉 and |e〉, as well as the coherence between |2〉 and |1〉, and the population

distribution. In the two-level system subject to dephasing decoherence, the control fields trade

decrease in purity in return for stabilization of coherence until the purity is equal to coherence

(c = C2
1 ) [32]. However, the trade-off for the three-level system becomes impossible as soon

as
〈

δ
(1)
z

〉

= 0 at some time tb. One can see from (21) that the purity could be larger than

coherence at the time tb. Namely, there is remaining purity not traded for the stabilization of

coherence. Thus the time one can preserve the coherence in high-dimension system is shorter

than the case of lower-dimension system under the same initial conditions if only the unital
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decoherence channels is considered. The situation is different for the non-unital decoherence.

Because the purity increases probably, the time at which the trade-off becomes impossible is

not determined. Therefore we must analyze the time of
〈

δ
(1)
z

〉

= 0 , this is just the second

issue as mentioned in the introduction. And, we will work out the singularities of the control

field in the next section.

4 Analysis of Singularities issues

Although we have demonstrated the coherence of multilevel system can be preserved, and

illustrated the process of the control field design in Section 3, we have to study singularities

of the control field, i.e. the control field diverges as soon as
〈

δ
(1)
z

〉

ρI

turns to zero. Therefore,

the breakdown time, i.e. the time of the control field diverging, represents how long one can

maintain the coherence. And we analyze the breakdown time in this section. First, we derive

the equation of motion for
〈

δ
(1)
z

〉

ρI

. According to (15), one has

d

〈

δ
(1)
z

〉

ρI

dt
=

− (γ1 + γ2)C
2
1 (ρ0)

2

〈

δ
(1)
z

〉

ρI

− (2γ1 + γ2) ρ
I
ee (22)

where ρIee = 〈e
∣

∣ρI
∣

∣ e〉. Due to the variation of
〈

δ
(1)
z

〉

ρI

depending on ρIee, one needs to derive

the equation of motion for ρIee. Similarly, one has

dρIee
dt

= 〈e| ρ̇I |e〉 = − (γ1 + γ2)C
2
1 (ρ0)

4

〈

δ
(1)
z

〉

ρI

− (γ1 + γ2) ρ
I
ee (23)

Obviously, equations (22) and (23) are not analytically solvable, so the analytical solution

of the breakdown time can not be derived. Nonetheless, it is evident that the breakdown

time is concerned with some parameters ( e.g. C1(ρ0),
〈

δ
(1)
z

〉

ρ0

, and ρ0,ee). Then it is

important to ascertain how these parameters affect the breakdown time, this motivates us to

make qualitative analysis for it.

In fact, there is no need to discuss the case of
〈

δ
(1)
z

〉

ρ0

≥ 0, because, in this case, one can

directly see from (22) and (23) that the breakdown time is inversely proportional to C2
1 (ρ0)

and ρ0,ee, and proportional to
〈

δ
(1)
z

〉

ρ0

.

Thus, in what follows we assume
〈

δ
(1)
z

〉

ρ0

< 0 and analyze the motion of
〈

δ
(1)
z

〉

ρI

based

on the
〈

δ
(1)
z

〉

ρI

− ρIee phase plane. From (22) and (23) it is evident that d
〈

δ
(1)
z

〉

ρI

/

dρIee ≈
2 holds if the decay rates satisfy γ2/γ1 ≪ 1. In such a case, there exist many pairs of

real numbers (c1, c2) such that
〈

δ
(1)
z

〉

ρI

= c1, ρ
I
ee = c2, and 4c1c2 = −C2

1 (ρ0), leading to

d
〈

δ
(1)
z

〉

ρI

= dρIee = 0, thus
〈

δ
(1)
z

〉

ρI

is kept to be c1. In fact, such pairs of real numbers

form the curve 4
〈

δ
(1)
z

〉

ρI

ρIee = −C2
1 (ρ0) in the

〈

δ
(1)
z

〉

ρI

− ρIee phase plane. Therefore for some
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initial states, the control fields make
〈

δ
(1)
z

〉

ρI

vary to and remain at some point on the curve,

and these initial states form the region S0. In other words, one can preserve the coherence

almost forever if the initial states of the system reside in S0 in the case of γ2/γ1 ≪ 1. In the

other case, for any initial state, there exist tM such that
〈

δ
(1)
z (tM )

〉

ρI

= 0 and tM is just the

breakdown time. So the problem is divided into two parts: the first is to seek S0, and the

other is to analyze how different parameters influence the breakdown time.

