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We introduce a scheme for realizing universal quantum computing in a linear nearest neighbor architecture 

with fixed couplings. We first show how to realize a controlled-NOT gate operation between two adjacent 

qubits without having to isolate the two qubits from qubits adjacent to them. The gate operation is 

implemented by applying two consecutive pulses of equal duration, but varying amplitudes, on the target 

qubit. Since only a single control parameter is required in implementing our scheme, it is very efficient.  

We next show how our scheme can be used to realize single qubit rotations and two-qubit controlled-

unitary operations. As most proposals for solid state implementations of a quantum computer use a one-

dimensional line of qubits, the schemes presented here will be extremely useful. 
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1 Introduction  

 

It has been shown that in a quantum computer any multi-qubit operation can be realized using single-

qubit and two-qubit controlled-NOT (CNOT) gate operations [1, 2]. Many proposed implementations 

for a physical quantum computer use a one-dimensional line of qubits with nearest-neighbor 

interactions [3-22] where each qubit interacts only with the two qubits adjacent to it. In such linear 

nearest-neighbor (LNN) architectures, performing a single-qubit or a CNOT gate between adjacent 

qubits might not be easy to implement. This is because the evolution of the qubit(s) on which the gate 

operation is performed depends on the states of the adjacent qubits coupled to it, making it very hard to 

precisely control gate operations. There are two ways of overcoming this problem – devise methods 

for switching couplings, or devise methods of performing computations with always-on interactions. A 

number of methods for isolating a qubit from its neighbors by shutting off the coupling have been 

devised in various quantum systems [15-28]. For instance, in phosphorus doped silicon systems, a 

method of applying voltage biases to surface control electrodes, in order to vary the exchange coupling 

between neighboring donor atoms, is employed [23]. In GaAs/AlGaAs electron spin quantum dots, the 

strength of the exchange interaction, which depends on the overlap of the respective electron 
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wavefunctions, is varied by changing the voltage applied to the gate controlling the tunnel barrier 

between the two dots [18]. In charge qubits, nearest neighbors are coupled via loop-shaped electrodes 

with Josephson junctions (JJs) at the loop intersections, where the bias currents through the coupling 

JJs serve as interaction control knobs [22]. In coupled quantum dot molecules, the coupling is switched 

off by grounding metal film electrodes between two qubits which turns off the Coulomb interaction 

between qubits [20]. While all these methods of switching couplings facilitate multi-qubit operations, 

there are disadvantages in using tunable coupling. The ability to switch couplings usually involves 

performing fast changes in the qubit parameters or using additional circuit elements, both of which 

increase the complexity of the experimental set-up and open the system to noise. Thus, methods of 

performing computations with always-on interactions can be a desirable alternative and a number of 

schemes have been proposed [29-37]. In [31], Zhou et al. devised a two-dimensional architectural 

scheme for universal and scalable quantum computation, where the coupling between encoded qubits 

are effectively turned on and off by computing in and out of carefully designed interaction free 

subspaces analogous to decoherence free subspaces. However, from a practical standpoint, their 

approach is complex in terms of the two-dimensional physical arrangement of qubits, initialization, 

and the steps involved in generating gates. In [32], Benjamin et al. showed how to perform 

computations along a one-dimensional array by tuning the Zeeman transition energies of individual 

qubits. However, the scheme requires placing intervening qubits in definite classical states in order to 

negate the residual Ising interaction, thereby increasing the computational overhead. Recently, 

schemes employing global control have been proposed [33, 34] and implemented in optical systems 

[35] and antiferromagnetic spin rings [36].  

In this paper, we present a new scheme for implementing single- and two-qubit gate operations in 

an LNN architecture without having to shut off the coupling between adjacent qubits. Unlike previous 

schemes [31, 32], our method does not require encoding physical qubits into logical qubits. Neither 

does it require separating qubit-bearing spins by passive “barrier” spins [33], thereby significantly 

minimizing the computational overhead. We first describe how to implement a CNOT gate operation 

between two adjacent qubits where the gate operation is realized by applying only two pulses on the 

target qubit. The pulses are of equal duration, but varying amplitudes. We also show how to implement 

arbitrary single-qubit operations and controlled-unitary operations. Even though we use a linear array 

coupled through Ising interactions, our method is also relevant to a system coupled through 

Heisenberg interactions. Compared to previous schemes, our method is simple and efficient because 

only a single control parameter is required. All gate operations are achieved by varying this control 

parameter, with the number of pulses varying from one for the Toffoli gate, two for controlled-unitary 

operations like the CNOT, and four for single qubit operations.  

