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This article investigates entanglement of the motional states of massive coupled oscil-

lators. The specific realization of an idealized diatomic molecule in one-dimension is
considered, but the techniques developed apply to any massive particles with two de-
grees of freedom and a quadratic Hamiltonian. We present two methods, one analytic

and one approximate, to calculate the interatomic entanglement for Gaussian and non-
Gaussian pure states as measured by the purity of the reduced density matrix. The
cases of free and trapped molecules and hetero- and homonuclear molecules are treated.
In general, when the trap frequency and the molecular frequency are very different, and

when the atomic masses are equal, the atoms are highly-entangled for molecular coherent
states and number states. Surprisingly, while the interatomic entanglement can be quite
large even for molecular coherent states, the covariance of atomic position and momen-
tum observables can be entirely explained by a classical model with appropriately chosen

statistical uncertainty.
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1 Introduction

Harmonically-coupled massive oscillators provide a suitable model for many physical systems

that are employed or proposed for quantum information processing with continuous variables.

For example, both the longitudinal modes [1] and the transverse modes [2] of ions in Paul

traps can be treated (in certain regimes, at least approximately) as coupled oscillators. In-

teractions between oscillators, either direct or mediated by external elements or fields, lead

to entanglement between the oscillators that in principle could be externally controlled or

extracted. In particular, the characterization of entanglement in harmonic chains [3], one-

dimensional arrays of coupled harmonic oscillators, is a paradigm that has attracted sustained

attention. Beside quantum information processing, an additional motivation for investigating

systems with harmonic lattice Hamiltonians is the study of the role of entanglement in phase

transitions [4].

Most research on massive coupled oscillators has employed Gaussian states, the workhorse

of continuous variable quantum information theory. This extensive use of Gaussian states is

physically motivated: many dynamical processes result in Gaussian states. In particular, the

ground states and thermal states of massive coupled oscillators with quadratic Hamiltonians

are exactly Gaussian. Their use is also theoretically convenient because many results for
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Gaussian states in quantum optics can be carried over to massive oscillators. More generally,

there exists a correspondence (up to local coordinate transformations) between covariance

matrices and Gaussian states that allows for deep mathematical analysis, including complete

characterization of bipartite entanglement and partial characterization of multipartite entan-

glement [5, 6]. In contrast, one goal of this paper to to provide methods for studying the

entanglement of non-Gaussian continuous variable states. Advances in theory and experi-

ment have led to an increased interest in quantum information processing with non-Gaussian

states, and this work investigates the simplest special case of two-mode pure states.

Our results apply directly to any case of massive particles with two degrees of freedom

and a Hamiltonian quadratic in position, but for conceptual ease and clarity we structure our

discussion in the language of a diatomic molecule: two distinguishable atoms interacting via

a quadratic potential in one-dimension. This can be thought of as an example of the shortest

harmonic chain, but the analysis will not be restricted to the case of equal masses as is usually

considered in such systems. Two different Hamiltonians are considered simultaneously: a

molecule trapped in a harmonic potential and an untrapped molecule with a Gaussian wave

packet. The properties of two-mode Gaussian states are well-known from a variety of contexts

in quantum optics and continuous-variable quantum information theory [7, 8, 9, 10, 11]. For

the ground state and coherent states, we will translate our model into the standard language

of covariance matrices and logarithmic negativity. However, for non-Gaussian pure states, the

entanglement will be quantified in terms of the purity of the reduced density matrix. Two

methods, one more suitable for analytic calculations and one more suitable for numerical

simulations, will be provided.

Entanglement is a notion that depends on the observables one uses to describe a sys-

tem [12], and the coupled oscillator model allows this connection to be explored in an exactly

solvable model. Because of the coupling interaction, the “normal” molecular observables

are more convenient for studying and controlling the system properties and dynamics than

the the “natural” atomic observables. However, one could imagine that atomic observables

like position and momentum are still physically accessible, perhaps through some indepen-

dent coupling with internal atomic structure. Assuming that both atomic observables and

molecular observables can form a complete set of operationally-accessible interactions and

measurements, one can talk about entanglement with respect to the tensor product structure

induced by either the molecular set or the atomic set of observables (see also the discussion in

Ref. [13]). Additionally, by studying the local unitary operators acting on the atomic tensor

product structure, one can identify equivalence classes of equally-entangled states and classes

of Hamiltonians that lead to entanglement-equivalent dynamics. For example, these methods

demonstrate immediately that coherent states and the ground state have the same entangle-

ment between atoms, and that the dynamics of the entanglement is independent of the linear

terms in the Hamiltonian.

We can also interpret our results for the entanglement of atoms in a diatomic molecule

as an example of continuous-variable entanglement constrained by conservation laws. In this

perspective, we find that the entanglement between massive oscillators has two determining

factors, one dynamic and one kinematic in origin. First, the Hamiltonian is diagonal in the

molecular observables, so the center-of-mass and relative modes are not mixed by the dynam-

ics. As a result, the ground state, coherent states, and number states are separable in the
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molecular observables. Some dynamic parameter, e.g. the ratio of the molecular frequency

to the trap frequency, will therefore set one scale in the analytic formulas for entanglement.

Additionally, the transformation between atomic and molecular coordinates induces a kind of

purely kinematic squeezing of the two-particle wave function. The motional entanglement cre-

ated by this kind of wave packet squeezing is mathematically similar to phase space squeezing

in quantum optics. This effect was perhaps first noted by Fan and Klauder [7] who, inspired

by the original EPR paper, studied eigenstates of the relative motion of two-particle sys-

tems and constructed two mode entangled states in analogy to photonic two mode squeezed

states [14]. Subsequent work by Fan generalized these considerations to the entangled state

representation for two unequal masses [15, 16]. A similar entanglement mechanism occurs in

the reflected modes of two-particle scattering systems [17, 18] and the same mechanism can

be found for wave packet entanglement in photoionization [19], spontaneous emission [20],

and other disassociation processes [21].

