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1 Introduction

Since the last two decades, many authors have focused the attention in the construction of

good quantum codes [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26]. Recently, some authors have constructed asymmetric quantum error-correcting

codes (AQECC) [27, 28, 29, 16, 30, 31, 32, 33, 34], that are quantum codes defined over

quantum channels where the probability of occurrence of qudit-flip errors may be different

from the probability of occurrence of phase-shift errors. Actually, it is an extension of the

theory of quantum error-correcting codes (QECC) for asymmetric quantum channels. Steane

[35] was the first author who introduced the notion of asymmetric quantum errors. An

asymmetric quantum code is denoted by [[N,K, dz/dx]]q, where dz is used to correct phase-

shift errors and dx is applied to correct qudit-flip errors. More precisely, the code can correct

all qudit-flip errors up to ⌊(dx − 1)/2⌋ and all phase-shift errors up to ⌊(dz − 1)/2⌋.

In this paper, we propose the construction of several families of asymmetric q-ary (q is

an odd prime power) quantum Bose-Chaudhuri-Hocquenghem (BCH) codes by means of the

Calderbank-Shor-Steane (CSS) construction [4, 12, 36] applied to two distinct q-ary classical

BCH codes (note that most authors of QECC’s restrict themselves to binary codes, whereas

in this work we deal with construction of q-ary codes, where q is an odd prime power). More

precisely, we construct subclasses of (classical) BCH codes with great dimensions, computing

lower-bounds to the corresponding minimum distances dz and dx by applying the well-known

BCH bound. The proposed families have parameters better than the ones available in the

literature in a certain sense specified in this section.

Briefly, the CSS construction consists of constructing a pair of linear codes (C1, C2) with

C⊥
2 ⊂ C1, where C⊥

2 denotes the Euclidean dual of the code C2 (see for example [12]). Note
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that in some existing papers (see for example [4]) and also in this work, the code C2 is replaced

by C⊥
2 so that the pair becomes (C1, C

⊥
2 ) with C2 ⊂ C1 (the condition C⊥

2 ⊂ C1 is equivalent

to C⊥
1 ⊂ C2). The class of CSS quantum error-correcting codes falls in the class of symplectic

codes [4, 12, 1, 27, 2, 20].

Although in [26] families of quantum codes were constructed by applying similar technique,

the parameters (dimension and minimum distances) of the proposed families are quite different

from the ones shown in [26]. Additionally, the lower bounds for the minimum distances dz
and dx of codes displayed in [26] are the same, whereas in the present paper we construct

several families of asymmetric quantum codes where the lower bound for dz is greater than

the lower bound for dx. In other words, the proposed codes have the property that dz is large

when compared to dx, so such quantum codes are able to correct quantum errors with great

asymmetry.

To compare the asymmetric quantum codes constructed in this paper with the ones shown

in the literature we utilize the following criterion: for fixed values of the code-length n, and

for fixed values of dz and dx, the asymmetric quantum BCH codes constructed here achieve

greater values of the number of qudits than the ones available in the literature. This criterion

is based on the evaluation of the pair of minimum distances dz and dx (see [12, 33, 31, 34]).

According to this criterion, the proposed families consist of quantum codes whose param-

eters are better than the ones available in the literature; the new code parameters are given

by

i) [[n, n−m(2c− l − 4)− 2, dz ≥ c/dx ≥ (c− l)]]q, 2 ≤ c ≤ q and 0 ≤ l ≤ c− 2;

ii) [[n, n−m(2c− l − 6)− 2, dz ≥ c/dx ≥ (c− l)]]q, q + 2 < c ≤ 2q and 0 ≤ l ≤ c− q − 3;

iii) [[n, n−m(4q − l − 5)− 1, dz ≥ (2q + 1)/dx ≥ (2q − l)]]q, 0 ≤ l ≤ q − 2;

iv) [[n, n−m(4q − l − 5)− 2, dz ≥ (2q + 2)/dx ≥ (2q − l)]]q, 0 ≤ l ≤ q − 2,

where q is an odd prime power and n = qm − 1.

On the other hand, it may be noted that such criterion is applicable only to CSS codes,

whereas if it is adopted the fidelity (entanglement fidelity, or its variants) [36] as a measure

of efficiency, one can compare any (binary or nonbinary) QECC’s with any other (binary or

nonbinary) QECC’s. The quantum channels are usually (and also in this work) modeled as

trace-preserving completely positive (TPCP) maps (see [36, 27, 16]), in which the measure is

the fidelity [37, 38]. Such maps can be written in terms of Kraus operators Ai of the channel,

where the action of the channel on a given input state ρ is described as ρ 7−→
∑

i AiρA
†
i ,

where the completeness relation
∑

i A
†
iAi = I holds (here I denotes the identity map).