  

2  Controlled-NOT Gate 

 

Figure 1 shows a LNN architecture, where each qubit is represented as a circle. The coupling between 

qubits is represented by solid lines, wherein a qubit is coupled only to the two qubits adjacent to it. In 

our design, we assume only two coupling constants, ξ1 and ξ2, which alternate along the length of the 

architecture. The design can be implemented in systems with and without the ability to switch 

couplings. For instance, in charge qubits with fixed couplings [38], the coupling capacitances between 

adjacent boxes can be fabricated to alternate along a line of qubits. If the coupling is tunable, as in [22] 
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where nearest-neighbor charge qubits are coupled through loop-shaped electrodes with JJs at the loop 

intersections, the bias currents through alternate JJs can be fixed such that they alternate along the 

length of the chain. These currents, once set, will not be varied during the computation. 

Consider any three adjacent qubits along the line – qubits A, B and C in Fig. 1. Suppose we wish 

to perform a CNOT gate operation between qubits A and B, shown in Fig 2(a), with qubit B as the 

target and qubit A as the control. Qubit C behaves as a “dummy” qubit.  Since B is also coupled to C, 

this operation can only be implemented by using the equivalent circuit shown in Fig. 2(b).  The reason 

the two couplings, ξ1 and ξ2, are required is so that qubit B can distinguish between qubit A, the 

control, and C, the “dummy”. Observe that both gate operations of Fig. 2(b) are controlled-controlled-

unitary operations, where the second gate is a Toffoli gate. To achieve the equivalent gate, two 

consecutive control pulses of equal duration, but different amplitudes, are applied on the target qubit, 

B.  For instance, with Josephson junction qubits, since the bias acing on individual qubits is relatively 

easy to control, the pulses for the CNOT gate operation would constitute varying the bias acting on the 

target qubit. Details of calculating the magnitude of the pulses will be discussed shortly. 
 

 
 
Fig. 1. Linear nearest-neighbor array of qubits where each qubit is coupled only to the two qubits adjacent to it. Here, 

the circles represent individual qubits and the solid lines represent the coupling between qubits. There are two 

coupling constants, ξ1 and ξ2, which alternate along the length of the chain. 

 
Since only nearest neighbor interactions are considered [3-22], in describing the evolution of the 

target qubit B under a CNOT gate operation, we need only consider a Hamiltonian describing the 

system of qubits A, B and C, given as: 

 

 ( ) 1 2

, ,

i

i A B C

k ε ξ ξ
=

= ∆ + + + +∑ i i i A B B CX Y Z Z Z Z Z
H σ σ σ σ σ σ σ  (1) 

 

  
 (a) (b) 

 
Fig. 2. Circuit (a) and equivalent circuit (b) for implementing a CNOT gate operation between qubit A and B with A 

as the control and B as the target. 

 
The summation term corresponds to the Hamiltonians of each of the three qubits where ∆ and k 

are the tunneling parameters of a qubit, and εi are the biases acting on individual qubits. The 8 × 8 

matrices, σσσσXi, σσσσYi and σσσσZi, are the Pauli spin matrices for each qubit. Throughout this paper we will use 

terminology specific to Josephson junction qubits. We are assuming that the qubits are identical in that 
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they have the same tunneling parameters. The interaction assumed between the qubits is of the Ising 

type, which is typical of Josephson junction qubits.  

