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Let K be a subspace of the m × n complex matrices, and let x ∈ K, Tr[xx∗] = 1. Then

the von Neumann entropy of x is

H(x) := −Tr[xx∗ lnxx∗],

and the minimum entropy output of the subspace K is

H(K) := min
x∈K,Tr[xx∗]=1

H(xx∗).

Recently, Hastings [1] disproved the famous additivity conjecture, which posited that

H(K1 ⊗K2) = H(K1) + H(K2). (1)

This conjecture was considered one of the most significant open problems in quantum infor-

mation theory, spawning a large literature [2]. Its importance was motivated in part by the

problem of finding the classical capacity of a quantum channel, and in part by a result of Peter
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Shor [3] that showed that a number of apparently distinct additivity conjectures, including

the additivity of the minimum entropy output of a quantum channel, the additivity of the

entanglement of formation, and the additivity of the Holevo capacity, were all equivalent.

Hastings’ counterexample showed that the von Neumann entropy function is not globally

additive on subspaces: in other words, if x1 is a global minimum in K1 and x2 is a global

minimum in K2, then x1 ⊗ x2 is not necessarily a global minimum in K1 ⊗K2. On the other

hand, in this paper we show that under certain conditions the von Neumann entropy is locally

additive. More precisely, we show that if Ki is a subspace with a local minimum xi, and xix
∗
i

commutes with xiy
∗
i for every yi ∈ Ki, then x1 ⊗ x2 is a local minimum of K1 ⊗K2; we call

this condition the local commutativity condition. More generally, we study the behaviour of

entropy functions of the eigenvalues of xx∗, and we consider when the tensor product of two

local minima is again a local minimum.

The paper is organized as follows. In Section 1 we analyze the local commutativity con-

dition. In Section 2, we consider the first derivative of the entropy function and note that

critical points of the von Neumann and Renyi entropies are closed under tensor products.

These results are due to a group participating in the American Institute for Mathematics

workshop on “Geometry and representation theory”[4]. In Section 3, we consider the second

derivative of the von Neumann entropy function, and show that local minima of von Neumann

entropy are closed under tensor products, given the previously mentioned commutativity as-

sumption. Finally, in Section 4, we consider the second derivative of the 2-norm entropy

function. We show that local minima of the 2-norm are closed under tensor products if one of

the subspaces has dimension 2. In the Appendix A we analyze the affine parametrization and

use it to derive a necessary condition for local minima. In Appendix B we show that there is

a simple counter example for the additivity conjecture over the real numbers.

1 The local commutativity condition

For a given function f : [0,∞) → (−∞,∞) we define f(x) =
∑m

i=1 f(λi(xx
∗)) for x ∈ Cm×n,

and λi are the eigenvalues of xx∗. We assume that either f is smooth on [0,∞), i.e. has two

continuous derivatives at every t ≥ 0, or f(t) = H(t) ≡ −t log t. Let Dyf(x), D
2
yf(y) denote

the first and the second derivative of f in the y direction:

Dyf(x) =
d

dǫ
f(x+ ǫy)

∣

∣

ǫ=0
, D2

yf(x) =
d2

d2ǫ
f(x+ ǫy)

∣

∣

ǫ=0

Then x is a critical point if and only if Dyf(x) = 0 for each y ∈ K (in the next section we

will discuss in more details this condition).

Here we focus on the function f(t) = H(t) ≡ −t log t. In this case we need to be very careful

when dealing with xx∗ which have zero eigenvalues. We will see that for any x, y ∈ Cm×n,

Dyf(x) ∈ R. However it is possible that D2
yf = ∞, and below we give the exact conditions

on y when this happens. Hence if x is a critical point of the von Neumann entropy, H(x),

and D2
yH(x) = ∞ then H(x + ǫy) > H(x) for small enough ǫ. Thus when we study in the

next sections the local minimum of H(K1 ⊗K2) at the critical point x1 ⊗ x2 we need only to

consider yi such that D2
yi
f < ∞ for i = 1, 2. This will also give a partial explanation of the

local commutativity condition discussed in the introduction.