In terms of diatomic systems, possible physical realizations could include two ions in a lin-

ear Paul trap or cold polar diatomic molecules in an optical trap. For example, entanglement

swapping between internal atomic degrees of freedom and molecular degrees of freedom has

already been demonstrated for two pairs of oscillating ions in a linear Paul trap [22] and novel

schemes for entangling transverse modes ion traps have been proposed [23]. A straightforward

implementation scheme for measuring this kind of entanglement would require independent

access and measurement of both molecular and atomic canonical observables (i.e., position

and/or momentum). Alternatively, if the molecule could be disassociated with a strong pulse

that does not change the original spatial distribution of the wave packet very much, the ratio

of the width of the conditional wave packet to the single particle wave packet takes exactly

the same value as the purity of the reduced density matrix [19, 21]. However, either approach

would require measurement resolution finer than the scale of the wave packet variation.

Unfortunately, as discussed in the conclusion, even if two-particle spatial covariance mea-

surements were accurate enough to quantify the interatomic entanglement, such measurements

cannot establish the ‘quantumness’ of the correlations. The correlations between atoms re-

vealed by spatial measurements do not exceed those that are possible in some classical system

with statistical correlations. To overcome this, several schemes for developing Bell-type in-

equalities have been proposed for detecting entanglement in continuous variable systems, such

as displaced parity operators [24] and pseudospin operators [25]. While these are useful the-

oretical discriminators of non-classical correlations, these schemes would appear to require

full state tomography to reconstruct the correlations between arbitrary two-mode states [25].

Disassociation-time entanglement has also been proposed to measure motional entanglement

of two atoms disassociated from a diatomic molecule [26], but there the measured entangle-

ment would be created by the disassociation pulse, and not the initial entanglement of the

bound state, which is what interests us here.

An additional physical motivation for this work is to study entanglement in bound states

of strongly-interacting particles. For example, because the Moshinsky atom [27], a coupled

oscillator model for two-electron atoms, is analytically solvable, it has been used to test and

explore approximation schemes for multi-electron settings like Hartree-Fock [27, 28, 29] and

density functional theory [30, 31, 32]. The amount of spatial entanglement between electrons

in the Moshinsky atom (and also in the related Hooke’s atom model) has been shown to be



N. L. Harshman and W. F. Flynn 281

a good proxy for the deviations in energy prediction entailed by the separability assumptions

used in Hartee-Fock [33, 34, 35] and density functional theory [36, 37]. The results presented

in this article reproduce the direct calculations of the spatial entanglement of the ground

state found in Ref. [37] and of the lowest energy eigenstates in Ref. [35] (when adjusted to

account for the difficulties associated with entanglement of identical fermions). Our results

also explain an entanglement symmetry first noticed in Ref. [35]: when the center-of-mass

and relative energy scales are interchanged, the entanglement is invariant.

The structure of this article is as follows. First, the model for the diatomic molecule is in-

troduced, and some relevant properties of molecular and atomic entanglement are established.

Then the atomic entanglement of coherent molecular states, including the ground state, is

calculated and compared to known results for Gaussian states established using covariance

matrix methods. In the next section, one method for generating the exact expression for the

atomic entanglement in an arbitrary energy eigenstate is presented, and an alternate, approx-

imate procedure is described in Appendix A. The final section discusses the interpretation

of the correlations implied by atomic entanglement and how the covariance in this quantum

system compares to a classical, statistical description of the same system.

2 Idealized Diatomic Molecule

The Hamiltonian for the trapped diatomic molecule can be expressed in terms of the “normal”

or molecular center-of-mass observables {X̂, P̂} and relative observables {R̂, Q̂}

Ĥ =
1

2M
P̂ 2 +

1

2µ
Q̂2 +

1

2
MΩ2X̂2 +

1

2
µω2R̂2, (1)

where M = m1+m2 is the total mass, µ = m1m2/M is the reduced mass. These observables

are related to the “natural” atomic observables by the symplectic transformation

X̂ = µ1X̂1 + µ2X̂2, R̂ = X̂1 − X̂2 − ℓ,

P̂ = P̂1 + P̂2, Q̂ = µ2P̂1 − µ1P̂2, (2)

where µi = mi/M are the mass fractions and ℓ is the equilibrium length of the molecule.

The equilibrium length (or the coefficient of any linear term in the Hamiltonian) can be set

equal to zero without changing entanglement because such a redefinition corresponds to a

local unitary transformation in either molecular or atomic coordinates, as discussed below.

Written in the atomic observables with ℓ = 0, the Hamiltonian becomes

Ĥ =
1

2m1
P̂ 2
1 +

1

2m2
P̂ 2
2 + V̂ (X̂1, X̂2), where (3)

V̂ =
1

2
MΩ2

(

(µ2
1 + µ1µ2g

2)X̂2
1 + (µ2

2 + µ1µ2g
2)X̂2

2 + µ1µ2(1− g2)X̂1X̂2

)

.

In the last line we have expressed the ratio of the molecular frequency to the trap frequency

as g = ω/Ω and we will interpret all results for the bound molecule in terms of this dynamical

scale parameter.

Looking at the Hamiltonian in the two different coordinate systems, the benefit of the

molecular observables is clear (and well-known). Cast into the language of entanglement,
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one can say the Hamiltonian is a separable operator in the molecular Hilbert space partition

H = Hr ⊗Hc induced by the relative (denoted “r”) and center-of-mass observables (“c”)

Ĥ = Ĥr ⊗ Ic + Ir ⊗ Ĥc

= ~ω(ââ† + 1/2)⊗ Ic + Ir ⊗ ~Ω(b̂b̂† + 1/2). (4)

In the last line the Hamiltonian has been written in terms of the ladder operators for the

molecule oscillations {â, â†} and for the trap oscillations {b̂, b̂†}:

â =
γ√
2
R̂+

i√
2~γ

Q̂

b̂ =
Γ√
2
X̂ +

i√
2~Γ

P̂ , (5)

where Γ =
√

MΩ/~ and γ =
√

µω/~ =
√
µ1µ2g Γ are proportional to the momentum uncer-

tainties of the ground state. In contrast, the Hamiltonian expressed in atomic observables (3)

does not separate with respect to the atomic tensor product structure H = H1 ⊗ H2 unless

g = 1 (or the unphysical case of infinite mass imbalance, µ1 or µ2 → 0). When g = 1, the

molecular and trap frequencies are the same and the term proportional to X̂1X̂2 vanishes

(although γ and Γ, which depend on the masses, may still be different).