Constructive asymmetric CSS codes over arbitrarily (often memoryless) quantum chan-

nels (TPCP) have been presented with performance evaluation in the literature [16]. More

specifically, if the probability of occurrence of qudit-flip error is px and that of phase-shift is

pz, then the CSS codes shown in [16] (one particular form in [39] is explicit) achieve the rate

1−h(px)−h(pz), where h denotes the binary entropy function. In this context, it seems that

the quantum codes constructed in the present paper are not as good as the ones available in

[16]. However, an advantage offered by the proposed quantum codes when compared to the

ones shown in [16]: since the codes available in [16] are concatenated codes, the lengths of

such codes might be very large as compared to the codes constructed in this work.
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This paper is structured as follows. In Section 2, basic concepts on cyclic codes are

reviewed. In Section 3 we recall the concept of error operators and asymmetric quantum

codes. In Section 4, the quantum code construction generating several families of asymmetric

quantum BCH codes is presented. In Section 5, examples of the constructed asymmetric codes

are exhibited. In Section 6, the parameters of the constructed quantum codes are compared

with the ones available in the literature and, in Section 7, the concluding remarks are drawn.

2 Review of Cyclic Codes

Notation. Throughout this paper, we always assume that q is an odd prime power, n = qm−1

is the code length, Fq denotes a finite field with q elements, α denotes a primitive element of

Fqm , M (j)(x) denotes the minimal polynomial of αj ∈ Fqm , the congruence ≡ is considered

modulo n (mod n), CSS(C1, C2) denotes the asymmetric CSS code derived from two distinct

classical linear codes C1 and C2, C
⊥ denotes the Euclidean dual code of a code C and C[a]

denotes the cyclotomic coset containing a, where a is not necessarily the smallest number in

the coset C[a].

Let us recall some basic concepts on cyclic codes, necessary for the development of the

proposed code construction. For more details, we refer to [40, 41].

Definition 1 [40, pg. 99] The minimal polynomial of β ∈ Fqm over Fq, is the monic polyno-

mial of smallest degree, M(x), with coefficients from Fq such that M(β) = 0. If β = αj for

the primitive element α, the minimal polynomial of β = αj is denoted by M (j)(x).

Recall that irreducible polynomials can be derived in the following way: xqm − x = prod-

uct of all monic, irreducible polynomials over Fq, whose degree divides m. The concept of

cyclotomic cosets will be extensively used in this paper:

Definition 2 [40, pg. 197] The cyclotomic coset modulo n over Fq which contains s is

given by Cs = {s, sq, sq2, sq3, . . . , sqms−1}, where ms is the smallest positive integer such that

sqms ≡ s mod n. If s is the smallest number in a coset, this coset is denoted by Cs.

The following result also will be applied in our construction:

Theorem 1 [40, pg. 197] xn − 1 =
∏

j

M (j)(x), where M (j)(x) denotes the minimal

polynomial of αj ∈ Fqm and j runs through the coset representatives mod n.

Let C be a cyclic code of length n with generator polynomial g(x). Then g(x) is a factor

of xn − 1. The dimension of C equals n − r, where r = ∂(g(x)) denotes the degree of

g(x). The dual code C⊥ is cyclic and has generator polynomial g⊥(x) = x∂h(x)h(x−1), where

h(x) = (xn − 1)/g(x). Let us recall the concept of equivalence of codes:

Definition 3 [41, pg. 45] Two codes C and C∗ are called equivalent if they differ only in the

arrangement of symbols. More precisely, if C is the row space of a matrix G, then C∗ is a

code equivalent to C if and only if C∗ is the row space of a matrix G∗ that is obtained from

G by rearranging columns.

The code having generator polynomial h(x) is equivalent to the dual code C⊥. Let us next

recall the well-known BCH bound Theorem:

Theorem 2 [40, pg. 201] (The BCH bound Theorem) Let C be a cyclic code with gener-
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ator polynomial g(x) such that, for some integers b ≥ 0 and δ ≥ 1, one has

g(αb) = g(αb+1) = . . . = g(αb+δ−2) = 0,

that is, C has a sequence of δ − 1 consecutive powers of α as zeros. Then the minimum

distance of C is, at least, δ.

Definition 4 [40, pg. 202] A cyclic code of length n over Fq is a BCH code of designed

distance δ if, for some integer b ≥ 0, one has

g(x) = l.c.m.{M (b)(x),M (b+1)(x), . . . ,M (b+δ−2)(x)},

that is, g(x) is the monic polynomial of smallest degree over Fq having

αb, αb+1, . . . , αb+δ−2 as zeros.

