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Suppose we can apply a given 2-qubit Hamiltonian H to any (ordered) pair of qubits.

We say H is n-universal if it can be used to approximate any unitary operation on

n qubits. While it is well known that almost any 2-qubit Hamiltonian is 2-universal
(Deutsch, Barenco, Ekert 1995; Lloyd 1995), an explicit characterization of the set of

non-universal 2-qubit Hamiltonians has been elusive. Our main result is a complete

characterization of 2-non-universal 2-qubit Hamiltonians. In particular, there are three
ways that a 2-qubit Hamiltonian H can fail to be universal: (1) H shares an eigenvector

with the gate that swaps two qubits, (2) H acts on the two qubits independently (in

any of a certain family of bases), or (3) H has zero trace (with the third condition
relevant only when the global phase of the unitary matters). A 2-non-universal 2-qubit

Hamiltonian can still be n-universal for some n ≥ 3. We give some partial results on
3-universality.
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1 Introduction

It is often useful to understand when a given set of resources is sufficient to perform univer-

sal computation. In particular, universal Hamiltonians have many applications in quantum

computation.

Suppose we can implement one specific 2-qubit Hamiltonian H ∈ u(4), where u(4) denotes

the set of all 4× 4 Hermitian matrices. Assume we have n qubits and we can apply H to any

ordered pair of them for any amount of time. We say that H is n-universal if it is possible to

approximate any unitary evolution U ∈ U(2n) to any desired accuracy by repeatedly applying

H to different pairs of qubits.

It is known that almost any 2-qubit Hamiltonian is universal [1, 2], i.e., non-universal

2-qubit Hamiltonians form a measure-zero subset of u(4). Thus generic interactions are suit-

able for universal computation. But this does not address the issue of deciding whether a

particular Hamiltonian is universal.

Given a specific H ∈ u(4), one can check numerically if H is n-universal by determining

whether H, when applied on different pairs of qubits, generates the Lie algebra of U(2n)

(see Section 2.4). However, this characterization can be inconvenient for answering structural
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questions about universality. For example, suppose we can experimentally implement Hamil-

tonians of a certain restricted form, say, α(X⊗I)+β(Y ⊗Y ) for some α, β ∈ R. Determining

which of these Hamiltonians are universal is not straightforward using the Lie-algebraic char-

acterization. Indeed, until now there has been no simple closed-form characterization of the

set of non-universal 2-qubit Hamiltonians.

In this paper we characterize the set of all 2-non-universal 2-qubit Hamiltonians. In

particular, our characterization easily answers questions such as those described above. We

give a finite list of families of 2-non-universal 2-qubit Hamiltonians such that each family can

be easily parametrized and together they cover all 2-non-universal 2-qubit Hamiltonians.

The remainder of the paper is organized as follows. Section 2 introduces the concept

of universality. We give our definition of universality, contrast this definition with some

alternatives, review previous related work, and present a Lie-algebraic formulation. Section 3

then establishes our main result. We start from some simple families of Hamiltonians that are

obviously 2-non-universal, extend them with a class of operations that preserve this property,

and then show that the extended families exactly characterize 2-universality. Section 4 briefly

summarizes what we know about 3-universality. Finally, we conclude in Section 5 with a

discussion of some open problems.

2 Universality in quantum computing

2.1 Definition of universality

We begin with some basic definitions needed to precisely specify the problem addressed by

this paper.

Definition 1 We say that H is an n-qubit Hamiltonian if H ∈ u(2n), i.e., H ∈ M2n(C)

(MN (C) denotes the set of N ×N complex matrices) and H is Hermitian (H† = H).

In this paper we mainly deal with 2-qubit Hamiltonians, i.e., 4×4 Hermitian matrices. We

often say “a Hamiltonian H” without explicitly mentioning that it is a 2-qubit Hamiltonian.

Definition 2 We say that we can simulate a unitary transformation U ∈ U(N) using Hamil-

tonians H1, . . . ,Hk ∈ u(N) if for all ε > 0 there exist l ∈ N, j1, . . . , jl ∈ {1, . . . , k}, and

t1, . . . , tl > 0 such that ∥∥U − e−iHj1
t1e−iHj2

t2 . . . e−iHjl
tl
∥∥
∞ < ε. (1)

Definition 2 only allows the use of positive ti for simulating a unitary U by Hamiltonians

H1, . . . ,Hk, since ti corresponds to the length of time the system evolves according to Hji .

However, this restriction can be relaxed to ti ∈ R. This is because an evolution by negative

time can be approximated by evolving our system according to H for some positive time

instead (see Claim 2 in Appendix A for a proof).

We only require the ability to approximate any unitary to arbitrary precision. Such a

definition is motivated by related universality problems based on discrete universal gate sets

to be discussed below. We are not concerned about the time it takes to complete the simulation

as long as we can simulate any unitary. Also, we do not assume the availability of ancillary

systems.
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Definition 3 Let 2 ≤ m ≤ n. We say that an m-qubit Hamiltonian H is n-universal if we

can simulate all unitary transformations in U(2n) using Hamiltonians from the set{
P (H ⊗ I⊗n−m)P † | P ∈ Sn

}
, (2)

where Sn is the group of matrices that permute n qubits. That is, we can apply H to any

ordered subset of m qubits (out of n qubits in total).

Note that this definition requires the ability to simulate arbitrary elements of U(2n) as

opposed to simply SU(2n). This distinction may be significant if the overall phase of the

simulation is not global, such as when implementing a controlled-unitary gate. To neglect a

global phase, one can simply replace U(2n) by SU(2n) in the definition of universality.

The main goal of this paper is to characterize the set of 2-universal 2-qubit Hamiltonians.

One motivation for this is that any 2-universal 2-qubit Hamiltonian is also n-universal for

all integers n ≥ 2 (see Lemma 2 in Section 2.4). Note that a 2-qubit Hamiltonian H is

2-universal if we can simulate all unitary transformations in U(4) using H and THT , where

T is the gate that swaps the two qubits, with the following representation in the computational

(i.e., standard) basis:

T :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (3)

To achieve our goal, we classify those 2-qubit Hamiltonians that are not 2-universal.

2.2 Other notions of universality

Universal primitives for quantum computation, such as Hamiltonians and unitary gates, have

been extensively studied previously; see for example Refs. [1, 2, 3, 4, 5, 6, 7, 8]. Since the

primitives are often physically motivated, there are different definitions of universality appro-

priate for different circumstances. First, one can study the universality of a set of quantum

gates (instead of Hamiltonians). Second, one can study universality assuming ancillary qubits

can be prepared and used to facilitate the computation. In particular, one might consider the

following definitions of universality with ancillae:

Definition 4 For all n, k ∈ N let C(n, k) be the set of all functions from n-bit strings to

k-bit strings. We say that a set of logical gates S is classically universal with ancillae if for

all n, k ∈ N and all C ∈ C(n, k) there exist na ∈ N and a logical circuit G ∈ C(n + na, k +

na) containing gates exclusively from S that simulates C using ancillae, i.e., there exists

a ∈ {0, 1}na such that for all ψ ∈ {0, 1}n we have (C(ψ), a) = G(ψ, a).