For the first case of γ2/γ1 ≪ 1, it can be shown that the variable
〈

δ
(1)
z (t)

〉

ρI

is constant

for ∀t > tb if
〈

δ
(1)
z (tb)

〉

ρI

= − C2

1
(ρ0)

4(1−τ)ρI
ee

(tb)
, where τ = γ2/(γ1 + γ2) ≪ 1. Considering the

natural condition ρI11(t) + ρIee(t) ≤ 1, i.e.
〈

δ
(1)
z (t)

〉

ρI

≥ 2ρIee(t)− 1, the region S0 is given by

S0 = {ρ0 : C2
1 (ρ0) ≤

1− τ

2
,−1 ≤

〈

δ(1)z

〉

ρ0

− 2ρ0,ee ≤
−2C1(ρ0)√

1− τ
,

C2
1 (ρ0) + 4(1− τ)

〈

δ(1)z

〉

ρ0

ρ0,ee ≤ 0, ρ0,ee ≥ 0} (24)

Then, we can conclude that if the initial states of the system reside in S0 and the decay rates

satisfy γ2/γ1 ≪ 1, the coherence can be maintained for a long time. In this case, due to the

weak coupling between |2〉 and |e〉, the quantum system is nearly equivalent to a two-level

system. In such a system, the coherence can be preserved almost forever if the initial state

resides in S0. By contrast, the coherence is preserved within the break down time in [32].

This obvious difference comes from the fact that the dynamics equation of our system has

a non-unital Lindblad operator δ− = |1〉 〈e| that describes the relaxation effect, while the

decoherence-channel in the reference [32] is unital. This difference will be verified by the first

numerical experiment in next section.

In addition, the reduced two-level system can be represented by Bloch sphere, and the

trade-off between coherence and purity can be interpreted geometrically. The uncontrolled

relaxation channel makes any point in the Bloch sphere flow toward the stable point at the

North Pole [40]. This process can be represented by the transformation of Block vector, that

is

(vx, vy, vz) → (vx
√
1− Γ, vy

√
1− Γ, vz(1− Γ) + Γ) (25)

where Γ is time-depend function that converges to one. Equation (25) indicates that the

x-y plane is contracted, at the same time the z -component vz move toward the North Pole.

In the controlled scenario, the components of x-y plane (coherence) are invariant, and the

z -component move to the South Pole. The control field is thus able to trade the contraction

in the x-y plane for the motion of z -component to the South Pole. So for all the initial

states in Northern hemisphere, vz turns to zero certainly. Whereas for some initial state in

the southern hemisphere, e.g. the states in S0, vz does not reach zero almost forever. For

the two-level system subject to dephasing decoherence, the trade-off between coherence and

purity has distinct geometric interpretation [32]. The uncontrolled phase-flip channel maps

the Bloch sphere to an ellipsoid with the z -axis as major axis and minor axis in the x-y

plane. The major axis is invariant under the uncontrolled dynamics, while the minor axis is

contracted. The control field attempts to rotate the ellipsoid so that the minor axis becomes

as aligned as possible with the z -axis, where it would experience no contraction. The fields
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diverge as long as the contraction is so strong that the control field is no longer capable of

sustaining the required rotation. In this case, two initial states symmetric about x-y plane

have the same breakdown time.