From the BCH bound theorem, the minimum distance of a BCH code is greater than or equal

to its designed distance δ. The following lemma will be applied in the proposed construction:

Lemma 1 [15, Lemmas 8 and 9] Let n ≥ 1 be an integer and q be a power of a prime such

that gcd(n, q) = 1 and q⌊m/2⌋ < n ≤ qm − 1, where m = ordn(q) denotes the multiplicative

order of q modulo n. Then the cyclotomic coset Cx = {xqj mod n | 0 ≤ j < m} has

cardinality m for all x in the range 1 ≤ x ≤ nq⌈m/2⌉/(qm − 1). Moreover, if x and y are

distinct integers in the range 1 ≤ x, y ≤ min{⌊nq⌈m/2⌉/(qm − 1) − 1⌋, n − 1} such that the

congruence x, y ≡ 0 mod q does not hold, then the q-ary cyclotomic cosets of x and y modulo

n are distinct.

3 Error Model and Asymmetric Codes

In this section we recall an appropriate error model to measure the performance of a code

[4, 20].

Let H be the Hilbert space H = Cqn = Cq ⊗ . . . ⊗ Cq, where Cq denotes a q-dimensional

complex vector space representing the states of a quantum mechanical system. Let |x〉 be the

vectors of an orthonormal basis of Cq, where the labels x are elements of Fq.

Consider a, b ∈ Fq; the unitary operatorsX(a) and Z(b) on Cq are defined byX(a)|x〉 =|x+

a〉 and Z(b)|x〉 = wtr(bx)|x〉, respectively, where w = exp(2πi/p) is a primitive pth root of

unity and tr is the trace map from Fq to the prime field Fp.

Consider that a = (a1, . . . , an) ∈ Fn
q and b = (b1, . . . , bn) ∈ Fn

q . Denote by X(a) =

X(a1)⊗ . . .⊗X(an) and Z(b) = Z(b1)⊗ . . .⊗Z(bn) the tensor products of n error operators.

The set En = {X(a)Z(b) | a,b ∈ Fn
q } is a error basis on the complex vector space Cqn

and the set Gn = {wcX(a)Z(b) | a,b ∈ Fn
q , c ∈ Fp} is the error group associated with En.

For a quantum error e = wcX(a)Z(b) ∈ Gn the quantum weight wQ(e) of e is defined as

wQ(e) = #{i : 1 ≤ i ≤ n, (ai, bi) 6= (0, 0)}; the X-weight wX(e) of e is defined by wX(e) =

#{i : 1 ≤ i ≤ n, ai 6= 0} and the Z-weight wZ(e) of e by wZ(e) = #{i : 1 ≤ i ≤ n, bi 6= 0}.

In this paper we deal with the construction of several families of asymmetric quantum

codes in which pz > px, where px if the probability of occurrence of qudit-flip error and pz is

the probability of occurrence of phase-shift error, so dz > dx.

Definition 5 [4, 20, 33, 34] (AQECC) A q-ary asymmetric quantum code C, denoted by

[[n, k, dz/dx]]q, is a qk-dimensional subspace of the Hilbert space Cqn and corrects all qudit-

flip errors up to ⌊ (dx−1)
2 ⌋ and all phase-shift errors up to ⌊ (dz−1)

2 ⌋.
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Let us recall the well-known CSS quantum code construction:

Theorem 3 [36, 12, 4, 20](CSS codes) Let C1 and C2 denote two classical linear codes

with parameters [n, k1, d1]q and [n, k2, d2]q, respectively, and dx = min{wt(C1\C2), wt(C
⊥
2 \C⊥

1 )}

and dz = max{wt(C1\C2), wt(C
⊥
2 \C⊥

1 )}. If C2 ⊂ C1, then there exists an AQECC with pa-

rameters [[n,K = k1 − k2, dz/dx]]q.

4 Code Constructions

In this section we present the contributions of this paper. The main results are Theorems 4

and 5 and Corollary 1. They provide several families of nonbinary asymmetric quantum BCH

codes. Roughly speaking, the main idea applied in Theorem 4 is as follows: the smaller the

cardinality of the defining set is, the greater is its dimension. According to this idea, we need

to show there exist distinct and specific singleton cyclotomic cosets contained in the defining

sets of codes C1 and C, where C is the code equivalent to the code C⊥
2 . Additionally, we need

to find the cardinality of their defining sets and also we have to show that they are disjoint

themselves. All these results will be shown from Lemma 2 to Lemma 7. They enable us to

compute the exact dimension of the corresponding quantum code, which is a hard task, since

the dimension of BCH codes are not known. In our construction we always assume that the

code C1 is used to correct phase-shift errors and the code C⊥
2 is used to correct qudit-flip

errors.

Let us recall the following lemmas shown in [26].

Lemma 2 Let n = qm − 1, where q ≥ 3 is an odd prime power and m ≥ 3 is an integer.

Then,

i) The cyclotomic coset C[ q
m

−1

2
] contains only one element;

ii) The coset C[ q
m

−1

2
−1] contains the element qm−1

2 − q;

iii) The coset C[ q
m

−1

2
+1] contains the element qm−1

2 + q.

Proof See [26, Lemma 3.1].