Definition 5 We say that a set of unitary gates S is (quantumly) universal with ancil-

lae if for all n ∈ N, all ε > 0, and all U ∈ U(2n), there exist na ∈ N and a quantum

circuit G ∈ U(2n+na) containing gates exclusively from S that approximates U with preci-

sion ε using ancillae, i.e., there exists a ∈ {0, 1}na such that for all |ψ〉 ∈ C2n we have

‖(U |ψ〉)⊗ |a〉 −G(|ψ〉 ⊗ |a〉)‖ < ε.

Note that in the above definitions we assume the ability to prepare standard basis states.

We allow initializing the ancillary bits to arbitrary standard basis states (as opposed to only
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|0〉) since some of the gates considered below (e.g., the Toffoli gate and Deutsch’s gate) need

ancillary bits prepared in basis states other than |0〉 to achieve universality. However, other

reasonable definitions of universality with ancillae are possible. (For example, the ancillary

state need not be preserved in Definitions 4 and 5.)

In the classical case we can implement any logical gate exactly using elements of a uni-

versal gate set. In contrast, in the quantum case we only require the ability to approximate

any unitary to arbitrary precision. This definition is motivated by the need to use discrete

universal gate sets to perform fault-tolerant quantum computing [9, 10]; such sets cannot

implement a continuum of operations exactly.

2.3 Previous results

2.3.1 Universal gate sets with ancillae

It is well known that the gate set {NAND,FANOUT} is classically universal with ancillae.

Deutsch [3] showed that any gate from a certain family of 3-qubit unitary gates is quantumly

universal with ancillae. DiVincenzo [4] suggested that it might be difficult to implement

Deutsch’s unitary gates as it is hard to build a mechanical device that brings three spins

together. To obviate this, he devised a set of four 2-qubit unitary gates that is quantumly

universal with ancillae. Barenco [5] improved DiVincenzo’s result by showing that a single

2-qubit unitary gate A(φ, β, θ) is universal with ancillae, where

A(φ, β, θ) :=


1 0 0 0
0 1 0 0
0 0 eiβ cos θ −iei(β−φ) sin θ
0 0 −iei(β+φ) sin θ eiβ cos θ

 (4)

and φ, β, and θ are irrational multiples of π and of each other.

2.3.2 Universal gate sets without ancillae

Sets of unitary gates have also been found that can approximate any unitary transformation

without the use of ancillary qubits. It is well known [11, 12] that the Controlled-NOT gate

together with all 1-qubit gates form a universal gate set. Furthermore, several different finite

sets of universal 2-qubit quantum gates are known [8, 9, 13].

2.3.3 Universality of a single 2-qubit gate without ancillae

In 1995, Deutsch, Barenco, and Ekert [1] and Lloyd [2] independently showed that almost any

2-qubit gate can be used to approximate all 2-qubit unitary evolutions. In other words, the

set of non-universal unitary gates forms a measure-zero subset of the group U(4). Notably, in

order to achieve universality, ancillary qubits are not required. The approaches used in [1] and

[2] are similar in many respects and build upon the Lie-algebraic approach of DiVincenzo [4].

Neither approach is constructive and both analyses revolve around the Lie algebra generated

by H and THT , where H is a Hamiltonian corresponding to a generic unitary and T is the

gate exchanging the two qubits (recall Eq. (3)). The proof in Ref. [2] omits some details (some

of which were later filled in by Weaver [14]), whereas Ref. [1] provides a more complete proof.

Our work builds upon some of the techniques described in Ref. [1]. Unfortunately, the

arguments of that paper have some shortcomings:
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1. The goal of [1] is to establish the universality of a generic unitary U ∈ U(4). The

argument begins by replacing U with a “Hamiltonian H generating U ,” defined as a

solution to U = eiH . However, there can be different solutions generating different Lie

algebras. As a simple example, both

H :=

(
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
and H ′ :=

(
2π 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
(5)

generate U = I4, while onlyH ′ can be used to approximate some non-identity evolutions.

Thus one should give either a prescription for the choice of the generating Hamiltonian or

a proof that different choices generically have the same power, but neither was provided

in [1].

2. The argument makes use of the fact that any gate A given by (4) is universal. However,

such gates are only universal with ancillae (because |00〉 is a fixed-point of both A and

TAT , so composing them cannot approximate any U ∈ U(4) that does not fix |00〉), yet

the final result claims universality without the need for ancillae.

3. The argument proceeds by considering a Hamiltonian H1 that generates the gate A.

The authors claim that H1 is universal due to the linear independence of the following

16 nested commutators of H1 and TH1T :

H1,

H2 := TH1T,

Hj := i[H1, Hj−1], j ∈ {3, . . . , 14} ,
H15 := i[H2, H3],

H16 := i[H2, H5],

(6)

However, as in item 1, the claim may or may not hold depending on the choice of the

Hamiltonian H1 generating A. In fact, the most natural choice,

H1 :=


0 0 0 0
0 0 0 0
0 0 β −θe−iφ
0 0 −θeiφ β

 , (7)

does not generate u(4) since the entire Lie algebra fixes |00〉. However, there are other

choices of H1 for which H1, . . . ,H16 are linearly independent. For example, if one

chooses H1 to act diagonally in a random basis on the degenerate 1-eigenspace of A,

with eigenvalues 2π and 4π, then H1, . . . ,H16 are found to be linearly independent in a

numerical experiment.

For any explicit Hamiltonian H, it is simple to generate the 16 matrices according

to (6) and their linear dependence is easily checked. If these 16 matrices are linearly

independent, then we say that (6) certifies the universality of H.

4. To show that almost any unitary gate is universal, non-universal gates are argued to lie in

a submanifold of U(4) of at most 15 dimensions. The argument begins by considering a
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one-parameter family of HamiltoniansH(k) = H+k(H̃−H) where k ∈ R, H is arbitrary,

and H̃ is a fixed Hamiltonian whose universality is certified by (6). Then, unless k is a

root of a certain polynomial of finite degree, (6) also certifies the universality of H(k).

This argument is claimed to extend to a 16-dimensional neighborhood of H (which could

be parametrized as H(k1, . . . , k16) = H+k1(H̃(1)−H)+· · ·+k16(H̃(16)−H)). However,

the explicit analysis of the relevant multivariate polynomial is omitted. Furthermore,

the argument requires that (6) certifies the universality of each of H̃(1), . . . , H̃(16), but

this is not demonstrated, and it is unclear to us whether it actually holds for some choice

of H1.