In previous work, we have shown a method for reducing the 8 × 8 matrix given by Eq. (1) to a 2 × 

2 matrix describing the evolution of the target qubit B only [39, 40]. This is achieved by maintaining 

high biases on qubits A and C, which forces these qubits to remain in their states. The reduced 

Hamiltonian for the target qubit will be: 

 

 ( )1 2Bk ε ξ ξ= ∆ + + ± ±X Y ZH σ σ σ   (2)
 

 

Here, the coupling terms ξ1 and ξ2 either add or subtract from the bias term εB depending on whether 

qubits A and C are in the |0〉 or |1〉 states, respectively [39]. This is because the expectation value of the 

σσσσZA (σσσσZC) operator in the subspace of qubit B is either +1 or −1 depending on whether qubit A (C) is in 

the |0〉 or |1〉 states, respectively. Therefore, it is mandatory to choose these couplings to be different to 

distinguish between the two qubits. Observing Eq. (2), there are four different Hamiltonians governing 

the evolution of qubit B corresponding to the four subspaces where the states of qubits A and C are 

|00〉, |01〉, |10〉 and |11〉. At any instant of time, the evolution of qubit B is governed by the following 2 

× 2 unitary matrix: 

 

 
( ) ( ) ( )

( ) ( ) ( )

cos 2 sin 2 sin 2

sin 2 cos 2 sin 2

k i
ft i ft ft

f f

k i E
ft ft i ft

f f

π π π

π π π

Ε − ∆ − 
 =

− − ∆ 
+ 

 

U
 (3) 

 

where        2 2 2
f k= ∆ + + Ε  (4) 

 
and  

1 2BE ε ξ ξ= ± ±  (5) 

 

Here, f is the frequency of oscillation and E is the effective bias acting on the target qubit B depending 

on the subspace that qubit B evolves in.  Note that since there are four different effective biases acting 

on the target qubit, there will be four different unitary matrices of the form of Eq. (3), governing the 

evolution of qubit B in the four corresponding subspaces. Therefore, there will be four different 

frequencies of oscillation (Eq. (4)).  

Referring to Fig. 2(b), consider the first gate operation under which a NOT gate operation is 

performed on qubit B only when qubits A and C are in the |1〉 and |0〉 states, respectively. Suppose T is 

the time step within which the first gate operation is realized. Then, choosing k as zero (which is the 

case for Josephson junction qubits), since the effective bias, E, acting on the target qubit B is 

“εB−ξ1+ξ2”, the following conditions need to be satisfied in order to realize a NOT gate operation: 

 

 1 2Bε ξ ξ= −  (6) 
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 ( )( )22

1 2

1
4

B

M

T
ε ξ ξ

+
∆ + − + =  (7) 

 

where M is an integer. The first condition, where the effective bias is made zero, makes the magnitude 

of the off-diagonal terms unity (and also causes the diagonal entries resulting from the sine terms to 

vanish). This is required so that there is no attenuation to the amplitude of oscillations of the 

probability function under a NOT gate operation [39]. The second condition is required to make the 

cosine terms in Eq. (3) zero. 

Under the first gate operation in Fig. 2(b), for each of the cases when qubits A and C are in the 

|00〉, |01〉 and |11〉 states, we require the U matrix to correspond to the identity matrix. Therefore, 

considering the respective effective biases in each of these subspaces of the target qubit, the following 

conditions must be satisfied: 

 

 ( )( )22

1 2B

P

T
ε ξ ξ∆ + + + =  (8) 

 

 ( )( )22

1 2B

Q

T
ε ξ ξ∆ + + − =  (9) 

 

 ( )( )22

1 2B

R

T
ε ξ ξ∆ + − − =  (10) 

 

where P, Q and R are integers. Next, using condition (6) in Eqs. (7) through (10), we obtain the 

following equations: 

 

 
1

4
M

T

+
∆ =  (11) 

 

 ( )2 2

14
P

T
ξ∆ + =  (12) 

 

 ( )( )22

1 24
Q

T
ξ ξ∆ + − =  (13) 

 

 ( )2 2

24
R

T
ξ∆ + =  (14) 

 

Next, we show that to realize the second gate operation in Fig. 2(b), the Toffoli gate, the same 

values for the fixed parameters, ∆, ξ1 and ξ2, are used, which were used to realize the first gate 

operation. This is an important condition to be realized for a practical implementation of the gate 

operation since, in our design, the tunneling and coupling parameters are assumed to be fixed during 

fabrication. The only difference is that the bias on the target qubit B will now be pulsed to a different 