Lemma 3 If n = qm − 1, where q ≥ 3 is an odd prime power and m ≥ 3 is an integer,

then the q-ary cyclotomic cosets C1,C2, . . . ,Cq−1,Cq+1, . . . ,C2q−1 (modulo n) are disjoint

and each of them has m elements.

Proof See [26, Lemma 3.2].

Lemma 4 If n = qm − 1, where q ≥ 3 is an odd prime power and m ≥ 3 is an integer (if

q = 3, m ≥ 4) then the q-ary cyclotomic cosets

C0,C1,C2, . . . ,Cq−1,Cq+1, . . . ,C2q−1

are distinct from the q-ary cosets C[ q
m

−1

2
+k], where k = 0, 1, . . . , q − 1.

Proof See [26, Lemma 3.3].

Lemma 5 If n = qm − 1, where q ≥ 3 is an odd prime power and m ≥ 3 is an integer (if

q = 3, m ≥ 4), then the q-ary cyclotomic cosets

C0,C1,C2, . . . ,Cq−1,Cq+1, . . . ,C2q−1

are distinct from the q-ary cosets C[ q
m

−1

2
−k], where k = 1, . . . , q − 1.
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Proof See [26, Lemma 3.4].

Lemma 6 Let n = qm − 1, where q ≥ 3 is an odd prime power and m ≥ 3 is an integer.

i) Each one of the q-ary cosets C[ q
m

−1

2
+k] is distinct, where k = 1, . . . , q − 1;

ii) Each one of the q-ary cosets C[ q
m

−1

2
−k] is distinct, where k = 1, . . . , q − 1;

iii) The cosets of the form C[ q
m

−1

2
+i] are distinct from each one of the cosets of the form

C[ q
m

−1

2
−j], where 1 ≤ i, j ≤ q − 1.

Proof See [26, Lemma 3.5].

Lemma 7 Let n = qm − 1, where q ≥ 3 is an odd prime power and m ≥ 3 is an integer

(if q = 3, m ≥ 4). Then, each one of the q-ary cosets C[ q
m

−1

2
+i] and C[ q

m
−1

2
−j], where

1 ≤ i, j ≤ q − 1 has m elements.

Proof See [26, Lemma 3.6].

Let us now show Theorem 4:

Theorem 4 Let n = qm − 1, where q is an odd prime power and m ≥ 3 is an integer (if

q = 3, m ≥ 4). Then there exist quantum codes with parameters

[[n, n−m(4q − 5)− 2, dz ≥ (2q + 2)/dx ≥ 2q]]q.

Proof Let C1 = [n, k1]q be the classical BCH code generated by the product of the minimal

polynomials

g1(x) = M (0)(x)M (1)(x) . . .M (q−1)(x)M (q+1)(x) . . .M (2q−1)(x),

and C2 = [n, k2]q be the cyclic code generated by the product of the minimal polynomials

g2(x) =
∏

i

M (i)(x),

where each M (i)(x) is the minimal polynomial of αi such that

i /∈ {a− q + 2, . . . , a− 1, a, a+ 1, . . . , a+ q − 1},

a = qm−1
2 and i runs through the coset representatives mod n = qm − 1.

We next construct asymmetric quantum BCH codes derived from codes C1 and C2 by

applying the CSS construction. From the BCH bound one has d1 ≥ 2q + 2, where d1 is

the minimum distance of C1, since the defining set of C1 contains the sequence of 2q + 1

consecutive integers given by 0, 1, . . . , 2q. Similarly, the defining set of the code C generated

by the polynomial h2(x) = (xn − 1)/g2(x) contains a sequence of 2q − 1 consecutive integers

given by a − q + 2, . . . , a − 1, a, a + 1, . . . , a + q, since, from Lemma 2, the coset C[ q
m

−1

2
+1]

contains the element qm−1
2 +q. Thus, from the BCH bound, C has minimum distance greater

than or equal to 2q. Since C is equivalent to C⊥
2 , it follows that C⊥

2 also has minimum

distance greater than or equal to 2q. Therefore, the resulting asymmetric quantum code has

minimum distances dz ≥ 2q + 2 and dx ≥ 2q. Furthermore, from Lemmas 4 and 5 and by

construction, one has C2 ( C1.
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Next, let us compute the dimension of the proposed families of CSS codes. From Lemma 3,

the (2q − 2) q-ary cyclotomic cosets

C1,C2, . . . ,Cq−1,Cq+1, . . . ,C2q−1

(modulo n) are disjoint and each of them has m elements. Since C0 has only one element,

the defining set of code C1 has 2m(q− 1)+ 1 elements. We know that, if i ∈ Cs then one has

M (i)(x) =
∏

j∈Cs

(x− αj), (1)

where α is a primitive element of Fqm and M (i)(x) denotes the minimal polynomial of the

element αi ∈ Fqm .