For the other case, the atom is a generic three-level system, and the analytical solution of

tM is unable to be obtained as well. Similarly we qualitatively analyze the motion of
〈

δ
(1)
z

〉

ρI

in the
〈

δ
(1)
z

〉

ρI

− ρIee phase plane. Now, the special region is defined as

S = {ρI : C2
1 (ρ

I) ≤ 1− τ

2
,−1 ≤

〈

δ(1)z

〉

ρI

− 2ρIee ≤
−2C1(ρ

I)√
1− τ

,

C2
1 (ρ

I) + 4(1− τ)
〈

δ(1)z

〉

ρI

ρIee ≤ 0, ρIee ≥ 0} (26)

Note that if the initial state resides in S0, the state of the system first evolves in the region

S, then leaves it, and ultimately reaches some point that makes
〈

δ
(1)
z (t)

〉

ρI

be zero.

It inspires us to make a conjecture that the breakdown time is longer for the case of the

initial state residing in S0 than that for other cases. In addition, the breakdown time is

proportional to the distance between the initial state and S0.

This conjecture cannot be demonstrated theoretically and rigorously, however, we can

verify it by numerical experiments. Obviously, one can see from (24) that the shape of S0

relies on some parameters such as C1(ρ0), τ ,
〈

δ
(1)
z

〉

ρ0

and ρ0,ee. Thus the breakdown time

tM is concerned with these parameters. We will take C1(ρ0), and τ for examples to verify the

conjecture by the second simulation example in next section.

5 Numerical experiments and discussions

To demonstrate the effectiveness of the strategy proposed in this paper, we will implement

some numerical examples with different parameters in this section and give some analysis.

The propagation of the dynamical equation in (13) is carried out by fourth order Runge-Kutta

integration.

The first simulation example is to verify that the control field can preserve the coherence of

the system for a long time, provided that the initial states reside in S0 and τ ≪ 1. Therefore

the decay rates can be chosen as γ1 = 0.1, γ2 = 0.001 such that τ ≪ 1 and the initial state is

assumed to be

ρ0 =





0.21 0.195− 0.195i 0
0.195 + 0.195i 0.78 0

0 0 0.01





which resides in S0. The parameters of control field are designed according to (18) and (19).

The dynamical equations are solved over the total propagation time intervals of T = 500 with

a time step of 0.01.

The evolution of coherence function C1(ρ
I) is displayed in Fig. 2, from which one can

see that the coherence between the ground state |1〉 and the excited state |e〉, is completely

and quickly lost in absence of control, while one can keep the coherence be constant almost

forever under the action of control field with the designed control parameters (18) and (19).

In fact, the initial state indicates that the initial populations distribute mainly on the level



Fei Yang and Shuang Cong 429

+
,

/
<

=
5

:897+6-;,
. /.. 0.. 1.. 2.. 3..

.

.-0

.-2

.-4

Fig. 2. Evolution of coherence function C1(ρI). The solid line corresponds to the trajectories
under the action of control; and the dashed lines corresponds to the uncontrolled trajectories with
decoherence.

|e〉 and |1〉, and the relaxation rate γ2 is much smaller compared with γ1, so the three-level

system can be regarded as a two-level one. Furthermore, the initial state also indicates that

the purity is p = 0.8047 and the initial coherence is C1(ρ0) = 0.55(according to the definition

of the coherence c in [32], c = C2
1 holds for the two-level system, so the coherence is c = 0.3).

Then, we can deem that all the parameters in this simulation are the same as that in [32],

except the decoherence-channels. The simulation results are different: the coherence in [32]

can only be maintained within 8 a.u., which is very short compared to the case of non-unital

channel in our case.