 

 

P. Kumar and S. Skinner      305

value. In this case, we need to perform a NOT gate operation when both qubits A and C are in the |1〉 
state. The effective bias, E, acting on qubit B in this subspace is “εB−ξ1−ξ2”. Therefore, under the 

second gate operation the bias on qubit B will be pulsed to: 

 

 1 2Bε ξ ξ= +  (15) 

 

Under the bias pulse given by Eq. (15), the frequencies of oscillation in the subspaces where 

qubits A and C are in the |01〉, |10〉, and |11〉 states are given by Eqs. (12), (14), and (11), respectively, 

and in the subspace where qubits A and C are in the |00〉 state is given by: 

 

 ( )( )22

1 24
S

T
ξ ξ∆ + + =  (16) 

 

The set of equations (11) through (14) and Eq. (16) are next solved for different values of M, P, Q, R 

and S, to obtain the parameters of the system. Observe that by choosing ξ1 to be twice as much as ξ2, 

Eq. (13) reduces to the same equation as Eq. (14). One set of values for ∆, ξ1 and ξ2 are 25MHz, 

400MHz and 200MHz, respectively (for M=0, P=8, Q=4, R=4 and S=12), using a time step T of 10 ns. 

Subject to these calculated parameters, to realize a CNOT gate operation between qubits A and B, the 

bias on the target qubit B is first pulsed from a  from a high value (typically 10GHz in our simulations) 

to a value of 200 MHz for a duration of 10 ns, after which it is increased to 600MHz for 10ns. At the 

end of the gate operations, the bias on the target qubit is once again made high.  

An important feature of the pulsed bias scheme is that the parameters can be scaled, where the 

limits on the parameter values are those imposed by experimental conditions. This means that having 

found the parameter values for a pulse width of certain duration, the parameters for a different pulse 

width are just a multiple of the original values (the multiple depends on the ratio of the two pulse 

widths under consideration). Therefore, our method can be implemented in most practical schemes 

[41]. For instance, the calculated values of the parameters in the previous paragraph are realistic for 

superconducting flux qubits [42]. For charge qubits, picosecond pulses are applied and the values of 

the parameters vary in the GHz range [38]. Therefore, the same parameters to implement gate 

operations in charge qubits would be: ∆=25GHz, ξ1=400GHz, ξ2=200GHz, and T=10ps. Similarly, for 

ion trap computers, the parameters will be in the KHz range and time pulses will be in the 

microseconds range [43]. 

Observing the unitary matrix given by Eq. (3), it is important to point that the NOT gate operation 

is realized with a global phase of “±π/2”. Therefore, for the chosen parameters, the CNOT gate 

operation between qubits A and B corresponds to the following operator (we have ignored the state of 

the “dummy” qubit C): 

 

 00 00 01 01 10 11 11 10i i+ − −  (17) 

 

The phase factor of “−i” is overcome by applying a single qubit gate on the control qubit [1] as shown 

in Fig. (3). However, in section 4, we will show how phases developed as a result of the control qubits 

can be used to realize perfect gate operations. Note that if we had chosen ∆ as zero instead of k, i.e., 
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the off-diagonal “tunneling” parameter is a contribution by a σσσσY component in the single-qubit 

Hamiltonian, the following gate operation would have been realized: 

 

 00 00 01 01 10 11 11 10+ + −  (18) 

 

which corresponds to a controlled-rotation (CROT) gate [44]. By performing a controlled-Z operation 

after the CROT gate operation, the phase factor is removed and a CNOT gate is realized. Methods for 

realizing single qubit and arbitrary controlled-unitary operations are discussed in the next section.   

 

 

  
 
 (a) (b) 

 
Fig. 3. (a) Controlled phase shift gate for overcoming the “-i” phase introduced by the gate in Eq. (17). (b) Equivalent 

circuit where a single qubit rotation is applied on the control qubit. 