Equation (1) means that the degree of the polynomial M (i)(x) equals the cardinality of the

coset Cs, and so the degree of the generator polynomial of a cyclic code equals the cardinality of

its defining set. Hence, the dimension k1 of code C1 equals k1 = n−∂g1(x) = n−2m(q−1)−1.

From Lemma 2, the coset C[ q
m

−1

2
] contains only one element. From Lemmas 6 and 7

the (2q − 2) q-ary cosets C[ q
m

−1

2
+j] and C[ q

m
−1

2
−i], where 1 ≤ i, j ≤ q − 1, are disjoint and

each of them has m elements. Since the coset C[ q
m

−1

2
] has only one element and each one

of the cosets C[ q
m

−1

2
+j] and C[ q

m
−1

2
−i], 1 ≤ i, j ≤ q − 1, has m elements, m ≥ 3 (m ≥ 4 if

q = 3), we conclude that the coset C[ q
m

−1

2
] is disjoint of the cosets C[ q

m
−1

2
+j] and C[ q

m
−1

2
−i],

1 ≤ i, j ≤ q − 1. Therefore, the dimension of C2 is given by

k2 = n− ∂g2(x) = n− [n−m(2q − 3)− 1] = m(2q − 3) + 1,

and so, the dimension of the corresponding asymmetric quantum code equals

k1 − k2 = n− 2m(q − 1)− 1−m(2q − 3)− 1 = n−m(4q − 5)− 2,

where n = qm − 1.

Applying the CSS construction to C1 and C2 one obtains asymmetric quantum BCH codes

with parameters

[[n, n−m(4q − 5)− 2, dz ≥ (2q + 2)/dx ≥ 2q]]q,

as desired.

Theorem 5 is a generalization of Theorem 4. It is one of the main results of this paper:

Theorem 5 Let n = qm − 1, where q is an odd prime power and m ≥ 3 is an integer (if

q = 3, m ≥ 4). Then there exist quantum codes with parameters

[[n, n−m(4q − c− 5)− 2, dz ≥ (2q + 2)/dx ≥ (2q − c)]]q,

where 0 ≤ c ≤ q − 2.

Proof Let C1 = [n, k1]q be the BCH code generated by the product of the minimal polyno-

mials

g1(x) = M (0)(x)M (1)(x) . . .M (q−1)(x)M (q+1)(x) . . .M (2q−1)(x),
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and C2 = [n, k2]q be the cyclic code generated by the product of the minimal polynomials

g2(x) =
∏

i

M (i)(x),

where each M (i)(x) is the minimal polynomial of αi such that

i /∈ {a− q + 2 + c, . . . , a, a+ 1, . . . , a+ q − 1},

a = qm−1
2 , i runs through the coset representatives mod n = qm − 1 and 0 ≤ c ≤ q − 2.

By applying the BCH bound as in the proof of Theorem 4 one concludes that dz ≥ 2q+2

and dx ≥ 2q − c hold.

Let us now compute the dimension k1 of C1 and k2 of C2. By applying the same method

shown in the proof of Theorem 4, it can be easily seen that

k1 = n− 2m(q − 1)− 1

and

k2 = n− [n−m(q − 1)− 1−m(q − 2− c)] = m(2q − c− 3) + 1,

so

k1 − k2 = n− 2m(q − 1)− 1−m(2q − c− 3)− 1 = n−m(4q − c− 5)− 2.

Therefore, asymmetric quantum codes with parameters

[[n, n−m(4q − c− 5)− 2, dz ≥ (2q + 2)/dx ≥ (2q − c)]]q

can be constructed.

Corollary 1 Let n = qm − 1, q is an odd prime power and m ≥ 3 is an integer. Then we

have:

i) There exist quantum codes with parameters

[[n, n−m(2c− l − 4)− 2, dz ≥ c/dx ≥ (c− l)]]q,

where 2 ≤ c ≤ q and 0 ≤ l ≤ c− 2;

ii) There exist quantum codes with parameters

[[n, n−m(2c− l − 6)− 2, dz ≥ c/dx ≥ (c− l)]]q,

where q + 2 < c ≤ 2q and 0 ≤ l ≤ c− q − 3;

iii) There exist quantum codes with parameters

[[n, n−m(4q − l − 5)− 1, dz ≥ (2q + 1)/dx ≥ (2q − l)]]q,

where 0 ≤ l ≤ q − 2.