Lemma 1 Let x, y ∈ Cm×n, Trxx∗ > 0 and H(t) = −t log t. Then DyH(x) ∈ R. Change
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standard orthonormal bases in Cm,Cn to new orthonormal bases such that x, y have the forms

x =

[

x11 0r,n−r

0m−r,r 0m−r,n−r

]

and y =

[

y11 y12
y21 y22

]

, (2)

with 0i,j ∈ Ci×j and x11, y11 ∈ Cr×r. Then D2
yf(x) = ∞ if and only if y22 6= 0.

Proof. By considering UKV , where U, V unitary we may assume that x, y in the form (2).

Furthermore x11 = D ≡ diag(d1, . . . , dr), where d1 ≥ d2 ≥ . . . ≥ dr > 0 and r is the rank of

x. So di is the i-th singular value, σi(x11) for i = 1, . . . , r. Observe next that

Tr((x+ ǫy)(x+ ǫy)∗) =

m
∑

i=1

λi((x+ ǫy)(x+ ǫy)∗). (3)

We assume here that the eigenvalues of a hermitian matrix are arranged in a nonincreasing

order. Note that

(x+ ǫy)(x+ ǫy)∗ = xx∗ + ǫ(xy∗ + yx∗) + ǫ2(yy∗)

Hence

λi((x+ ǫy)(x+ ǫy)∗) = λi(xx
∗ + ǫ(xy∗ + yx∗)) +O(ǫ2).

Observe next that

xx∗ + ǫ(xy∗ + yx∗) =

[

D + ǫ(Dy∗11 + y11D) ǫDy∗21
ǫy21D 0

]

.

For small ǫ, the first variation formula (see [5]) yields

λi((x+ ǫy)(x+ ǫy)∗) = di + d′iǫ+O(ǫ2) for i = 1, . . . , r,

λi((x+ ǫy)(x+ ǫy)∗) = O(ǫ2) for i > r.

Hence λi((x + ǫy)(x + ǫy)∗) = d′′i ǫ
2 + O(ǫ3) for i > r, with d′′r+1 ≥ . . . ≥ d′′m ≥ 0. These

calculations show that

H(x+ ǫy) = H(D + ǫy11)−
m
∑

i=r+1

d′′i ǫ
2 log(d′′i ǫ

2) +O(ǫ2).

Hence DyH(x) ∈ R and D2
yH(x) = ∞ if and only if d′′r+1 > 0. It is left to show that d′′r+1 > 0

if and only if y22 6= 0. Consider ∧r+1(x+ ǫy). the r + 1 compound matrix of x+ ǫy. (Recall

that ∧r+1(x + ǫy) is the
(

m
r+1

)

×
(

n
r+1

)

matrix whose entries are (r + 1) × (r + 1) minors of

x + ǫy.) Note that ∧r+1(x + ǫy) is a polynomial matrix in ǫ. Since x has rank r it follows

that ∧r+1(x) = 0. Hence ∧r+1(x + ǫy) = ǫz1 + ǫ2z2(ǫ), where z1 is a constant matrix and

z2(ǫ) is a polynomial matrix in ǫ. We claim that z1 = 0 if and only if y22 = 0. Indeed since

D is diagonal then a minor of order r + 1 that can have a nonzero derivative at ǫ = 0 is the

minor based on the rows α = {1, . . . , r, p} and columns β = {1, . . . , r, q}. Denote this minor by

det(x+ǫy)[α, β]. Clearly det(x+ǫy)[α, β] = ǫ(d1 . . . dryp,q)+O(ǫ2), where yp,q is the p, q entry

of y. So if y22 = 0 we obtain that z1 = 0. Hence ‖ ∧r+1 (x+ ǫy)‖2 = σ1(∧r+1(x+ ǫy)) ≤ ǫ2a

for some positive a. Recall that

(σ1(∧r+1(ξ + ǫy)))2 =

r+1
∏

i=1

λi((x+ ǫy)(x+ ǫy)∗).
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As (σ1(∧r+1(ξ + ǫy)))2 ≤ a2ǫ4, we deduce that d′′r+1 = 0.