   

 

3 Single Qubit Rotations 

 

Figure 4 shows three different methods for realizing single qubit gate operations on a qubit in the LNN 

architecture shown in Fig. 1. In Fig. 4(a), a unitary operation is implemented on qubit B, by keeping 

the qubits adjacent to it in the |0〉 state. This requires that some of the qubits in the LNN architecture be 

prepared in the |0〉 state. We refer to these |0〉 states as “isolation” states, which are moved down the 

LNN architecture from one qubit to another via swap operations. (Each swap operation can be 

decomposed into two CNOT operations). When a unitary operation is to be performed on a qubit, say 

B, |0〉 states are moved down the line to the qubits adjacent to it as shown in Fig. 4(a). The qubit is thus 

isolated from its neighbors without having to switch off its couplings. By maintaining high biases on 

the two adjacent qubits in the |0〉 state, the reduced Hamiltonian for qubit B is: 

 

 ( ) ZYX σσσH 21 ξξε ++++∆= Bk  (19)
 

 

As seen by the Hamiltonian, qubit B can now be treated as a single qubit system with an effective bias 

“εB+ξ1+ξ2” acting on it (instead of bias “εB” for an isolated single qubit system). After the desired gate 

operation is achieved, the isolation qubits can be moved away again. 

 Figure 4(b) shows how to implement a single qubit operation on qubit B, treating only qubit C as 

an isolation qubit. In this case, the reduced Hamiltonian for qubit B is: 

 

 ( )1 2Bk ε ξ ξ= ∆ + + ± +X Y ZH σ σ σ  (20)
 

0

0
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Since there are two different effective biases “εB−ξ1+ξ2” and “εB+ξ1+ξ2” acting on the target qubit, two 

pulses of equal duration, but different magnitudes, are required to achieve the gate operation. In [40], 

we have shown how to compute the magnitude of the first pulse. Finding the magnitude of the second 

pulse is straightforward. For instance, under a controlled-Hadamard gate, the magnitude of the two 

pulses will be “εB = ∆+ξ1−ξ2” and “εB = ∆+ξ1+ξ2”, respectively.  

Figure 4(c) shows how a unitary gate operation can be realized without having to move |0〉 states 

to qubits A and C. The operation requires four pulses. For a NOT gate, the values of these pulses are:  

“εB = −ξ1−ξ2”; “εB = −ξ1+ξ2”; “εB = ξ1−ξ2” and “εB = ξ1+ξ2”. The values of the parameters εB, ξ1 and ξ2 

are the same as that calculated in section 2 for the CNOT gate. Calculating the parameters for other 

unitary transformations, like the Hadamard gate, is not straightforward and requires numerical 

simulations. 

Arbitrary two-qubit controlled-unitary gates can be realized by circuits similar to Figs. 4(b) and 

4(c). In using Fig. 4(b), the second gate operation is not performed. Similarly, in using Fig. 4(c), the 

first two gate operations are not performed. Details of calculating parameters for realizing arbitrary 

controlled-unitary operations in two-qubit systems have been presented elsewhere [40]. 

 

  
 (a) (b) 

 

 

  
 (c) 

 

Fig. 4. Three methods for realizing a unitary operation on a single qubit (B) using our LNN architecture. (a) Qubits A 
and C function as isolation qubits. The gate operation is realized in a single pulse. (b) Qubit C functions as an 

isolation qubit. The gate operation is realized in two pulses. (c) The gate operation is realized in four pulses, each of 
which corresponds to a controlled-controlled gate operation.   

 

 

When qubits are idle and no gate operations are performed on them, relative phases develop as a 

result of qubit precessions. However, by perfectly timing the time interval between gate operations 

such that these phases evaluate to an even integer multiple of 2π, these phases can be overcome or 

minimized. Another method would be to implement a scheme similar to [45], where qubits in definite 

spin states can be used to separate qubits in arbitrary quantum states. However, even though placing 

intervening qubits in definite spin states negates the Ising interaction, this method increases the 

computational overhead. This is because to perform a two-qubit gate operation between two qubits in 
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arbitrary states in the array, additional swap operations are required to bring the qubits together. Phases 

also develop as a result of precessions of the control qubits during gate operations, and due to the 

effect of finite rise and fall times in the applied bias pulses. In the next two sections, the effects of 

these phases on gate operations will be investigated. 