Proof

Consider that n = qm− 1, where n is the code-length, q is an odd prime power and m ≥ 3

is an integer.
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i) It suffices to consider C1 as the BCH code generated by the product of the minimal

polynomials

g1(x) = M (0)(x)M (1)(x) . . .M (c−2)(x),

and C2 be the cyclic code generated by the product of the minimal polynomials

g2(x) =
∏

i

M (i)(x),

where each M (i)(x) is the minimal polynomial of αi such that i /∈ {a, . . . , a+ c− 2− l},

a = qm−1
2 and i runs through the coset representatives mod qm−1. Proceeding similarly

as in the proof of Theorem 4 the result follows.

ii) Let C1 be the BCH code generated by the product of the minimal polynomials

g1(x) = M (0)(x)M (1)(x) . . .M (q−1)(x)M (q+1)(x) . . .M (c−2)(x),

and C2 be the cyclic code generated by the product of the minimal polynomials

g2(x) =
∏

i

M (i)(x),

where each M (i)(x) is the minimal polynomial of αi such that i /∈ {a − r + l, . . . , a −

1, a, a+1, . . . , a+q−1}, a = qm−1
2 , r is an integer such that r = c−2−q, 0 ≤ l ≤ c−q−3

and i runs through the coset representatives mod qm−1. Proceeding similarly as in the

proof of Theorem 4 the result follows.

iii) Let C1 be the BCH code generated by the product of the minimal polynomials

g1(x) = M (1)(x) . . .M (q−1)(x)M (q+1)(x) . . .M (2q−1)(x),

and C2 be the cyclic code generated by the product of the minimal polynomials

g2(x) =
∏

i

M (i)(x),

where each M (i)(x) is the minimal polynomial of αi such that i /∈ {a−q+2+l, . . . , a, a+

1, . . . , a + q − 1}, a = qm−1
2 and i runs through the coset representatives mod qm − 1.

Applying the CSS construction to codes C1 and C2 and proceeding similarly as in the

proof of Theorem 4 the result follows.

From now on we investigate the case m = 3 and q = 3. For q = 3 and n = 33 − 1 = 26 the

cyclotomic cosets are given by C0 = {0},C1 = {1, 3, 9},C2 = {2, 6, 18},C4 = {4, 12, 10},C5 =

{5, 15, 19}, C7 = {7, 21, 11},C8 = {8, 24, 20},

C13 = {13},C14 = {14, 16, 22},C17 = {17, 25, 23}.

Corollary 2 There exist quantum codes with parameters

[[26, 13, dz ≥ 5/dx ≥ 4]]3,

[[26, 15, dz ≥ 5/dx ≥ 3]]3,

[[26, 16, dz ≥ 4/dx ≥ 3]]3.
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Proof Consider C1 = [n, k1]3 be the BCH code generated by the product of the minimal

polynomials

C1 = 〈g1(x)〉 = 〈M (0)(x)M (1)(x)M (2)(x)〉

and let C2 = [n, k2]3 be the cyclic code generated by

∏

i

M (i)(x),

where each M (i)(x) is the minimal polynomial of αi such that i /∈ {5, 14}, and i runs through

the coset representatives mod 26.

The sequence 0, 1, 2, 3 belongs to the defining set of C1 so, from the BCH bound, one

has d1 ≥ 5, where d1 is the minimum distance of C1. Moreover, it follows that K1 = 19.

The sequence 14, 15, 16 belongs to the defining set of code C which is generated by the

polynomial h2(x) = (xn − 1)/g2(x). Since C is equivalent to C⊥
2 , by applying the BCH

bound, C⊥
2 has minimum distance d⊥2 ≥ 4. Moreover, C2 has dimension k2 = 6. Therefore,

an [[26, 13, dz ≥ 5/dx ≥ 4]]3 asymmetric quantum code can be constructed.

Analogously, if

C1 = 〈g1(x)〉 = 〈M (0)(x)M (1)(x)M (2)(x)〉

and if C2 is the cyclic code generated by
∏

i

M (i)(x), where each M (i)(x) is the minimal

polynomial of αi such that i /∈ {13, 14}, and i runs through the coset representatives mod 26,

an [[26, 15, dz ≥ 5/dx ≥ 3]]3 asymmetric quantum BCH code is constructed.

Furthermore, if C1 = 〈g1(x)〉 = 〈M (1)(x)M (2)(x)〉 and if C2 is the cyclic code generated

by
∏

i

M (i)(x), where each M (i)(x) is the minimal polynomial of αi such that i /∈ {13, 14},

and i runs through the coset representatives mod 26, then an [[26, 16, dz ≥ 4/dx ≥ 3]]3 code

is generated.

5 Examples

In this section we present illustrative examples to show how the proposed construction works.

Example 5.1 Let C1 be the BCH code and C2 be the cyclic code both of length 80 over F3,

generated, respectively, by the polynomials

g1 = M (0)(x)M (1)(x)M (2)(x)M (4)(x)M (5)(x),

and

g2(x) =
∏

i

M (i)(x),

where each M (i)(x) is the minimal polynomial of αi such that i /∈ {14, 40, 41}, and i runs

through the coset representatives mod 80.