It is left to show that if yp,q 6= 0 for some p, q > r, then d′′r+1 > 0. Clearly,

‖ ∧r+1 (x+ ǫy)‖2 ≥ | det(x+ ǫy)[α, β]| ≥ d1 . . . dr|yp,q|
|ǫ|
2

for some small value of ǫ. (The first inequality follows from the fact the ℓ2 norm of a matrix

is not less than the absolute value of any of its entries.) This shows that d′′r+1 > 0.

The lemma above implies that for the purpose of calculating local minima, without loss of

generality, we can always take the directional derivatives in a direction with y22 = 0. In the

lemma above, however, we did not impose the normalization condition Tr(xx∗) = 1. As we

show in the next lemma, it does not affect the result that D2
yH = ∞ if and only if y22 = 0.

Lemma 2 Let x, y ∈ Cm×n, with Tr(xx∗) = 1 and y 6= 0. Consider the matrix

x(y, ǫ) :=
1

√

Tr((x+ ǫy)(x+ ǫy)∗)
(x+ ǫy) ,

which is always defined for small |ǫ|. Then d
dǫH(x(y, ǫ))|ǫ=0 ∈ R, and d2

dǫ2H(x(y, ǫ))|ǫ=0 = ∞
if and only if D2

y(f) = ∞.

Proof. The functions h1(ǫ) := (Tr((x+ ǫy)(x+ ǫy)∗))−1 and h2(ǫ) := log Tr((x+ ǫy)(x+ ǫy)∗)

are analytic in the neighborhood of ǫ = 0, and clearly

H(x(y, ǫ)) = h1(ǫ)f(ǫ) + h2(ǫ). (4)

As h1(0) = 1 we obtain

d

dǫ
H(x(y, ǫ))|ǫ=0 = Dy(f) + h′

1(0)H(x) + h′
2(0) ∈ R,

while d2

dǫ2H(x(y, ǫ))|ǫ=0 consists of D2
y(f) plus finite terms. The lemma follows.

The two lemmas above imply the following characterization of the local commutative

condition discussed in the introduction.

Lemma 3 Let the assumptions of Lemma 1 hold. Assume that x, y are in the form (2). Then

xx∗ commutes with xy∗ if and only if y21 = 0 and x11x
∗
11 commutes with x11y

∗
11 (which is

equivalent to x∗
11x11y

∗
11 = y∗11x11x

∗
11.)

Proof. Write x and y as in (2). The assumption that x11 is invertible, and xx∗ commutes

with xy∗ is equivalent to y21 = 0 and x11x
∗
11 commutes with x11y

∗
11. So x11x

∗
11x11y

∗
11 =

x11y
∗
11x11x

∗
11. Divide both sides of this equalities by x11 to obtain the lemma.

In particular, the above lemma together with the theorem in Section 3 imply that local

additivity holds for subspaces consisting of matrices y as in Eq. (2), with y11 diagonal, y21 = 0,

and y12 arbitrary.

2 First derivative of entropy functions under tensor products

All of the results in this section are due to the “Quantum Information Group” participating

in the workshop “Geometry and representation theory”, held at the American Institute for

Mathematics [4]; we record the results here for completeness.
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For a given function f(t) as defined above, let Dyf(x) denote the derivative of f in the y

direction:

Dyf(x) =
d

dǫ
f(x+ ǫy)

∣

∣

ǫ=0
.