The energy eigenstates |m,n〉 = |m〉 ⊗ |n〉 have the standard harmonic oscillator wave

functions Φm,n(r, x) = φm(r)φn(x) = 〈r, x|m,n〉 when expanded on the spectrum of {R̂, X̂}:

φm(r) =

(

γ2

π

)1/4

(2mm!)−1/2Hm(γr)e−γ2r2/2

φn(x) =

(

Γ2

π

)1/4

(2nn!)−1/2Hn(Γx)e
−Γ2x2/2 (6)

The energy eigenstates are separable, and therefore unentangled, with respect to the molecular

tensor product structure Hr ⊗ Hc, although out of these basis vectors one can construct

combinations that are entangled in the molecular tensor product structure, e.g. |m,n〉±|n,m〉.
One can also define two-mode molecular coherent states

|α, β〉 ≡ D(a, α)D(b, β)|0, 0〉

= e−|α|2/2−|β|2/2
∞
∑

m,n=0

αmβn

√
m!n!

|m,n〉 (7)

which have well-known physical interpretations as the “most classical” harmonic oscillator

states (see, for example [38]) and will be useful for subsequent calculations. The complex

number α is the displacement of the relative â mode and β is the displacement of the center-

of-mass b̂ mode.

Any state |Φ〉 can also be represented by wave functions on the spectrum of the atomic

position observables:

Φ̃(x1, x2) = {x1, x2|Φ〉 = Φ(x1 − x2, µ1x1 + µ2x2) (8)
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where we have used the “curly ket” notation |x1, x2} to indicate that these are generalized

eigenvectors of the atomic position observables, as opposed to the molecular position ob-

servable eigenkets |r, x〉. For almost all values of kinematic and dynamic parameters, and

for almost all quantum numbers and superpositions, the wave function is not separable,

i.e. Φ̃(x1, x2) 6= φ̃1(x1)φ̃2(x2) for any φ̃i. This entanglement is evident from the contour

plots of probabilities densities in x1, x2-space depicted in Figures 1 and 2. Only the top two

contour plots of Figure 1 depict separable states, which can be recognized because all marginal

probabilities for a given value of one coordinate (say, x1) take the same functional form in

the other coordinate. Or more qualitatively, the “principle axes” of the probability densities

line up with the coordinate axes when the function is separable.

To calculate the entanglement between atoms for arbitrary pure states, we will use the

purity of the reduced matrix element P (or purity, for short):

P = Tr1ρ̂
2
1 =

∫

dx1{x1|ρ̂21|x1}

=

∫

dx1dx
′
1{x1|ρ̂1|x′

1}{x′
1|ρ̂1|x1}

=

∫

dx1dx
′
1dx2dx

′
2Φ̃(x1, x2)Φ̃

∗(x′
1, x2)Φ̃(x

′
1, x

′
2)Φ̃

∗(x1, x
′
2) (9)

where

ρ̂1 = Tr2(|Φ〉〈Φ|)

=

∫

dx1dx
′
1dx2Φ̃(x1, x2)Φ̃

∗(x1, x2)|x1}{x′
1|. (10)

The purity of the reduced density matrix is an entanglement measure for pure states and

lies in the range (0, 1], with lower values meaning more entanglement (some prefer to use the

linear entropy L = 1 − P for this reason). For comparison, in d-level discrete systems the

purity is bounded from below by d−1.

As with all reasonable entanglement measures on pure states, the value of P should not

change when the state is transformed by a unitary transformation that is separable with

respect to tensor product structure. In particular, operators that are exponentials of linear

combinations of atomic or molecular position and momentum observables, such as

e(i/~(aR̂+bX̂+cQ̂+dP̂ )), e(i/~(aX̂1+bX̂2+cP̂1+dP̂2)), or D(a, α)D(b, β) (11)

are separable with respect to both the atomic tensor product structure H1⊗H2 and molecular

tensor product structure Hr ⊗ Hc. Therefore translations of either the molecular or atomic

coordinate systems do not affect the amount of entanglement. This explains why the equi-

librium length of the molecule can be set to ℓ = 0 with out changing any conclusions about

entanglement. The time evolution operator on energy eigenstates is just a phase, so one can

also see that stationary states have constant entanglement in time according to any tensor

product structure. Finally, Fourier transforms are also local unitary operators. Therefore,

one can work in atomic momentum space or atomic position space and calculate the same

value for the entanglement between the atoms. We choose to work in position space.

In the limit Ω → 0, the term in the Hamiltonian (1) that leads to the center-of-mass

trapping vanishes and our system becomes an untrapped diatomic molecule. We can still
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Fig. 1. These contour plots depict the atomic position probability densities |Φ̃00(x1, x2)|2 for four
combinations of values for g and µ1. Positions are measured in units of Γ. Note that µ2 = 1−µ1.
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Fig. 2. These contour plots depict the atomic position probability densities |Φ̃10(x1, x2)|2 for four
combinations of values for g and µ1. Positions are measured in units of Γ. Note that µ2 = 1−µ1.
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consider wave functions (6) of the form Φm0(r, x) = φm(r)φ0(x), but these are no longer

energy eigenstates. The constant Γ now plays the role of an initial condition, not a dynam-

ical parameter as in the trapped case. The quantity ~Γ/
√
2 can now be interpreted as the

momentum uncertainty of the center-of-mass Gaussian wave packet at the moment in time

(say t = 0) when the wave packet satisfies the minimum uncertainty relation ∆x∆p = ~/2.