We know that the sequence 0, 1, 2, 3, 4, 5, 6 belongs to the defining set of C1 so, from the

BCH bound, one obtains d1 ≥ 8, where d1 is the minimum distance of C1. Analogously, the

sequence 40, 41, 42, 43 belongs to the defining set of code C which is generated by the polynomial

h2(x) = (xn−1)/g2(x). Since C is equivalent to C⊥
2 , from the BCH bound, C⊥

2 has minimum

distance greater than or equal to 5. The cosets of C1 are C0 = {0},C1 = {1, 3, 9, 27},C2 =
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{2, 6, 18, 54},C4 = {4, 12, 36, 28},C5 = {5, 15, 45, 55}, and the cosets of C2 are all cyclotomic

cosets except the cosets C14 = {14, 42, 46, 58},C40 = {40},C41 = {41, 43, 49, 67}.

Therefore C1 has dimension k1 = 80−17 = 63 and C2 has dimension k2 = 80−(80−9) = 9

so, the dimension of this asymmetric quantum code is equal to k1−k2 = 63−9 = 54. Therefore,

an [[80, 54, dz ≥ 8/dx ≥ 5]]3 asymmetric quantum BCH code is constructed. Similarly, an

[[80, 58, dz ≥ 6/dx ≥ 5]]3 quantum code can be constructed, and so on.

Example 5.2 Let C1 be the BCH code and let C2 be the cyclic code, both of length 124 over

F5, generated, respectively, by the polynomials

g1(x) = M (0)(x)M (1)(x)M (2)(x)M (3)(x),

and

g2(x) =
∏

i

M (i)(x),

where each M (i)(x) is the minimal polynomial of αi such that i /∈ {62, 63, 64}, and i runs

through the coset representatives mod n = 124. Proceeding similarly as above, an [[124, 107, dz
≥ 5/dx ≥ 4]]5 asymmetric quantum code can be obtained. Analogously, an [[124, 110, dz ≥ 5/dx
≥ 3]]5 quantum code can be constructed, and so on.

6 Code Comparisons

In this section we compare the parameters of the asymmetric CSS codes constructed in this

paper with the best asymmetric CSS codes available in [31]. For, let us recall a result shown

in [31]:

Theorem 6 [31, Theorem 8] Let q be a prime power and gcd(q, n) = 1, with ordn(q) = m.

Let C1 and C2 be two narrow-sense BCH codes of length q⌊m/2⌋ < n ≤ qm − 1 over Fq with

designed distances δ1 and δ2 in the range 2 ≤ δ1, δ2 ≤ δmax = min{⌊nq⌈m/2⌉/(qm − 1)⌋, n}

and δ1 < δ⊥2 ≤ δ2 < δ⊥1 . Assume S1 ∪ . . . ∪ Sδ1−1 6= S1 ∪ . . . ∪ Sδ2−1, then there exists an

asymmetric quantum error control code with parameters

[[n, n−m⌈(δ1 − 1)(1− 1/q)⌉ −m⌈(δ2 − 1)(1− 1/q)⌉, d∗z/d
∗
x]]q,

where d∗z = wt(C2\C
⊥
1 ) ≥ δ2 > d∗x = wt(C1\C

⊥
2 ) ≥ δ1.

In Table 1, the parameters of asymmetric quantum BCH codes shown in [31] are given by

[[n, k∗, d∗z/d
∗
x]]q = [[n, n−m⌈(δ1 − 1)(1− 1/q)⌉ −m⌈(δ2 − 1)(1− 1/q)⌉, d∗z/d

∗
x]]q,

where d∗z = wt(C2\C
⊥
1 ) ≥ δ2 > d∗x = wt(C1\C

⊥
2 ) ≥ δ1. Here, n = qm−1 is the code length, (q

is an odd prime power), k∗ is the code dimension and d∗z/d
∗
x are the corresponding minimum

distances with respect to phase-shift and qudit-flip errors, respectively.

The new code parameters are denoted by [[n, k, dz ≥ d/dx ≥ (d− c)]]q and are given by:

• [[n, n−m(2c− l − 4)− 2, dz ≥ c/dx ≥ (c− l)]]q, where 2 ≤ c ≤ q and 0 ≤ l ≤ c− 2;

• [[n, n−m(2c− l − 6)− 2, dz ≥ c/dx ≥ (c− l)]]q, where q + 2 < c ≤ 2q and 0 ≤ l ≤

c− q − 3;

• [[n, n−m(4q − l − 5)− 1, dz ≥ (2q + 1)/dx ≥ (2q − l)]]q, where 0 ≤ l ≤ q − 2;
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• [[n, n−m(4q − l − 5)− 2, dz ≥ (2q + 2)/dx ≥ (2q − l)]]q, where 0 ≤ l ≤ q − 2.

Here, n = qm − 1 is the code length, where q is an odd prime power, k is the code dimension

and dz/dx are the corresponding minimum distances with respect to phase-shift and qudit-flip

errors, respectively.

Table 1. Quantum Code Comparison.