 It is important to point that while we have restricted our discussion to LNN architectures where 

the qubits are coupled via Ising interactions, the method presented here easily extends to systems 

coupled via Heisenberg interactions. This is because if the difference in the magnitudes of the biases 

on neighboring qubits is much greater than the coupling strengths, the Heisenberg interaction becomes 

Ising [46]. Since, in our scheme, the bias on the target qubit is always pulsed to a different value (of 

the order of the coupling) than the applied bias on neighboring qubits, the interaction will always be of 

the Ising type.  

 

4 Relative Phases on Gate Operations Due to the Presence of Control Qubits  

 

As discussed in section 3, in implementing a CNOT gate between qubits A and B, the biases on the 

control (εA) and dummy qubits (εC) are maintained high throughout, while the bias on the target qubit 

(εB) is pulsed from a high value to a low calculated value for time step T. As a result, relative phases 

develop between the basis states. In the subspaces where qubits A and C are in the |00〉, |01〉, |10〉 and 

|11〉 states, the relative phases developed between the |0〉 and |1〉 states of qubit B are exp(i(εA+εC)T), 

exp(i(εA−εC)T), exp(i(−εA+εC)T), exp(i(−εA−εC)T), respectively. Previously, the high value of biases εA 

and εC were so chosen such that each of these phases evaluated to zero or an even integer multiple of 

2π. However, instead of cancelling out these phases, the phases can be used to obtain “perfect” gate 

operations. In most systems, gate operations themselves are not realized perfectly, due to the structure 

of the internal Hamiltonian. For instance, in the system described by Eq. (1) with k as zero, a CNOT 

gate operation is realized with a relative phase between the basis states as given by Eq. (17). This is 

because a NOT gate can only be realized up to an overall global phase of ±π/2. Therefore, if the phases 

from the control qubits can be used to cancel out this π/2 phase, a perfect gate operation can be 

realized.  

Taking into account the relative phases due to the two control qubits, the gate operations realized 

under the first and second pulses in Fig. 2(b) now become: 

 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

2 2
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e e
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π ε ε π ε ε
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+ −
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− + + +

1G
 (21)
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+ + − +

2G
 (22)

 

 

Choosing εA = −εC under gate operation G1 and εA = εC under gate operation G2, we have  
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( ) ( )
( ) ( )

2 2

2 2

000 000 010 010 001 001 011 011

100 110 110 100 101 111 111 101

A

A

i T

i T

e

ie

π ε

π ε−

= + + +

− + + +

2 1
G Gi

 (23)
 

 

Suppose δ is a slight adjustment to εA, i.e., εA = εA′+δ, where εA′ is the originally chosen high value 

of the bias (10GHz in simulations). Next, by choosing δ such that exp(i(-2π(4δ)T) is “+i”, the CNOT 

gate is perfectly realized up to an overall global phase of exp(i4πδT). The minimum value of δ is 

6.25MHz. Depending upon the resolution which the physical quantum system under consideration 

allows, higher values of δ can be obtained by evaluating the phase to be higher odd-integer multiples 

of π/2.  

 

5 Effects of Finite Rise and Fall Times on the Performance of Gate Operations 

 

Even though we use ideal pulses in our simulations, this is not typically the case in an experimental 

system where pulses are non-ideal with finite rise and fall times. As a result, the switching process 

itself might give rise to non-ideal gate operations which needs to be investigated. To study these 

effects, simulations were carried out for the Toffoli gate (pulse 2 of the CNOT gate operation) under 

different rise (TR) and fall (TF) times. Figure 5 shows the bias pulse on the target qubit under a non-

ideal pulse.  

 

  
 

Fig. 5. Bias pulse on the target qubit, B, during a Toffoli gate operation on a three-qubit system. The bias is pulsed 

from a high value, εBmax, to a low value, εBmin = ξ1+ξ2.  