Reference [1] also conjectures that a 2-qubit unitary gate is non-universal if and only if it

1. permutes states of some orthonormal basis or

2. is a tensor product of single-qubit unitary gates.

We note that a unitary gate U satisfying item 1 need not be non-universal, because U and

TUT may not permute the same basis. We presume that the authors of [1] intended to require

that both U and TUT permute states of the same orthonormal basis.

In Theorem 2 of this paper, we disprove the above conjecture and give a complete charac-

terization of the set of non-universal 2-qubit Hamiltonians, thereby resolving a variant of the

above question.

2.4 Proving universality

The first step in our quest for a simple closed-form characterization of universal Hamiltonians

is a characterization of universality in terms of Lie algebras, just as in [1, 2].

Definition 6 We write L (H1, . . . ,Hk) to denote the Lie algebra generated by Hamiltonians

H1, . . . ,Hk. It is defined inductively by the following three rules:

1. H1, . . . ,Hk ∈ L (H1, . . . ,Hk),

2. if A,B ∈ L (H1, . . . ,Hk) then αA+ βB ∈ L (H1, . . . ,Hk) for all α, β ∈ R, and

3. if A,B ∈ L (H1, . . . ,Hk) then i[A,B] := i(AB −BA) ∈ L (H1, . . . ,Hk).

The set of evolutions that can be simulated using a set of Hamiltonians is given by the

following lemma:

Lemma 1 Assume that we can evolve according to Hamiltonians H1, . . . ,Hk for any desired

amount of time. Then we can simulate the unitary U if and only if

U ∈ cl
{
e−iL : L ∈ L (H1, . . . ,Hk)

}
, (8)

where “cl” denotes the closure of a set.a

aThis is false without the closure. For example, consider H =
( 1 0
0
√
2

)
. We can use H to simulate any diagonal

2× 2 unitary but there are diagonal unitary matrices such as
(
1 0
0 −1

)
that are not of the form e−iHt for t ∈ R.
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One can easily prove the above lemma using the Lie product formula, the analogous formula

for e[A,B], and the Campbell-Baker-Hausdorff formula [15].

Now we can obtain a simpler and more practical sufficient condition for n-universality

than the original one from Definition 3.

Corollary 1 Let m ≤ n. Then an m-qubit Hamiltonian H is n-universal if

L
({
P (H ⊗ I⊗n−m)P † : P ∈ Sn

})
= u(2n), (9)

where Sn is the group of matrices that permute n qubits and u(2n) is the set of all 2n × 2n

Hermitian matrices. In particular, a 2-qubit Hamiltonian H is 2-universal if L (H,THT ) =

u(4), where u(4) is the set of all 4× 4 Hermitian matrices.

Now we proceed to show that if a Hamiltonian H is n-universal then it is also n′-universal

for all n′ ≥ n. Note that this is not completely trivial, since the added qubits are not ancillary,

i.e., we have to be able to simulate any unitary on all of the qubits.

Lemma 2 If a Hamiltonian H is n-universal for some n ≥ 2, then it is also n′-universal

for all n′ ≥ n. In particular, a 2-universal 2-qubit Hamiltonian H is also n-universal for all

integers n ≥ 2.

Proof Since H is n-universal for some n ≥ 2, it can be used to simulate all unitary transfor-

mations in U(2n
′
) that act non-trivially on no more than two qubits. But any unitary gate

on n′ qubits can be decomposed into gates that act non-trivially only on one or two qubits

without the need for ancillae [7, 11], so H is n′-universal.

3 Characterization of 2-universal Hamiltonians

In this section we classify the set of 2-qubit Hamiltonians that are not 2-universal. Since we

only consider 2-universality, we simply say that a Hamiltonian is universal (instead of “2-

universal”) or non-universal (instead of “not 2-universal”) for the remainder of this section.

Our analysis relies on an equivalence relation that partitions the set of all 2-qubit Hamilto-

nians into equivalence classes, each containing only universal or non-universal Hamiltonians

(but not both). First we identify three families of non-universal Hamiltonians and extend

each family to the union of the equivalence classes containing its family members. Then

we show that each subset contains a special element whose universality (or non-universality)

can be succinctly characterized. This allows us to show universality of any Hamiltonian not

belonging to any of the three generalized non-universal families.

3.1 The T gate and the T-basis

The gate T that swaps two qubits is of central importance since it is the only non-trivial

permutation of two qubits. Recall that its matrix representation in the computational basis

is

T :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (10)
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It has two eigenspaces, namely

E− := spanC {|01〉 − |10〉} and E+ := spanC {|00〉 , |01〉+ |10〉 , |11〉} , (11)

where E− corresponds to the eigenvalue −1 and E+ to the eigenvalue +1. The normalized

vector

|s〉 :=
|01〉 − |10〉√

2
(12)

that spans E− is called the singlet state.

We prove the following basic facts about the T gate in Appendix B:

Fact 1 The singlet |s〉 is an eigenvector of a normal matrix N ∈ M4(C) if and only if

[N,T ] = 0.

Fact 2 A normal matrix N ∈ M4(C) has a common eigenvector with the T gate if and only

if it has an eigenvector orthogonal to |s〉.

Fact 3 Suppose U ∈ U(4) and [U, T ] = 0. Then the singlet state |s〉 is an eigenvector of both

U and U†.

We will use both the computational basis and one in which T is diagonal, with the singlet

state as the first basis vector. For definiteness, we choose

UT :=
1√
2


0 1 −1 0
0 1 1 0
1 0 0 1
1 0 0 −1

 (13)

to implement the basis change. We call the resulting basis the T-basis. The T gate and the

singlet state become T̃ := UTTU
†
T and |s̃〉 := UT |s〉 given by

T̃ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and |s̃〉 =


1
0
0
0

 . (14)

3.2 Three simple families of non-universal Hamiltonians

Three families of non-universal Hamiltonians are easily identified.

Claim 1 A two-qubit Hamiltonian H is non-universal if any of the following conditions

holds:

1. H is a local Hamiltonian, i.e., H = H1 ⊗ I + I ⊗ H2, for some 1-qubit Hamiltonians

H1, H2,

2. H shares an eigenvector with the T gate, or

3. Tr(H) = 0.
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The last condition can be removed if we only require simulating elements of SU(4).

In Section 3.4 we extend these families to larger sets of non-universal Hamiltonians, so the

above do not literally exhaust the set of non-universal Hamiltonians. However, we prove in

Section 3.5 that the extended families contain all non-universal Hamiltonians, so these three

families do capture the essence of what makes a Hamiltonian non-universal.

3.3 T-similarity

The following equivalence relation between Hamiltonians is central to our analysis:

Definition 7 We say that matrices A and B are T-similar if there exists a unitary matrix

P such that B = PAP † and [P, T ] = 0.