Of course, the center-of-mass wave packet will spread as a function of time

φu(x, t) =
1√

1 + iτ

(

Γ2

π

)1/4

exp

[ −Γ2x2

2(1 + τ2)
(1 + iτ)

]

(12)

where we use a unitless rescaled time τ = Γ2
~t/M . Translations in center-of-mass position and

momentum (or equivalently, changes in reference frame) do not affect the entanglement for the

unbound molecule, as can be seen from the preceding argument. Therefore, the entanglement

of themth molecular vibrational state with a Gaussian center-of-mass momentum distribution

can be calculated from Φ̃(t)mu(x1, x2) = φm(x1−x2)φu(µ1x1+µ2x2, t). Note that since these

states are no longer energy eigenstates, atomic entanglement will not be constant. In the next

section we show that the entanglement for the unbound molecule increases monotonically as

the wave packet spreads.

3 Entanglement of Coherent States and the Ground State

The ground state and coherent states of the diatomic Hamiltonian are Gaussian states in

either the molecular or the atomic basis, and as such their entanglement properties can be

specified by the corresponding covariance matrix. The symplectic eigenvalues of the partial

transpose of a covariance matrix provide the separability criterion and can be used to calculate

several measures of entanglement, such as logarithmic negativity [5, 6]. At the end of this

section, we will apply these methods. However, since our eventual goal is to evaluate (9) for

general, non-Gaussian states, it will be instructive to first consider the purity Pαβ of molecular

(two-mode) coherent states |α, β〉.
In terms of the position coordinates Φαβ(r, x) = 〈r, x|α, β〉, these states have Gaussian

wave functions

Φαβ(r, x) =

(

γΓ

π

)1/2

e−
i
2~

(αrαq+βxβp)e−
γ2

2
(r−αr)

2−Γ2

2
(x−βx)

2

e
i
~
(rαq+xβp) (13)

where

αr =
1√
2γ

(α+ α∗), αq = − i~γ√
2
(α− α∗),

βx =
1√
2Γ

(β + β∗), and βp = − i~Γ√
2
(β − β∗). (14)

Transforming to the particle coordinates via the symplectic transformation (2), the new wave

function Φ̃αβ(x1, x2) = Φαβ(x1 − x2, µ1x1 + µ2x2) is still Gaussian. The integral (9) can be

rewritten in the form

Pαβ =
γ2Γ2

π2

∫

d4ze−z
TAz+B

T
z+C (15)
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with z = (x1, x
′
1, x2, x

′
2)

T, d4z = dx1dx
′
1dx2dx

′
2, y = 1/2(−γ2 + Γ2µ1µ2) and

A =









Γ2µ2
1 + γ2 0 y y
0 Γ2µ2

1 + γ2 y y
y y Γ2µ2

2 + γ2 0
y y 0 Γ2µ2

2 + γ2









(16)

B = 2









γ2αr + Γ2µ1βx

γ2αr + Γ2µ1βx

−γ2αr + Γ2µ2βx

−γ2αr + Γ2µ2βx









(17)

C = −2(γ2α2
r + Γ2β2

x). (18)

The integral (15) is standard when A is positive semidefinite:

∫

dnze−z
TAz+B

T
z+C =

√

πn

detA
e

1
4
B

TA−1
B+C . (19)

Therefore, making the necessary algebraic simplifications and noting BTA−1B = −4C, the

purity of a coherent state is found to be

Pαβ =
γΓ

√

(γ2 + Γ2µ2
1)(γ

2 + Γ2µ2
2)
. (20)

This result shows that the entanglement for a two-mode coherent state in the center-of-

mass/relative coordinates does not depend on the complex displacements α and β, as expected.

Since the displacement operators D(α, a) and D(β, b) are separable in the atomic coordinates,

then every coherent state must have the same entanglement as the ground state |0, 0〉. As a

consequence, the purity of the ground state P00 is also given by (20).

Figure 3 depicts the coherent state purity as functions of the kinematic parameter µ1

(µ2 = 1− µ1) and dynamical parameter g = ω/Ω:

Pαβ(g, µ1) = P00(g, µ1) =

√

g

(gµ1 + µ2)(gµ2 + µ1)
. (21)

When the trap and molecular frequencies are the same (g = 1), there is no atomic entan-

glement for any value of the mass ratios, as one might expect from the separability of the

Hamiltonian. Note that either transformation g → g−1 or µ1 → µ2 leaves P00 unchanged. As

g departs from one, the purity decreases and the entanglement grows without limit. Maxi-

mum entanglement for a given g occurs when the masses are equal µ1 = µ2 = 1/2. When the

mass ratios of the two atoms are far off balance, the entanglement decreases.

For the case of an unbound molecule, the purity of the time-dependent bound molecule

Φ̃(t)0u with center-of-mass momentum uncertainty ~Γ at t = 0 and relative vibrational state

m = 0 can be calculated the same way as the bound case, except the matrix A (16) is now

time dependent and takes the form

A(t) =









Γ2µ2
1 + γ2 0 z∗ z
0 Γ2µ2

1 + γ2 z z∗

z∗ z Γ2µ2
2 + γ2 0

z z∗ 0 Γ2µ2
2 + γ2









(22)
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Fig. 3. The ground state/coherent state entanglement P00 as a function of µ1 for four different
values of g = ω/Ω: g = 1 (solid), g = 10 (dashed), g = 100 (dotted), and g = 1000 (dot-dashed).
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Fig. 4. The entanglement P0u(t) of Φ̃(t)0u at time t = 0 as a function of µ1 for four different

values of c = γ/Γ: c = 1 (solid), c = 3 (dashed), c = 10 (dotted), and c = 30 (dot-dashed).

where z = −γ2/2 + 1/2eiφΓ2µ1µ2 and φ = tan−1 τ . Using this and following the same steps

as above, we find that

P0u(t) =
γΓ

√

(γ2 + Γ2µ2
1)(γ

2 + Γ2µ2
2) + γ4τ2

. (23)

Note that P0u(t) has its maximum value at the moment of minimum uncertainty t = Mτ/(~Γ2) =

0 and then decreases, meaning entanglement increases as time evolves. An interesting relation

to note is that when γ = Γ
√
µ1µ2, there is no entanglement between the atoms in the free

molecule at time t = 0. Figure 4 depicts the entanglement at t = 0 using the parameterization

c = Γ/γ instead of g = ω/Ω to highlight these features.