Then x is a critical point if and only if Dyf(x) = 0 for every y. Since we are interested in local

minima in K subject to Tr[xx∗] = 1, we restrict y to the tangent space {y ∈ K : Dy Tr[xx
∗] =

0} = {y ∈ K : Tr[xy∗ + yx∗] = 0}. Also, we restrict our attention to functions f(x) which

depend only on xx∗. Since xx∗ is invariant under x 7→ ix, we may ignore y = ix. That is,

x ∈ K is critical if and only if Dyf(x) = 0 for every y in the orthogonal subspace

x⊥ := {y ∈ K : Tr[xy∗] = 0}.

Under tensor products, the orthogonal subspace has the following decomposition:

(x1 ⊗ x2)
⊥ = 〈x1〉 ⊗ x⊥

2 ⊕ x⊥
1 ⊗ 〈x2〉 ⊕ x⊥

1 ⊗ x⊥
2 .

For a function f(x) depending only on xx∗, a point x ∈ K is critical in K if and only

if Dyf(x) = 0 for every y ∈ x⊥. In general, given a univariate differentiable function F , a

Taylor series expansion of F shows that the matrix function a 7→ Tr[F (a)] has directional

derivative
d

dǫ
Tr[F (a+ ǫb)]

∣

∣

ǫ=0
= Tr[F ′(a)b].

We are interested in the case a = xx∗ and b = xy∗ + yx∗: if f(x) = Tr[F (xx∗)], then

Dyf(x) = Tr[F ′(xx∗)(xy∗ + yx∗)].

This derivative is zero for all y ∈ x⊥ if and only if Tr[F ′(xx∗)xy∗] = 0 for all y ∈ x⊥.

Theorem 1 Let F be a differentiable univariate function such that F ′(a1⊗ a2) is in the span

of

{F ′(a1)⊗ F ′(a2), F
′(a1)⊗ I, I ⊗ F ′(a2), I ⊗ I}.

If x1 and x2 are critical points of f(x) = Tr[F (xx∗)] subject to Tr[xx∗] = 1, then so is x1⊗x2.

Proof. Let x = x1 ⊗ x2. It suffices to show that if Dyi
f(xi) = 0 for all yi ∈ x⊥

i , then

Dyf(x) = 0 for all y ∈ x⊥. That is, if Tr[F ′(xix
∗
i )xiy

∗
i ] = 0, then Tr[F ′(xx∗)xy∗] = 0.

First, suppose y = y1 ⊗ y2, for some arbitrary y1 and y2, and consider the term in F (xx∗)

proportional to F ′(x1x
∗
1)⊗ F ′(x2x

∗
2): we have

Tr[(F ′(x1x
∗
1)⊗ F ′(x2x

∗
2)) (xy

∗)]

= Tr[F ′(x1x
∗
1)x1y

∗
1 ] Tr[F

′(x2x
∗
2)x2y

∗
2 ],

which is 0 provided that either y1 ∈ x⊥
1 or y2 ∈ x⊥

2 (or both). Likewise, for the term

proportional to F ′(x1x
∗
1)⊗ I,

Tr[(F ′(x1x
∗
1)⊗ I) (xy∗)] = Tr[F ′(x1x

∗
1)x1y

∗
1 ] Tr[x2y

∗
2 ],

which again is 0 if either y1 ∈ x⊥
1 or y2 ∈ x⊥

2 . Similarly, Tr[(I ⊗ F ′(x2x
∗
2)) (xy

∗)] = 0

and Tr[(I ⊗ I) (xy∗)] = 0. Combining the terms which make up F ′(xx∗), we see that

Tr[F ′(xx∗)(xy∗)] = 0 whenever y = y1 ⊗ y2 satisfies y1 ∈ x⊥
1 or y2 ∈ x⊥

2 .
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Now an arbitrary element y ∈ x⊥ can be written as a linear combination of terms of the

form x1 ⊗ y2, y1 ⊗ x2, and y1 ⊗ y2, with yi ∈ x⊥
i . For each of these terms either the first

or second component of the tensor product is in x⊥
i . Therefore Tr[F ′(xx∗)xy∗] = 0 for all

y ∈ x⊥.