Conjugation by P preserves universality, i.e., it maps universal 2-qubit Hamiltonians to

universal Hamiltonians and non-universal 2-qubit Hamiltonians to non-universal Hamiltoni-

ans. In particular:

Theorem 1 Let A,B be T-similar 2-qubit Hamiltonians. Then A is universal if and only if

B is.

Proof Assume 2-qubit Hamiltonians A and B are T -similar. Then there is some P ∈ U(4)

such that B = PAP † and [P, T ] = 0. Suppose A is universal. We want to show that B is

also universal. We have to show that using B we can simulate any U ∈ U(4) with any desired

precision ε > 0. Since A is universal, we can simulate P †UP ∈ U(4) with precision ε, i.e.,

there exists n ∈ N and t1, . . . , tn ≥ 0 such that∥∥P †UP − e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn∥∥∞ < ε. (15)

Since TP = PT , B = PAP † and eVMV †
= V eMV † for all unitary V and all matrices M , we

have

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn = Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP †. (16)

Combining (15) with (16) and noting that the spectral norm is invariant under unitary con-

jugation gives ∥∥U − e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn∥∥∞ < ε. (17)

Hence e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn is the desired simulation of U with precision ε. We

conclude that B is universal.

Thus T -similarity partitions the set of all 2-qubit Hamiltonians into equivalence classes,

each containing only universal or non-universal Hamiltonians.

3.4 Three extended families of non-universal Hamiltonians

In view of Theorem 1, each family of non-universal Hamiltonians in Claim 1 can be extended

to include Hamiltonians that are T -similar to its elements. We now analyze each of these

three extended families.
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1. T -similarity transformations do not preserve the set of local Hamiltonians. For example,

when

H :=

(
1 0
0 0

)
⊗ I + I ⊗

(
1 0
0 0

)
and P :=


1√
2

0 0 1√
2

0 0 1 0
0 1 0 0
1√
2

0 0 − 1√
2

 , (18)

H is local and [P, T ] = 0, but PHP † = I ⊗ I + 1
2

[(
0 1
1 0

)
⊗
(
0 1
1 0

)
−
(
0 −i
i 0

)
⊗
(
0 −i
i 0

)]
which is non-local. Thus the extended family is strictly larger.

2. T -similarity transformations preserve the property of sharing an eigenvector with the T

gate:

Lemma 3 The set of two-qubit Hamiltonians sharing an eigenvector with the T gate is

closed under conjugation by unitary transformations that commute with T .

Proof Let U satisfy [U, T ] = 0 and let |v〉 be the eigenvector shared by H and the T

gate, i.e., H |v〉 = λH |v〉 and T |v〉 = λT |v〉 for some λH , λT . We claim that U |v〉
is an eigenvector shared by the T gate and UHU†. First, note that UHU†(U |v〉) =

UH |v〉 = λHU |v〉. We also have T (U |v〉) = UT |v〉 = λTU |v〉. Thus U |v〉 is an

eigenvector shared by the T gate and UHU†.

Therefore, the extension does not add more non-universal Hamiltonians to this family.

3. The set of traceless Hamiltonians is preserved by T -similarity transformations.

Using the above, we generalize Claim 1 to the following:

Lemma 4 A two-qubit Hamiltonian H is non-universal if any of the following conditions

holds:

1. H is T -similar to a local Hamiltonian,

2. H shares an eigenvector with the T gate, or

3. Tr(H) = 0.

Again, the last condition can be removed if we only require simulating elements of SU(4).

Another easily recognized family of non-universal Hamiltonians is the set of generators

of orthogonal transformations. However, this set can be shown to be contained in the first

family of the above lemma [16]. Similarly, Hamiltonians with degenerate eigenvalues can be

shown to be non-universal, since they always share an eigenvector with the T gate (see Fact 4

in Appendix B).

It is straightforward to check whether a given Hamiltonian belongs to the last two families

of non-universal Hamiltonians in Lemma 4. The following lemma (proved in Appendix C)

gives an efficient method to check whether a given Hamiltonian with non-degenerate eigen-

values is T -similar to a local Hamiltonian.
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Lemma 5 A 2-qubit Hamiltonian is T -similar to a local Hamiltonian if and only if it has

an orthonormal basis of eigenvectors |v1〉 , |v2〉 , |v3〉 , |v4〉 corresponding to the eigenvalues

λ1, λ2, λ3, λ4 so that

1. |〈v1|s〉| = |〈v2|s〉| and |〈v3|s〉| = |〈v4|s〉|, and

2. λ1 + λ2 = λ3 + λ4,

where |s〉 is the singlet state defined in Eq. (12).

3.5 The three extended families of non-universal Hamiltonians are exhaustive

In this section we show that the list of non-universal families of Hamiltonians in Lemma 4 is

in fact complete. This is done by analyzing a special member of each T -similarity equivalence

class.

3.5.1 Tridiagonal form

We now introduce a normal form for 2-qubit Hamiltonians.

Definition 8 We say that a 2-qubit Hamiltonian is in tridiagonal form if it is of the form
a b 0 0
b c d 0
0 d e f
0 0 f g

 , (19)

where a, b, c, d, e, f, g ∈ R and b, d, f ≥ 0. If either of b, d is 0, we additionally require that

• if b = 0, then d = f = 0 and c ≥ e ≥ g, and

• if d = 0, then f = 0 and e ≥ g.

Note that a tridiagonal Hamiltonian is of one of the following types:( ∗ + 0 0
+ ∗ + 0
0 + ∗ +
0 0 + ∗

) ( ∗ + 0 0
+ ∗ + 0
0 + ∗ 0
0 0 0 ∗

) ( ∗ + 0 0
+ ∗ 0 0
0 0 ∗1 0
0 0 0 ∗2

) ( ∗ 0 0 0
0 ∗1 0 0
0 0 ∗2 0
0 0 0 ∗3

)
Type 1 Type 2 Type 3 Type 4

where ∗1 ≥ ∗2 ≥ ∗3 and “+” stands for a positive entry and “∗” for any real entry.

When given a 2-qubit Hamiltonian in tridiagonal form, we will often use the letters

a, b, c, d, e, f, g to refer to its entries as indicated in Eq. (19).

Definition 9 For any 2-qubit Hamiltonian H, we say that Ξ is a tridiagonal form of H if H

and Ξ are T -similar and Ξ is tridiagonal in the T -basis. (We will use Ξ̃ := UTΞU†T to denote

Ξ in the T -basis.)

It follows from the definition that T -similar 2-qubit Hamiltonians share the same tridiago-

nal forms (if they exist). We now show that for every 2-qubit Hamiltonian a tridiagonal form

indeed exists and is in fact unique. Thus, each equivalence class is uniquely characterized by

the tridiagonal form of its Hamiltonians.

Lemma 6 Every 2-qubit Hamiltonian H has a unique tridiagonal form Ξ.