To conclude this section, we compare these results for Gaussian states to results from

the covariance matrix approach. Gaussian states are fully characterized by their first and

second moments, but as we have shown, the first moments have no influence on entanglement
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properties since they can be removed by a local unitary transformation. Defining the vector

of operators

R̂ =











√
2(X̂1 − 〈X̂1〉)√
2

~
(P̂1 − 〈P̂1〉)√

2(X̂2 − 〈X̂2〉)√
2

~
(P̂2 − 〈P̂2〉)











, (24)

the elements of the covariance matrix can be calculated from Vkl = 〈R̂kR̂l + R̂lR̂k〉/2. For

either the ground state or the coherent state of the bound molecule, the covariance matrix

evaluates to

V =











1
Γ2 +

µ2
2

γ2 0 1
Γ2 − µ1µ2

γ2 0

0 γ2 + Γ2µ2
1 0 −γ2 + Γ2µ1µ2

1
Γ2 − µ1µ2

γ2 0 1
Γ2 +

µ2
1

γ2 0

0 −γ2 + Γ2µ1µ2 0 γ2 + Γ2µ2
2











. (25)

A symplectic transformation to a new covariance matrix V′ = SVS⊤ with S ∈ Sp(4,R) of the

form S = S2 ⊕ S2 (S2 ∈ Sp(2,R)) is local with respect to the atomic observables and will not

change the entanglement properties of the covariance matrix. In particular, one can define a

symplectic transformation that rescales the variables as

S =

( √
γΓs 0
0 1/

√
γΓs

)

⊕
( √

γΓ/s 0
0 s/

√
γΓ

)

(26)

with s4 = (γ2+Γ2µ2
1)/(γ

2+Γ2µ2
2). This transformation brings the covariance matrix V′ into

the standard form for a two-mode squeezed state [6]

V′ =









cosh r 0 sinh r 0
0 cosh r 0 − sinh r

sinh r 0 cosh r 0
0 − sinh r 0 cosh r









. (27)

where the squeezing parameter r is directly related to the purity P00 by cosh r = (P00)
−1.

For comparison with other results, note that for the covariance matrix V′ one finds that the

logarithmic negativity EN (a standard measure of entanglement for Gaussian states [5]) is

exactly the squeezing parameter EN = r. A similar result (but with a more complicated,

time-dependent symplectic transformation S) holds for the unbound state Φ̃(t)0u.

4 Entanglement in Number States and Superpositions of Number States

The purity for number states can be calculated using the connection between coherent states

and number states

|n〉 = 1√
n!

∂n

∂αn
e

|α|2

2 |α〉
∣

∣

∣

∣

α=0

. (28)

By substituting the wave functions for coherent state in atomic coordinates into the expression

(28), we find

Φ̃m,n(x1, x2) =
1√
m!n!

∂m

∂αm

∂n

∂βn
e

|α|2+|β|2

2 Φαβ(x1 − x2, µ1x1 + µ2x2)

∣

∣

∣

∣

α,β=0

. (29)
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From here we can proceed in two ways. We can substitute (29) directly into the purity

expression (9); that will be done below as part of the main text. An alternate approach uses

an expansion onto another double harmonic oscillator basis, one that is separable in atomic

coordinates and denoted |j, k}:

{x1, x2|j, k} = {x1|j}{x2|k}

=

(

γ1γ2
2j+kπj!k!

)1/2

Hj(γ1x1)Hk(γ2x2)e
−γ2

1x
2
1/2−γ2

2x
2
2/2. (30)

In this expression, γ1 and γ2 do not have a dynamical meaning based on the Hamiltonian like

γ and Γ, but instead are free parameters that should cancel out in the final expression for

the purity. Applying (28) to the atomic basis vectors |j, k}, we can find expressions for the

coefficients 〈n,m |j, k} that transform between the molecular number basis to the (artificial)

atomic number basis. More details on this approach, which may be more useful for numerical

simulations and for calculating the entropy of entanglement or other entanglement measures,

are located in Appendix A.

Proceeding by direct substitution of (29) into the purity expression (9) and performing

the integral yields

Pmn =
γ2Γ2

(πm!n!)2

√

π4

detA

(

4
∏

i=1

∂m

∂αm
i

∂n

∂βn
i

)

e
1
4
B

TA−1
B+C

∣

∣

∣

∣

∣

{αi,βi}=0

(31)

The real symmetric matrix A is the same as (16) above, but now

B =
√
2









γ(α1 + α2) + Γµ1(β1 + β2)
γ(α3 + α4) + Γµ1(β3 + β4)
−γ(α1 + α4) + Γµ2(β1 + β4)
−γ(α3 + α2) + Γµ2(β3 + β2)









(32)

and

C = −1/2(α2
1 + α2

2 + α2
3 + α2

4 + β2
1 + β2

2 + β2
3 + β2

4). (33)

Simplification leads to

Pmn =
P00

(m!n!)2

(

4
∏

i=1

∂m

∂αm
i

∂n

∂βn
i

)

ez
TMz

∣

∣

∣

∣

∣

{αi,βi}=0

, (34)

where

zT = (α1, α2, α3, α4, β1, β2, β3, β4) (35)

and M is an 8× 8 matrix (B.3) described in Appendix B.