 

For an ideal bias pulse on the target qubit (TF=TR=0), the pulse width “T” is as that calculated in 

section 2 (Eq. (11)). However, simulation results show that, under a non-ideal pulse, to increase the 

fidelity of a Toffoli gate, the time for which the bias is held at εBmin has to be reduced (TG=T−TC). This 

is because near points P and Q, the value of the bias, εB, becomes comparable with εBmin (600MHz). 

This causes the magnitudes of the probability amplitudes in the state vector to change, which affects 

the overall gate operation. Therefore, the pulse width for the gate operation is recalculated as follows: 

  

 ( )pulse G F C FT T T T T T= + = − +  (24) 

εΒmax 

       TF                  TG        TR 

Tpulse 

 

time 
εΒmin 

εΒmin= ξ1+ξ2 
Toffoli gate operation 

εΒ 
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where 
( ) ( )max min

1

2 2

AVG R F
C

B B B

T T T
T

δε ε ε
+

= =
−

 (25)  

 

Here, Tpulse is the pulse time, δεB=(εBmax−εBmin) is the difference between the maximum and 

minimum bias, and TAVG is the average of the rise and fall times. The correction factor, TC, depends on 

the average slope (magnitudes only) of the rise and fall lines. This means that for a given value of δεB 

and TAVG, the gate performance was identical whether or not TF and TR were equal. It was also found 

that the expression for the correction factor TC depends on the product “T⋅∆” as given by Eq. (11). 

Equation (25) corresponds to an expression for TC when M is zero (T⋅∆ is 0.25). A new expression 

would need to be derived for different values of M. However, for larger values of M, the fidelity of the 

gate operation itself decreases, and therefore, the best gate performance under a non-ideal pulse is 

when M is zero. It is important to point that even though Eq. (25) was derived with the Toffoli gate as 

the gate operation, the same equation can be used for the first pulse in Fig. 2(b). In other words, as 

long as the average slope, δεB/TAVG, is the same for both pulses, the value of TC is the same for both 

gate operations. 

At other points along the rise/fall lines (not in the vicinity of P and Q), only the relative phases 

between the basis states change, with no change in the magnitudes of the amplitudes. The values of 

these phases are completely random, depending both on the slope of the lines and the resolution of the 

time step used in simulation. Calculating the exact value of these phases analytically, is out of the 

scope of this paper. However, it was found that for a given value of δεB, the relative phases in the final 

state do not vary with the slope of the rise/fall lines. 

Following were the conclusions drawn from this analysis: (a) The effect of finite rise/fall times on 

gate operations depends on the slope of the rise/fall lines; (b) A steep slope (1-10 GHz/ns) did not 

cause much change in the overall probabilities, and the effect of the rise/fall times was equivalent to a 

Z-rotation before and after the gate operation; (c) A gradual slope (lower than 1 GHz/ns) causes non-

ideal gate operations where the magnitudes of the probability amplitudes change; (d) The effects of 

these non-ideal gate operations can be minimized by adjusting the gate time to an optimal value, TG, 

depending on the slope of the rise/fall lines (Eq. (24)); (e) The value of TG for a given slope (δεB/TAVG) 

is the same irrespective of the value of εBmax and εBmin, i.e., for both pulses in Fig. 2(b), as long as the 

average slope, δεB/TAVG, is the same, the value of TC for either pulse is calculated using Eq. (25). 

 

5  Conclusions 

              

In this paper, we have presented a scheme for implementing universal quantum computation in LNN 

architectures without having to switch the coupling. The scheme is general and can be can be extended 

towards any two-level system whose Hamiltonian can be reduced to that of a spin boson. Even though 

we use a linear array coupled through Ising interactions, our method is also relevant to a system 

coupled through Heisenberg interactions. We first showed how to implement a CNOT gate operation 

between two adjacent qubits, where the gate operation is realized by applying only two pulses of equal 

duration, but varying amplitudes, on the target qubit. We next showed how to implement arbitrary 

single-qubit operations and controlled-unitary operations. The advantage of this scheme is that it is 
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simple and efficient because only a single control parameter is required. Moreover, unlike some other 

methods, ours does not require encoding physical qubits into logical qubits, thereby, significantly 

minimizing the computational overhead.  
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