30 Characterization of universal two-qubit Hamiltonians

Proof Note that T -similarity is basis-independent: for any unitary change of basis V , matrices

A and B are T -similar if and only if there exists a unitary matrix P such that V BV † =

PV AV †P † and [P, V TV †] = 0. Therefore, it suffices to prove the lemma for operators in the

T -basis. More precisely, we will prove that H̃ := UTHU
†
T is T -similar to a unique tridiagonal

matrix. Note that in the T -basis, T -similar matrices are related by conjugation by some

unitary V ∈ U(1)⊕U(3).

Let the first column of H̃ be (h1, h2, h3, h4)T, where
∥∥(h2, h3, h4)T

∥∥ = b ≥ 0. Then we

can find P1 ∈ I1 ⊕ U(3) such that the first column of H̃1 := P1H̃P
†
1 is (h1, b, 0, 0)T. Now

let the second column of H̃1 be (h′1, h
′
2, h
′
3, h
′
4)T, where

∥∥(h′3, h
′
4)T
∥∥ = d ≥ 0, and choose

P2 ∈ I2⊕U(2) such that the second column of H̃2 := P2H̃1P
†
2 is (h′1, h

′
2, d, 0)T. Note that the

first column of H̃2 remains the same as for H̃1. Finally, we can find P3 ∈ I3⊕U(1) such that

the last entry f of the third column of H̃3 := P3H̃2P
†
3 is real and non-negative. Since H̃3 is

Hermitian, its diagonal entries are real and it has the form (19). If neither b nor d is zero,

we are done. If b = 0, we diagonalize the lower right 3 × 3 block of H̃3 by conjugating with

unitary transformations of the form 1⊕U(3). Similarly, if d = 0 we diagonalize the lower right

2× 2 block. Thus we obtain a tridiagonal form of H.

Now we show that Ξ is unique. If Ξ1 and Ξ2 are both tridiagonal forms of H, then

in the T -basis Ξ̃1 and Ξ̃2 are related by conjugation by some V ∈ U(1)⊕U(3). We first

consider Ξ̃1 of type 1. Since the first column of Ξ̃2 has to be of the form (a, b, 0, 0)T for

some a, b ∈ R, b > 0, V has to be of the form eiϕI2⊕U(2) for some ϕ ∈ R. Similarly, by

considering the second and third columns of Ξ̃2, we conclude that V = eiϕI4. Thus, we have

Ξ̃2 = (eiϕI4)Ξ̃1(e−iϕI4) = Ξ̃1. If Ξ̃1 is of type 2, 3, or 4, similar reasoning can be applied; in

each case, the form of V is constrained so that Ξ̃1 = Ξ̃2.

3.5.2 Tridiagonal forms of non-universal Hamiltonians

In this section we give a simple characterization of the three families of non-universal Hamil-

tonians listed in Lemma 4 in terms of their tridiagonal forms.

Lemma 7 Let H be a 2-qubit Hamiltonian and let Ξ be its tridiagonal form, with Ξ̃ given by

Eq. (19). Then H has a common eigenvector with the T gate if and only if bdf = 0.

Proof By Fact 2, H has a common eigenvector with T if and only if H has an eigenvector

orthogonal to the singlet |s〉. By definition of the tridiagonal form, there is a unitary conju-

gating H to Ξ̃, T to T̃ , and taking |s〉 to |s̃〉. Thus it suffices to show that Ξ̃ has an eigenvector

orthogonal to |s̃〉 if and only if bdf = 0.

If bdf = 0, then Ξ̃ has an invariant subspace orthogonal to |s̃〉. This subspace has dimension

3, 2, or 1 if b = 0, d = 0, or f = 0, respectively. In any case, it contains at least one eigenvector,

so Ξ̃ has an eigenvector orthogonal to |s̃〉.
If Ξ̃ has an eigenvector |ṽ〉 that is orthogonal to |s̃〉, then |ṽ〉 = (0, v2, v3, v4)T for some

v2, v3, v4 ∈ C, not all zero. Since Ξ̃ is Hermitian, we have Ξ̃ |ṽ〉 = r |ṽ〉 for some r ∈ R, or

equivalently, 
bv2

cv2 + dv3
dv2 + ev3 + fv4

fv3 + gv4

 =


0
rv2
rv3
rv4

 . (20)
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From the first entry, bv2 = 0 so that b = 0 or v2 = 0. If b 6= 0, then v2 = 0 and from the

second entry, dv3 = 0, so either d = 0 or v3 = 0. If d 6= 0, then v3 = 0 and from the third

entry, fv4 = 0 and so, if f 6= 0, v4 = 0 which contradicts |ṽ〉 6= 0. Thus, bdf = 0.

Lemma 8 Let H be a 2-qubit Hamiltonian not sharing an eigenvector with T and let Ξ be

its tridiagonal form. Then H is T -similar to a local Hamiltonian if and only if a = c = e = g

for Ξ̃ as given in Eq. (19).

Proof Assume a = c = e = g. H is T -similar to a local Hamiltonian if and only if Ξ is, so

we can apply Lemma 5 to Ξ. A straightforward calculation gives eigenvectors |vi,j〉 of Ξ̃ for

i, j ∈ {0, 1}, with eigenvalues

λi,j = a+ (−1)i
√
b2 + d2 + f2 + (−1)jz

2
(21)

where z :=
√
b4 + d4 + f4 + 2(b2d2 + d2f2 − b2f2). The overlaps of these eigenvectors with

the singlet state are

|〈vi,j |s̃〉| =
√
z + (−1)j(b2 − d2 − f2)

4z
. (22)

For each j ∈ {0, 1}, λ0,j + λ1,j = 2a and |〈v0,j |s̃〉| = |〈v1,j |s̃〉|, so both conditions in Lemma 5

are satisfied. Hence H is T -similar to a local Hamiltonian.

Now assume that H is T -similar to a local Hamiltonian. We prove that Ξ̃ has a = c = e = g

by explicitly computing it. We do this in two steps: first we show that H is T -similar to some

H ′ of the form

H ′ = αI4 + (x1X + z1Z)⊗ I + I ⊗ (z2Z) (23)

for some α, x1, z1, z2 ∈ R (where I :=
(
1 0
0 1

)
, X :=

(
0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
are Pauli

matrices), and then we find the common tridiagonal form of H and H ′.

Step 1. Consider conjugating H by U ⊗ U where U ∈ SU(2) (clearly, [U ⊗ U, T ] = 0). It

suffices to consider a local Hamiltonian

H = H1 ⊗ I + I ⊗H2 (24)

for some 1-qubit Hamiltonians H1 and H2. Pick V ∈ SU(2) such that V H2V
† is diagonal.

Then pick a diagonal matrix D ∈ SU(2) such that DVH1V
†D† is a real matrix. Note that

DVH2V
†D† is still diagonal. Therefore, UHU† is of the form (23), where U := (DV )⊗(DV ).