The expression (34) can be evaluated analytically for all values of m and n, but it grows

in complexity rapidly. Explicit calculations reveal that all Pmn have the form

P00

[(γ2 + Γ2µ1)(γ2 + Γ2µ2)]
2m+2n

2m+2n
∑

i=0

C
(mn)
i γ2iΓ4m+4n−2i (36)
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Fig. 5. Each column displays the graphs of Pmn for m = {0, 1, 2} (left, middle, right) and
n = {0, 1, 2, 3} (solid, dashed, dotted, dot-dashed) for two values of g: g = 1 (top) and g = 5

(bottom).

where C
(mn)
i are polynomials of µ1 and µ2 with rational coefficients that can be determined

from M. As examples, one finds

P01 =
γΓ

4 [(γ2 + µ2
1Γ

2)(γ2 + µ2
2Γ

2)]
5/2

×
(

3γ8 + 4γ6Γ2(µ2
1 + µ2

2)

+ 2γ4Γ4(2µ4
1 + µ2

1µ
2
2 + 2µ4

2) + 4γ2Γ6µ2
1µ

2
2(µ

2
1 + µ2

2) + 3Γ8µ4
1µ

4
2

)

(37)

and

P11 =
γΓ

16 [(γ2 + µ2
1Γ

2)(γ2 + µ2
2Γ

2)]
9/2

(

9γ16 + 16γ14Γ2(µ2
1 + µ2

2)

+12γ12Γ4(8µ4
1 − 3µ2

1µ
2
2 + 8µ4

2) + 240γ10Γ6µ2
1µ

2
2(µ

2
1 + µ2

2)

+2γ8Γ8(8µ8
1 − 64µ6

1µ
2
2 + 459µ4

1µ
4
2 − 64µ2

1µ
6
2 + 8µ8

2)

+240γ6Γ10µ4
1µ

4
2(µ

2
1 + µ2

2) + 12γ4Γ12µ4
1µ

4
2(8µ

4
1 − 3µ2

1µ
2
2 + 8µ4

2)

+16γ2Γ14µ6
1µ

6
2(µ

2
1 + µ2

2) + 9Γ16µ8
1µ

8
2

)

. (38)

As for coherent states, one can rewrite any Pmn so it depends only on the ratio of the

frequencies g (or equivalently momentum uncertainty ratio c) and the mass fraction µ1 (or

µ2). The lowest nine combinations of m,n are depicted in Figure 5.

The following properties of the functions Pmn can be inferred either by analytical means

or by graphical inspection of the calculated purity for the lowest combinations of m,n:

• The purity functions are symmetric under exchange of trap and molecular quantum

number, i.e. Pmn = Pnm. Similar to the ground state purity P00, the transformations

µ1 → µ2 or g → g−1 leave Pmn invariant, as can be expected from the symmetries of

the Hamiltonian.
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• For all {m,n}, the energy eigenstates have no entanglement in the limiting cases of

extreme mass difference, either m2 ≫ m1 (µ1 ≈ 0) or m2 ≪ m1 (µ1 ≈ 1). In this

unphysical limit, the length scale γ−1 =
√

~/µω diverges and the energy eigenstates

Φ̃m,n(x1, x2) become unnormalizable.

• For all finite mass ratios, one finds Pmn < 1 and therefore the energy eigenstates are

entangled. The only exception is the special case g = 1 and then only the ground

state is separable. Inspecting the Hamiltonian in atomic coordinates (3) one can see

that operator becomes separable whenever g = 1. However, this does not imply that

the energy eigenfunctions Φ̃m,n(x1, x2) become separable in that limit. As a side note,

this does mean that for uncoupled oscillators there exists an alternate energy eigenstate

basis |m,n〉 constructed of entangled states that coincides with the atomic oscillator

basis |j, k} only on the ground state.

• When g = 1, Pmn is a polynomial of µ1 of order 2(m + n). For example, P00 = 1,

P10 = P01 = 1− 2µ1 + 2µ2
1, and P11 = 1− 8µ1 + 32µ2

1 − 48µ3
1 + 24µ4

1.

• Based on graphical analysis, for a fixed value of g it appears Pm+1,n+1 < Pm,n for all

µ1, but no other inequalities appear universal. For example, there are some regions of

{g, µ1}-parameter space where P12 > P11 and where P13 > P12. As m and n increase

the functions become more oscillatory and more tightly spaced, making it unlikely to

hypothesize any other bounds based on graphical methods alone.

• For a fixed value of µ1, the entanglement generally increases as g increases. As g → ∞,

the purity takes its global minimum at µ1 = 1/2, although for general g, Pmn need not

have a minimum at µ1 = 1/2, and it may in fact have a local maximum. For fixed µ1,

the entanglement increase is not monotonic in g, but shows local maxima and minima

of decreasing prominence as g increases.

As before, one can use the same method, only replacing A (16) with A(t) (22), to calculate

Φ̃(t)mu for unbound diatomic molecules with center-of-mass momentum uncertainty ~Γ/
√
2

and vibrational state m.

Finally, in principle one can calculate the entanglement of general states

|Φ〉 =
∞
∑

m,n=0

cm,n|m,n〉 (39)

as

P (Φ) =
∞
∑

{mi,ni}i∈{1,2,3,4}=0

cm1,n1
c∗m2,n2

cm3,n3
c∗m4,n4

P ({mi, ni}) (40)

where

P ({mi, ni}) =
P00

∏4
i=1 mi!ni!





4
∏

{α,β}i=1

∂mi

∂αmi

i

∂ni

∂βni

i



 ez
TMz

∣

∣

∣

{αi,βi}=0
(41)

In contrast to the purities of number states, Pmn, the functions P ({mi, ni}) are not necessarily
positive or symmetric around µ1 = 1/2. Nor do they limit to unity when µ1 → 0 or 1,

although numeric analysis suggests they are bounded functions. Many symmetry relations
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Fig. 6. This figure depicts the purity of the reduced density matrix of (42) for two values of g

and three values of θ: θ = nπ/2 (solid), θ = nπ/2 + π/6 (dashed), and θ = nπ/2 + π/3 (dashed)
for n any integer. Note that for g = 1 and θ 6= nπ/2, there are certain mass ratios that have no
interatomic entanglement.

between permutations of indices can be derived. For example, because of the integration

range, only even kernels contribute, meaning P ({mi, ni}) = 0 unless
∑4

i=1(mi + ni) is even.