The second simulation example is to analyze how the different parameters influence the

breakdown time, and verify our conjecture in previous section. Here the parameters C1(ρ0)

and τ are considered separately. Firstly, we study the influence of the parameter C1(ρ0). The

other parameters are fixed as τ = γ2

γ1+γ2

= 0.1
0.1+0.1 = 0.5,

〈

δ
(1)
z

〉

ρ0

= −0.5, and let C1(ρ0) be

equal to 0.5, 0.6, and 0.7 respectively, the corresponding initial states are ρ0,1, ρ0,2, and ρ0,3,

respectively, where

ρ0,1 =





0.2 0.25 0
0.25 0.7 0
0 0 0.1



 , ρ0,2 =





0.2 0.3 0
0.3 0.7 0
0 0 0.1



 , ρ0,3 =





0.2 0.35 0
0.35 0.7 0
0 0 0.1





Obviously, the three initial states do not reside in S0, in addition, ρ0,1 is nearest to S0,

and ρ0,2 is nearer to S0 than ρ0,3 in the
〈

δ
(1)
z

〉

ρI

− ρIee phase plane. The simulation results

are shown in Fig.3, from which one can see that the breakdown time is inversely proportional

to the desired constant initial coherence value. It indicates that the nearer the initial state is

to S0, the longer the breakdown time is. This result coincides with our conjecture.

Secondly, to study the parameter τ , the other parameters are fixed as C1(ρ0) = 0.4,
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Fig. 3. Evolution of coherence function C1(ρI) for different C1(ρ0). The solid line, the dotted line

and the dashed line correspond to C1(ρ0) = 0.5, 0.6, and 0.7 respectively.
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Fig. 4. coherence function C1(ρI) for different τ . The solid line, the dotted line and the dashed
line correspond to τ = 0.2, 0.5, and 0.6 respectively.
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〈

δ
(1)
z

〉

ρ0

= −0.5. The initial state is assumed to be

ρ0 =





0.2 0.3 0
0.3 0.7 0
0 0 0.1





One can see from (24) that different τ reflect whether the initial state resides in S0. Let τ

be equal to 0.2, 0.5, and 0.6, respectively. The simulation results are displayed in Fig. 4,

from which one can see that the breakdown time is longer and longer as τ increases. In other

words, the closer the initial state is to S0, the longer the breakdown time is. This result also

coincides with our conjecture.

In the simulation examples, we demonstrated that the designed control fields can preserve

the coherence of the three-level system subject to non-unital decoherence channels. At the

same time, the results also illustrated that the non-unital decoherence channels exhibited

distinct property from unital ones. The second simulation example is to verify our conjecture

that is derived from qualitative analysis. And we must stress here that only one parameter

is allowed to vary in the simulations, because we cannot measure the distance between initial

state and the region S0 as soon as two or more parameters varying. In fact, the shape of

the region S0 is concerned with four parameters C1(ρ0), τ ,

〈

δ
(1)
z

〉

ρ0

, and ρ0,ee, but which

parameter plays a dominant role is not clear, so the distance measure makes sense only if one

parameter varies.

6 Conclusions

Decoherence is a natural part of the dynamics in open quantum systems, and the suppression

or control of decoherence is a central issue for many applications. In this paper, taking the

Λ-type three-level atom subject to Markovian decoherence for example we demonstrated the

feasibility of preserving coherence of high-level Markovian open quantum systems. Concretely,

the coherence between a ground state and the excited state is defined as the control object

and a control field was designed by imposing the constant coherence condition. Moreover by

means of analyzing the motion of
〈

δ
(1)
z

〉

ρI

in the
〈

δ
(1)
z

〉

ρI

− ρIee phase plane, we investigated

the singularities of the control field, where the breakdown time is studied. As a consequence,

we obtained the region S0 in which the initial state resides to maintain coherence for a long

time when γ1/γ2 ≪ 1. In fact, the three-level system, in such a case, is nearly equivalent to be

a two-level system. For the other case, by qualitatively analyzing how the different parameters

influence the breakdown time, the following conclusion was obtained: the breakdown time is

longer for the case of the initial state residing in S0 than that for other cases, in addition,

the breakdown time is proportional to the distance between the initial state and S0 in the
〈

δ
(1)
z

〉

ρI

− ρIee phase plane. At last we presented some numerical examples to demonstrate

the results.
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