New asymmetric codes Asymmetric codes shown in [31]
[[n, k, dz ≥ d/dx ≥ (d− c)]]

q
[[n, k∗, dz∗/dx∗ ]]

q

[[26, 16, dz ≥ 4/dx ≥ 3]]
3

[[26, 14, dz∗ ≥ 4/dx∗ ≥ 3]]
3

[[26, 15, dz ≥ 5/dx ≥ 3]]
3

[[26, 11, dz∗ ≥ 5/dx∗ ≥ 3]]
3

[[26, 13, dz ≥ 5/dx ≥ 4]]
3

[[26, 11, dz∗ ≥ 5/dx∗ ≥ 4]]
3

[[80, 58, dz ≥ 6/dx ≥ 5]]
3

[[80, 52, dz∗ ≥ 6/dx∗ ≥ 5]]
3

[[80, 54, dz ≥ 8/dx ≥ 5]]
3

[[80, 48, dz∗ ≥ 8/dx∗ ≥ 5]]
3

[[242, 210, dz ≥ 8/dx ≥ 5]]
3

[[242, 202, dz∗ ≥ 8/dx∗ ≥ 5]]
3

[[242, 205, dz ≥ 8/dx ≥ 6]]
3

[[242, 197, dz∗ ≥ 8/dx∗ ≥ 6]]
3

[[728, 690, dz ≥ 8/dx ≥ 5]]
3

[[728, 680, dz∗ ≥ 8/dx∗ ≥ 5]]
3

[[728, 684, dz ≥ 8/dx ≥ 6]]
3

[[728, 674, dz∗ ≥ 8/dx∗ ≥ 6]]
3

[[728, 691, dz ≥ 7/dx ≥ 5]]
3

[[728, 686, dz∗ ≥ 7/dx∗ ≥ 5]]
3

[[124, 110, dz ≥ 5/dx ≥ 3]]
5

[[124, 106, dz∗ ≥ 5/dx∗ ≥ 3]]
5

[[124, 107, dz ≥ 5/dx ≥ 4]]
5

[[124, 103, dz∗ ≥ 5/dx∗ ≥ 4]]
5

[[124, 86, dz ≥ 10/dx ≥ 8]]
5

[[124, 82, dz∗ ≥ 10/dx∗ ≥ 8]]
5

[[124, 87, dz ≥ 11/dx ≥ 7]]
5

[[124, 85, dz∗ ≥ 11/dx∗ ≥ 7]]
5

[[124, 86, dz ≥ 12/dx ≥ 7]]
5

[[124, 82, dz∗ ≥ 12/dx∗ ≥ 7]]
5

[[124, 83, dz ≥ 12/dx ≥ 8]]
5

[[124, 79, dz∗ ≥ 12/dx∗ ≥ 8]]
5

[[124, 80, dz ≥ 12/dx ≥ 9]]
5

[[124, 76, dz∗ ≥ 12/dx∗ ≥ 9]]
5

[[124, 77, dz ≥ 12/dx ≥ 10]]
5

[[124, 73, dz∗ ≥ 12/dx∗ ≥ 10]]
5

[[624, 606, dz ≥ 5/dx ≥ 3]]
5

[[624, 600, dz∗ ≥ 5/dx∗ ≥ 3]]
5

[[624, 602, dz ≥ 5/dx ≥ 4]]
5

[[624, 596, dz∗ ≥ 5/dx∗ ≥ 4]]
5

[[624, 574, dz ≥ 10/dx ≥ 8]]
5

[[624, 568, dz∗ ≥ 10/dx∗ ≥ 8]]
5

[[624, 575, dz ≥ 11/dx ≥ 7]]
5

[[624, 572, dz∗ ≥ 11/dx∗ ≥ 7]]
5

[[624, 574, dz ≥ 12/dx ≥ 7]]
5

[[624, 568, dz∗ ≥ 12/dx∗ ≥ 7]]
5

[[624, 562, dz ≥ 12/dx ≥ 10]]
5

[[624, 556, dz∗ ≥ 12/dx∗ ≥ 10]]
5

[[342, 322, dz ≥ 7/dx ≥ 3]]
7

[[342, 318, dz∗ ≥ 7/dx∗ ≥ 3]]
7

[[342, 316, dz ≥ 7/dx ≥ 5]]
7

[[342, 312, dz∗ ≥ 7/dx∗ ≥ 5]]
7

[[342, 292, dz ≥ 12/dx ≥ 10]]
7

[[342, 288, dz∗ ≥ 12/dx∗ ≥ 10]]
7

[[342, 284, dz ≥ 15/dx ≥ 10]]
7

[[342, 282, dz∗ ≥ 15/dx∗ ≥ 10]]
7

[[342, 286, dz ≥ 16/dx ≥ 9]]
7

[[342, 282, dz∗ ≥ 16/dx∗ ≥ 9]]
7

7 Final Remarks

We have constructed several families of asymmetric quantum BCH codes whose parameters

are better than the ones available in the literature. Additionally, such codes can be applied

in quantum systems where the asymmetry between qudit-flip and phase-shift errors is large.
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