Figure 6 gives a flavor for the entanglement properties of molecular state superpositions.

The purity of the state

|Φ〉 = cos θ|0, 1〉+ sin θ|1, 0〉 (42)

is depicted as a function of µ1 for several values of g and θ.

5 Conclusions: Correlation, Covariance, and the Classical-Quantum Correspon-

dence

When the trap frequency and molecular frequency are the same (g = 1), there is no entan-

glement between the atoms when the center-of-mass and relative oscillators are in coherent

states, and in particular the ground state. For all other coherent states and number states

with finite mass ratios, there is entanglement between the atoms, which generally increases

with g and with the index of the number states. Certain linear combinations of number states,

including those entangled with respect to the molecular observables, can be disentangled with

respect to atomic observables, but again apparently only when g = 1. These mathematical re-

sults, based on the definition of separability with respect to a given tensor product structure,

can be mathematically proven.

In interacting systems, correlations are expected, and one perspective is that this kind of

entanglement is just an artifact of studying the molecule in the ‘wrong’ basis, i.e. the atomic

basis. Since the Hamiltonian is separable with respect to the center-of-mass/relative basis,

in some sense the dynamics ‘chooses’ the molecular observables over the particle observables.



294 Entanglement in massive coupled oscillators

However, if the atoms have internal structure, one can imagine at least in principle, that

the atomic observables could be experimentally accessed (or “chosen”) independently of the

molecular observables and attempts could be made to measure correlations between the atoms.

For example, one could attempt to measure the covariance between X̂1 and X̂2:

σx1x2
= V13/2 = 〈X̂1X̂2〉 − 〈X̂1〉〈X̂2〉. (43)

For molecular coherent states, one finds

σx1x2
=

1

2Γ2
− µ1µ1

2γ2
=

1

2Γ2
(1− g−1). (44)

This covariance quantifies the correlations in uncertainty that the atomic positions inherit

from the intrinsic minimum uncertainty of the molecular oscillators. Low frequency traps

with high frequency molecules imply the largest covariance (and therefore easiest to mea-

sure). When g = 1, the covariance disappears for coherent states, as does the entanglement,

which can be seen from (25). The same holds for the other elements of the covariance matrix.

However, although there is entanglement, one can show that these correlations are not intrin-

sically quantum. We could imagine a classical analogue: two masses on a spring. The masses

could be at rest, but with statistical uncertainty in their positions, so that the probability

distribution as a function of center of mass coordinates {x, p} and relative coordinates {r, q}
is

ρ(x, p, r, q) =
1

~2π2
e−Γ2(x−x0)

2

e
− 1

~2γ2 (p−p0)
2

e−γ2(r−r0)
2

e
− 1

~2γ2 (q−q0)
2

. (45)

This supposition gives the same covariance matrix V as the quantum coherent state. The

only difference between the quantum and classical covariance is that in the quantum case γ

and Γ are of dynamical origin, whereas they are of purely statistical origin in the classical

case. Another way of saying this is that the transformation from molecular observables to

atomic observables maps a positive, Gaussian Wigner function into another positive, Gaussian

Wigner function, and one can show that some classical model can reproduce correlations in

any positive Wigner function.

In contrast, in the number state |m,n〉 the position covariance σx1x2
is

σx1x2
=

1

2Γ2
(2n+ 1)− µ1µ1

2γ2
(2m+ 1)

=
1

2Γ2
((2n+ 1)− g−1(2m+ 1)). (46)

This has very different properties from the coherent state covariance, and from the entangle-

ment of such states. When n = m and for g = 1 the covariance in number states disappears,

although the entanglement is non-vanishing for all m and n except m = n = 0. The covari-

ance is greatest in magnitude for g ≫ 1 and large n or g ≪ 1 and large m, a relationship

between g and number that does not exist for the entanglement. For number states there

is no correspondence to a classical model with statistical uncertainty. Additionally, we note

that the Wigner function for a number state has negative regions, often considered a signal

of ‘quantumness’, whether expressed in atomic or molecular variables, but entanglement only

in atomic variables.
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As a final comment, we note that the expressions for purity do not depend on ~ or the

ratio of the quantum scale to the classical scale in any way. Although measurements of the

postion and momentum uncertainties will involve a scale set by ~, in the purity expression

only the ratios appear and so the overall scale cancels out. To see whether the entanglement

correlations are truly “quantum” one could also imagine constructing dichotomous observables

on the (x1, x2)-space such that Bell-type inequalities can be formulated. Such observables can

be constructed in several ways, for example based on the displaced parity operator [24] or

using pseudospin operators [25], and this investigation will be pursued in future work.
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Appendix A An Alternate Approach

If the goal is to calculate the entanglement of a state with respect to the atomic tensor

product structure H = H1⊗H2, then any basis that is separable with respect to this structure

can be used for taking the partial trace. In the main body of this paper, the purity of the

reduced density matrices was calculated using the continuous-variable atomic coordinate basis

|x1, x2}. In this appendix, we instead use a double harmonic oscillator basis |j, k}. These

states are realized by separable wave functions (30) characterized by positive real parameters

γ1 and γ2 that can be freely chosen for convenience. There can be advantages of using such a

discrete basis to generate approximate expressions for the purity even when an exact analytic

expression can also be derived.

Using the |j, k} basis, the reduced density matrix for atom 1 can be written

ρ̂1 =
∞
∑

j,j′,k=0

{j, k|Φ〉〈Φ |j′, k} |j} {j′| (A.1)

and the purity of the reduced density matrix is

P (Φ) =

∞
∑

j,j′,k,k′=0

{j, k|Φ〉〈Φ |j′, k} {j′, k′|Φ〉〈Φ |j, k′} . (A.2)

We will focus on calculating the entanglement for number states |Φ〉 = |m,n〉, and the

matrix elements transforming between the molecular oscillators and the atomic oscillators

{j, k|m,n〉 are the central objects of concern. Similar to the procedure in the main text,

an expression for this matrix element will be derived by taking the derivatives of the matrix

element between coherent states {τ1, τ2|α, β〉:

{j, k|m,n〉 =
1√

j!k!m!n!
(A.3)

× ∂j+k+m+n

∂τ j1∂τ
k
2 ∂α

m∂βn
e

1
2
(|τ1|2+|τ2|2+|α|2+|β|2) {τ1, τ2|α, β〉

∣

∣

∣

τ1,τ2,α,β=0
.