Step 2. Recall that H ′ in the T -basis is given by H̃ ′ := UTH
′U†T . Using Eq. (23), we get

H̃ ′ = α(I⊗I)+x1(Y ⊗Y )+z1(I⊗X)−z2(Z⊗X) =


α z1 − z2 0 −x1

z1 − z2 α x1 0
0 x1 α z1 + z2
−x1 0 z1 + z2 α

 .

(25)
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Note that x1 6= 0, or else, by Lemma 7, we contradict the fact that H does not share

an eigenvector with T . We apply one more T -similarity transformation to bring H̃ ′ into

tridiagonal form. Let l :=
√
x21 + (z1 − z2)2 > 0 and

Q :=


1 0 0 0
0 z1−z2

l 0 x1

l
0 0 1 0
0 −x1

l 0 z1−z2
l

 (26)

which is in I1⊕U(3). Then

Q†H̃ ′Q =


α l 0 0
l α −2x1z2

l 0

0 −2x1z2
l α

x2
1+z

2
1−z

2
2

l

0 0
x2
1+z

2
1−z

2
2

l α

 . (27)

Since H does not share an eigenvector with T , the (2, 1), (3, 2), (4, 3) entries of Q†H̃ ′Q

are all non-zero. Their signs can be made positive by conjugation with a diagonal matrix

with diagonal entries ±1, preserving the diagonal elements (note that this is a T -similarity

transformation). This tridiagonal form of H ′ and H has equal diagonal entries as claimed.

Using Lemmas 7 and 8, we can restate Lemma 4 in terms of the tridiagonal form:

Corollary 2 Let H be a 2-qubit Hamiltonian with tridiagonal form Ξ, with Ξ̃ given by (19).

Then H is non-universal if

1. Ξ̃ has bdf = 0,

2. Ξ̃ has a = c = e = g, or

3. Ξ̃ has a+ c+ e+ g = 0.

The third condition can be omitted if we only require simulation of SU(4).

3.5.3 Universality certificate for tridiagonal Hamiltonians

Given a Hamiltonian H that does not satisfy any of the conditions of Corollary 2, we provide

a list of 16 linearly independent linear combinations of nested commutators of Ξ̃ and T̃ Ξ̃T̃ .

This shows that L (H,THT ) = L(Ξ̃, T̃ Ξ̃T̃ ) = u(4). Hence it follows from Corollary 1 that H

is universal.

Let Ek,l := |k〉 〈l| and define a basis for su(4) (i.e., for traceless 4×4 Hermitian matrices)

as follows:

Xk,l := Ek,l + El,k, (1 ≤ k < l ≤ 4) (28)

Yk,l := −iEk,l + iEl,k, (1 ≤ k < l ≤ 4) (29)

Zk := Ek,k − Ek+1,k+1. (1 ≤ k ≤ 3) (30)

These 15 matrices together with any Hermitian matrix with non-zero trace form a basis for

u(4). We now obtain these basis vectors as nested commutators of Ξ̃ and T̃ Ξ̃T̃ .
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By violation of the first condition in Corollary 2, bdf 6= 0. Thus we can generate A :=
1
2b i[Ξ̃, T̃ Ξ̃T̃ ] and

X1,2 =
1

2b
(Ξ̃− T̃ Ξ̃T̃ ), (31)

Y1,3 =
1

3d

(
i[i[X1,2, A], X1,2]− 4A

)
, (32)

X2,3 = i[X1,2, Y1,3]. (33)

Next, we can generate B := 1
2 (Ξ̃ + T̃ Ξ̃T̃ ). To obtain Y1,2 we consider three cases:

Y1,2 =


1

a− c
(dY1,3 +A) if a 6= c,

1

c− e
i[Y1,3, i[B,X2,3]] if c 6= e,

1

a− g
1

f2
i [i[X2,3, B], i[B, i[Y1,3, B]]] otherwise (a = c = e 6= g).

(34)

One of these cases has to hold since the second condition in Corollary 2 is violated. We next

obtain

X1,3 = i[Y1,2, X2,3], (35)

X1,4 =
1

f

(
(c− e)X1,3 + i[A,X2,3] + i[Y1,3, B]

)
. (36)

We obtain the remaining basis elements as follows:

X2,4 = i[X1,4, Y1,2], X3,4 = i[X1,4, Y1,3], Y1,4 = i[X2,4, X1,2], (37)

Y2,3 = i[X1,3, X1,2], Y2,4 = i[X1,4, X1,2], Y3,4 = i[X1,4, X1,3], (38)

Z1 = i[Y1,2, X1,2]/2, Z2 = i[Y2,3, X2,3]/2, Z3 = i[Y3,4, X3,4]/2. (39)

At this point we can generate su(4). If the third condition in Corollary 2 does not hold,

then Tr(Ξ̃) 6= 0, so adding Ξ̃ gives all of u(4).

3.5.4 Complete classification of 2-universal 2-qubit Hamiltonians

Combining the result of the previous section with Corollary 2 gives the following theorem.

Theorem 2 A two-qubit Hamiltonian H is 2-universal if and only if it does not satisfy any

of the following conditions:

1. H is T -similar to a local Hamiltonian,

2. H shares an eigenvector with T , the gate that swaps two qubits, or

3. Tr(H) = 0.

For simulating elements of SU(4), violation of conditions 1 and 2 alone is necessary and

sufficient.

These conditions are easy to check by computing Ξ̃ and applying Corollary 2.
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4 3-non-universal Hamiltonians

It turns out that a 2-non-universal 2-qubit Hamiltonian can nevertheless be 3-universal. In

fact, numerical evidence suggests that almost any traceless 2-non-universal Hamiltonian is

3-universal. We do not know a complete characterization of 3-universal 2-qubit Hamil-

tonians. However, the following are sufficient conditions for a 2-qubit Hamiltonian to be

3-non-universal.

Lemma 9 A 2-qubit Hamiltonian H is 3-non-universal if any of the following conditions

holds:

1. H is a local Hamiltonian,

2. H has an eigenvector of the form |a〉|a〉 for some |a〉 ∈ C2,

3. Tr(H) = 0,

4. H = rI4 + (U ⊗ U)A(U ⊗ U)† for some r ∈ R, U ∈ U(2), and some antisymmetric

Hamiltonian A ∈ u(4) (A is antisymmetric if AT = −A),

5. [H,U ⊗ U ] = 0 for some U ∈ U(2) with distinct eigenvalues.

It is easy to see that these Hamiltonians are indeed 3-non-universal. In fact, they are also

n-non-universal for all n ≥ 3. Therefore, if one could show that this list is complete, then it

would provide a complete characterization of n-universal 2-qubit Hamiltonians.

Recall that a 3-non-universal 2-qubit Hamiltonian is also 2-non-universal (see Lemma 2).

For each family F3 of 3-non-universal Hamiltonians in Lemma 9 there is a family F2 of

2-non-universal Hamiltonians from Theorem 2 such that F3 ⊆ F2 (see Figure 1).

5 Open problems

The main result of this paper is a complete characterization of 2-universal 2-qubit Hamilto-

nians, as summarized in Theorem 2. Several variants of the problem remain open:

1. Which 2-non-universal 2-qubit Hamiltonians are n-universal, i.e., become universal on

n ≥ 3 qubits? Also, is there a constant n0 ∈ N such that n0-non-universality implies

n-non-universality for all n ≥ n0? In particular, is n0 = 3?

2. Which 2-qubit Hamiltonians are universal with ancillae? (See Section 2.3.1 and Defini-

tion 5 for the definition of universality with ancillae for unitary gates.) One might also

consider a scenario in which the number of allowed ancillary qubits is restricted.

3. Which 2-qubit Hamiltonians give us encoded universality, e.g., generate O(4)? This

question is relevant since the full power of quantum computation can be achieved even

with a restricted repertoire of gates. For example, real gates are sufficient [17, 18] since

O(2 · 2n) contains U(2n). We can say that H is n-universal in an encoded sense if there

exists k ∈ N (possibly depending on n) such that the Lie algebra generated by H on

n+k qubits, L ⊆ u(2n+k), contains u(2n) as a subalgebra. However, it is not even clear

how to check this for a particular Hamiltonian.
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H is a local 
Hamiltonian

H1 ⊗ Ι + Ι  ⊗ Η
2

2-non-universal
2-qubit

Hamiltonians

3-non-universal
2-qubit

Hamiltonians

Tr H = 0

H and T have a 
common eigenvector

H is T-similar to
a local Hamiltonian

H1 ⊗ Ι + Ι  ⊗ Η
2

H is T-similar to
r I + A

where AT = −A

Tr H = 0

H has eigenvector
|a〉 |a〉

H is equal to
r I + (U ⊗ U) A (U ⊗ U)†

where AT = −A

[H, U ⊗ U] = 0
where U ≠ eiφ I

equivalent

A is a special 
case of B

B A

dim ≤ 63

dim ≤ 49

dim ≤ 31

dim ≤ 10

dim ≤ 29

dim ≤ 15

dim ≤ 10

dim ≤ 7

dim ≤ 7

2a

2b

2c

2c'

3a

3b

3b'

3c

3c'

Fig. 1. Relations between the families of 2-non-universal and 3-non-universal Hamiltonians. For

each family F we give the maximum achievable value of dimL (H,THT ) for H ∈ F .
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Appendix A Positive time evolution is sufficient

Claim 2 Let H ∈ u(N) be a Hamiltonian and let τ < 0. Then for all ε > 0 there exists

t > 0 such that
∥∥e−iHτ − e−iHt∥∥∞ < ε.

Proof Let U := e−iH . Consider the sequence K :=
{
U i
}∞
i=1
⊂ MN (C). Note that we can

think of MN (C) as a real vector space of dimension 2N2. Since K is bounded with respect

to the spectral norm, by the Bolzano-Weierstrass theorem, K has a convergent subsequence.

It follows that for all ε > 0 and all n0 ∈ N there exist j, k ∈ N such that j − k > n0 and

ε >
∥∥Uk − U j∥∥∞ =

∥∥IN − U j−k∥∥∞. Equivalently, for all ε > 0 and all n0 ∈ N there exists

n > n0 such that ε > ‖IN − Un‖∞. Therefore, given τ < 0, for all ε > 0 there exists n > |τ |
such that

ε >
∥∥IN − e−iHn∥∥∞ =

∥∥∥e−iHτ − e−iH(n+τ)
∥∥∥
∞
. (A.1)

Taking t := n+ τ > 0, the claim follows.

Appendix B Basic properties of the T gate

In this appendix we restate and prove the basic properties of the T gate introduced in Sec-

tion 3.1.
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Fact 1 The singlet |s〉 is an eigenvector of a normal matrix N ∈ M4(C) if and only if

[N,T ] = 0.

Proof Suppose |s〉 is an eigenvector of N . Then B = {|s〉 , |n1〉 , |n2〉 , |n3〉} is an orthonor-

mal eigenbasis of N for some orthonormal vectors {|ni〉}3i=1 ⊂ C4. Since B is orthonormal,

{|ni〉}3i=1 ∈ E⊥− = E+. Therefore, B is also an eigenbasis of T , and both N and T are

simultaneously diagonal in this basis. Thus [N,T ] = 0.

Conversely, suppose [N,T ] = 0. Then N and T are simultaneously diagonal in some

orthonormal basis B. Since |s〉 spans the one-dimensional eigenspace E− of T , we know that

eiφ |s〉 ∈ B for some φ ∈ R. Thus, |s〉 is an eigenvector of N .

Fact 2 A normal matrix N ∈ M4(C) has a common eigenvector with the T gate if and only

if it has an eigenvector orthogonal to |s〉.

Proof The “if” direction is trivial. Conversely, suppose N shares an eigenvector |v〉 with the

T gate. If |v〉 ∈ E+ we are done. Otherwise, |v〉 ∈ E−, so |v〉 = |s〉. Then spanC(|v〉)⊥ = E+

is an invariant subspace of N and it contains an eigenvector of N .

Fact 3 Suppose U ∈ U(4) and [U, T ] = 0. Then the singlet state |s〉 is an eigenvector of both

U and U†.

Proof Since [U, T ] = 0, we know that U and T are simultaneously diagonal in some or-

thonormal basis. The singlet |s〉 must belong to this basis, since it spans the one-dimensional

eigenspace E− of the T gate. Therefore, |s〉 has to be an eigenvector of U as well. Note that

U and U† have the same eigenvectors. Thus, |s〉 is also an eigenvector of U†.

Fact 4 If a 2-qubit Hamiltonian H has a degenerate eigenvalue, then it shares an eigenvector

with T and hence is not universal.

Proof Suppose H has a degenerate eigenvalue, and let E denote the corresponding eigenspace.

Recall that the T gate has a 3-dimensional (+1)-eigenspace E+. Now note that the intersection

E ∩ E+ is at least 1-dimensional, since E,E+ ⊆ C4 and dim(E) ≥ 2, dim(E+) = 3. Any

non-zero |v〉 ∈ E∩E+ is a common eigenvector of H and the T gate. By Claim 1 we conclude

that H is non-universal.

Appendix C T -similarity to a local Hamiltonian

In this appendix we prove a result characterizing Hamiltonians that are T -similar to some

local Hamiltonian, as stated in Section 3.3. Our proof makes use of the following general

characterization of T -similarity:

Claim 3 Hamiltonians H and H ′ are T -similar if and only if there exist orthonormal eigen-

bases {|v1〉 , |v2〉 , |v3〉 , |v4〉} of H and {|w1〉 , |w2〉 , |w3〉 , |w4〉} of H ′ such that 〈vi|H |vi〉 =

〈wi|H ′ |wi〉 and |〈vi|s〉| = |〈wi|s〉| for all i ∈ {1, 2, 3, 4}, where |s〉 is the singlet state defined

in Eq. (12).