The molecular coherent state |α, β〉 is defined above (7) and the atomic coherent states are

defined as

|τ1, τ2} = e−|τ1|2/2−|τ2|2/2
∞
∑

j,k=0

τ j1 τ
k
2√

j!k!
|j, k} . (A.4)
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The associated wave function in particle coordinates is

〈x1, x2 |τ1, τ2} =
(γ1γ2

π

)1/2

e−
i
2~

(τ1xτ1p+τ2xτ2p)

×e−
γ2
1
2
(x1−τ1x)

2− γ2
2
2
(x2−τ2x)

2

e
i
~
(τ1px1+τ2px2), (A.5)

with analogs definitions for τ1x, τ1p, etc., to (14). One can then evaluate {τ1, τ2|α, β〉 by

performing the integral

{τ1, τ2|α, β〉 =
∫

dx1dx2 {τ1, τ2|x1, x2〉〈x1, x2|α, β〉. (A.6)

This is yet another Gaussian integral, but this time only in two variables. Completing the

integration and substituting into (A.3), the coefficient can be written

{j, k|m,n〉 =

(

4γ1γ2γΓ√
j!k!m!n!Z

)1/2

× ∂j+k+m+n

∂τ j1∂τ
k
2 ∂α

m∂βn
e−1/2(τ2

1+τ2
2+α2+β2)eF/Z

∣

∣

∣

∣

∣

τ1,τ2,α,β=0

, (A.7)

where

F = (γ2 + µ2
2Γ

2 + γ2
2)(γα+ µ1Γβ + γ1τ1)

2

+2(γ2 − µ1µ2Γ
2)(γα+ µ1Γβ + γ1τ1)(−γα+ µ2Γβ + γ2τ2)

+(γ2 + µ2
1Γ

2 + γ2
1)(−γα+ µ2Γβ + γ2τ2)

2

Z = γ2Γ2 + µ2
2γ

2
1Γ

2 + µ2
1γ

2
2Γ

2 + γ2
1γ

2
2 + γ2(γ2

1 + γ2
2). (A.8)

The expression (A.7) depends in a complicated fashion on the non-physically meaningful

parameters γ1 and γ2, but surprisingly, when this coefficient is substituted into the summation

in (A.2), this dependence must cancel. To examine how this sum converges to the exact result

(34), Figure 7 depicts the convergence of P01 for four cases of (g, µ1) and for four several

different values of (γ1, γ2). We do not answer the potentially interesting question of how to

choose γ1 and γ2 for optimal convergence, although some features make intuitive sense. For

example, for smaller g, smaller choices for (γ1, γ2) converge faster. Also, for the cases where

µ1 = 1/10, choices with γ1 < γ2 converge faster than those with γ1 > γ2.

The advantage of using this method is that the reduced density matrix ρ̂1 can be ap-

proximated to arbitrary accuracy by a finite-dimensional matrix. This matrix, for example,

could be diagonalized and used to calculate the entropy of entanglement. Also, the coeffi-

cients {j, k|m,n〉 are necessary if one is to use the pseudo-spin operators [25] to construct

Bell-type inequalities for this system. More generally, even though one can find exact ana-

lytic continuous-variable expressions for the purity of the reduced matrix elements, numerical

schemes require discretization, which in certain cases has been shown to mask the presence

of entanglement in continuous variable systems [18].
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Fig. A.1. This figure depicts the convergence of the approximation scheme for P01 for four different

values of (g, µ1) and four different choices of the parameters (γ1, γ2): (γ1, γ2) = (1/
√
2, 1/

√
2) (cir-

cle), (1, 1) (square), (1/
√
2, 1) (up-triangle), and (1, 1/

√
2) (down-triangle). For each combination

of (g, µ1) and (γ1, γ2), the accuracy of six successive approximations to P01 are plotted. Each ap-

proximation corresponds to taking more and more terms in the sum in (A.2) from jmax = kmax = 0
to 5. If not all six shapes are apparent, successive approximation give results indistinguishable on
this scale. For the first case, (g, µ1) = (1, 1/2), the first choice (γ1, γ2) = (1/

√
2, 1/

√
2) gives the

exact result at the second approximation jmax = kmax = 1.
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Appendix B The matrix M

The entanglement of an number state can be calculated exactly using the expression

Pmn =
P00

(m!n!)2

(

4
∏

i=1

∂m

∂αm
i

∂n

∂βn
i

)

ez
TMz

∣

∣

∣

∣

∣

{αi,βi}=0

, (B.1)

where

zT = (α1, α2, α3, α4, β1, β2, β3, β4). (B.2)

The matrix M is 8× 8 and can be written as

M =

























u v −u w s −t −s t
v u w −u −t s t −s
−u w u v −s t s −t
w −u v u t −s −t s
s −t −s t −u w u v
−t s t −s w −u v u
−s t s −t u v −u w
t −s −t s v u w −u

























(B.3)

where

u = γ4 − Γ4µ2
1µ

2
2/D

v = γ4 + 2γ2Γ2µ2
1 + Γ4µ2

1µ
2
2/D

w = γ4 + 2γ2Γ2µ2
2 + Γ4µ2

1µ
2
2/D

s = γΓ(γ2 − Γ2µ1µ2)(µ1 − µ2)/D

t = γΓ(γ2 + Γ2µ1µ2)(µ1 + µ2)/D = γΓ(γ2 + Γ2µ1µ2)/D

D = 4(γ2 + Γ2µ1)(γ
2 + Γ2µ2)

It is useful to note that detM = 1/256.