Proof Assume H and H ′ are T -similar, i.e., H ′ = UHU† for some U ∈ U(4) with [U, T ] = 0.

Since [U, T ] = 0, by Fact 3 we know that |s〉 is an eigenvector of U†. Let |v〉 be an eigenvector

of H. Then U |v〉 is the corresponding eigenvector of UHU†. Now we have |〈s| (U |v〉)| =∣∣(U† |s〉)† |v〉∣∣ = |〈s|v〉|, i.e., the corresponding eigenvectors of H and UHU† have the same
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overlaps with the singlet state. Since conjugation does not change the eigenvalues, the “only

if” direction of the theorem follows.

Conversely, assume that H and H ′ have orthonormal eigenbases {|vi〉} and {|wi〉}, respec-

tively, with λi := 〈vi|H |vi〉 = 〈wi|H ′ |wi〉 and ri := |〈vi|s〉| = |〈wi|s〉|. We can express

the singlet state |s〉 in the eigenbases of H and H ′ as follows:

|s〉 =

4∑
j=1

rje
iαj |vj〉 (C.1)

=

4∑
j=1

rje
iβj |wj〉 , (C.2)

where αj , βj ∈ R. Now let

U :=

4∑
j=1

ei(βj−αj) |wj〉 〈vj | . (C.3)

We claim that (a) UHU† = H ′ and (b) |〈s|U |s〉| = 1.

(a) By expressing U as in (C.3), we have

UHU† =

4∑
j=1

ei(βj−αj) |wj〉 〈vj |
4∑
k=1

λk |vk〉 〈vk|
4∑
l=1

e−i(βl−αl) |vl〉 〈wl| (C.4)

=

4∑
k=1

ei(βk−αk)λke
−i(βk−αk) |wk〉 〈wk| =

4∑
k=1

λk |wk〉 〈wk| = H ′. (C.5)

(b) By expressing 〈s| as in (C.2), |s〉 as in (C.1), and U as in (C.3), we get

〈s|U |s〉 =

4∑
j=1

rje
−iβj 〈wj |

4∑
k=1

ei(βk−αk) |wk〉 〈vk|
4∑
l=1

rle
iαl |vl〉 (C.6)

=

4∑
k=1

rke
−iβkei(βk−αk)rke

iαk =

4∑
k=1

r2k = 1. (C.7)

Part (a) tells us that H and H ′ are similar via U . From (b) it follows that |s〉 is an

eigenvector of U , so by Fact 1, U commutes with T . Hence H and H ′ are T -similar.

Now we can prove the result stated in Section 3.3 characterizing T -similarity to a local

Hamiltonian:

Lemma 5 A 2-qubit Hamiltonian is T -similar to a local Hamiltonian if and only if it has

an orthonormal basis of eigenvectors |v1〉 , |v2〉 , |v3〉 , |v4〉 corresponding to the eigenvalues

λ1, λ2, λ3, λ4 so that

1. |〈v1|s〉| = |〈v2|s〉| and |〈v3|s〉| = |〈v4|s〉| , and

2. λ1 + λ2 = λ3 + λ4,
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where |s〉 is the singlet state defined in Eq. (12).

Proof First we prove the “only if” direction. SupposeH is T -similar to some local Hamiltonian

H ′ = H1 ⊗ I + I ⊗H2. By Claim 3, it suffices to show that the spectrum of H ′ has the form

described in the lemma. We diagonalize H1 and H2 as follows:

H1 = α1 |v1〉 〈v1|+ α2 |v2〉 〈v2| , H2 = β1 |w1〉 〈w1|+ β2 |w2〉 〈w2| . (C.8)

Let the first eigenvectors of H1 and H2 be

|v1〉 =

(
a
b

)
, |w1〉 =

(
c
d

)
. (C.9)

Since we can ignore the global phase of each eigenvector, we may assume that

|v2〉 =

(
−b∗
a∗

)
, |w2〉 =

(
−d∗
c∗

)
. (C.10)

Then

|v1〉 ⊗ |w1〉 , |v2〉 ⊗ |w2〉 , |v1〉 ⊗ |w2〉 , |v2〉 ⊗ |w1〉 (C.11)

are eigenvectors of H ′. Calculating the overlaps with |s〉, we find

|〈s|v1, w1〉|2 = 1
2 |ad− bc|

2
=: r, (C.12)

|〈s|v2, w2〉|2 = 1
2 |a
∗d∗ − b∗c∗|2 = 1

2 |ad− bc|
2

= r, (C.13)

|〈s|v1, w2〉|2 = 1
2 |ac

∗ + bd∗|2 =: t, (C.14)

|〈s|v2, w1〉|2 = 1
2 |−a

∗c− b∗d|2 = 1
2 |ac

∗ + bd∗|2 = t. (C.15)

The corresponding eigenvalues of H ′ are

λ1 = α1 + β1, λ2 = α2 + β2, λ3 = α1 + β2, λ4 = α2 + β1, (C.16)

respectively; they satisfy λ1 + λ2 = λ3 + λ4. This establishes the “only if” direction.

Now let us prove the “if” direction. For any H with a spectrum satisfying the conditions

of the lemma, we construct a local Hamiltonian H ′ = H1 ⊗ I + I ⊗H2 that is T -similar to

H. As before, let αi and |vi〉 denote corresponding eigenvalues and eigenvectors of H1, and

let βi and |wi〉 denote eigenvalues and eigenvectors of H2. In terms of the eigenvalues λi of

H, we choose the eigenvalues of H1 and H2 as follows: α1 = 0, α2 = λ2 − λ3, β1 = λ1, and

β2 = λ3. With this choice, the eigenvalues of H ′ are

α1 + β1 = λ1, α2 + β2 = λ2, α1 + β2 = λ3, α2 + β1 = λ4, (C.17)

where the last equality holds since λ1 + λ2 = λ3 + λ4. It remains to choose eigenvectors of

H1 and H2 to obtain the required overlaps with |s〉. Notice that |v1〉 and |w1〉 completely

determine the overlaps, since without loss of generality we can take |v2〉 and |w2〉 as in (C.10).

In fact, it suffices to choose |v1〉 , |w1〉 ∈ R2. If the angle between real unit vectors |v1〉 =
(
a
b

)
and |w1〉 =

(
c
d

)
is θ, then ad− bc = sin θ and ac+ bd = cos θ. Thus, the overlaps (C.12) and

(C.14) are 1
2 sin2 θ = r and 1

2 cos2 θ = t, respectively. Therefore, we can take any two real

unit vectors having angle θ = arcsin
√

2r. Since H and H ′ satisfy the conditions of Claim 3,

they are T -similar.