Our main interest is in the function x 7→ −Tr[xx∗ lnxx∗], which is proportional to the

usual von Neumann entropy of the matrix xx∗. Letting F (t) = −t ln t, so that F ′(t) =

−(1 + ln t), we have

F ′(a1 ⊗ a2) = −I − ln(a1 ⊗ a2)

= −I ⊗ I − ln(a1)⊗ I − I ⊗ ln(a2)

∈ span {I ⊗ I, F ′(a1)⊗ I, I ⊗ F ′(a2)} .

(Here we used the fact that ln(a1 ⊗ a2) = ln(a1) ⊗ I + I ⊗ ln(a2).) Thus the hypotheses of

Theorem 1 are satisfied, and so critical points of x 7→ −Tr[xx∗ lnxx∗] are closed under tensor

products.

Another important class of entropy functions are the p-norms:

x 7→ ||xx∗||pp = Tr[(xx∗)p].

Letting F (t) = tp, so F ′(t) = ptp−1, we have

F ′(a1 ⊗ a2) = p(a1 ⊗ a2)
p−1 =

1

p
F ′(a1)⊗ F ′(a2).

Again F (t) is in the form of Theorem 1. Thus for both the von Neumann entropy and the

p-norms, the tensor product of critical points (subject to Tr[xx∗] = 1) are again critical points.

3 Second derivative of the von-Neumann entropy

In this section we show that under the local commutativity condition, if x1 ∈ K1 and x2 ∈ K2

are nonsingular strong local minima of

x 7→ −Tr[xx∗ log xx∗]

subject to Tr[xx∗] = 1, then x1⊗x2 is also a strong local minimum in K1⊗K2. More precisely,

we assume that if yi ∈ Ki is orthogonal to xi, then xix
∗
i and xiy

∗
i commute. Throughout this

section we will also assume without loss of generality that Tr[yy∗] = 1.

In this section we work with the normalized entropy function

H(x) := −Tr

[

xx∗

||x||2
log

xx∗

||x||2
]

.

A point x is a strong local minimum of H on {x : Tr[xx∗] = 1} if and only if for every y

orthogonal to x, the second directional derivative D2
yH(x) is positive.

Lemma 4 Assume xx∗ and xy∗ commute. Then

D2
yH(x) = 2Tr [xx∗ log xx∗]− 2Tr [yy∗ log xx∗]

−Tr[(xy∗ + yx∗)2(xx∗)−1] ,
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where the last trace is taken over the support of xx∗.

Proof. For convenience define a = xx∗, b = xy∗ + yx∗, and c = yy∗, so that

(x+ ǫy)(x+ ǫy)∗ = a+ ǫb+ ǫ2c.

Note that Tr[a] = Tr[c] = 1 and Tr[b] = 0, so Tr[(x+ ǫy)(x+ ǫy)∗] = 1 + ǫ2. Then

H(x+ ǫy) = −Tr

[

a+ ǫb+ ǫ2c

1 + ǫ2
log

a+ ǫb+ ǫ2c

1 + ǫ2

]

= −Tr[(a+ ǫb+ ǫ2c) log(a+ ǫb+ ǫ2c)]

1 + ǫ2
+ log(1 + ǫ2).

Up to a second order in ε this expression becomes

H(x+ ǫy) = −Tr
[

a log
(

a+ εb+ ε2c
)]

− εTr [b log (a+ εb)] + ε2
(

1 + Tr [a log a]− Tr [c log a]
)

.

Therefore, the second order directional derivative can be expressed in the following way:

D2
yH(x) = − d2

dε2
Tr

[

a log
(

a+ εb+ ε2c
)]

∣

∣

∣

ε=0
−

2
d

dε
Tr [b log (a+ εb)]

∣

∣

∣

ε=0
+2

(

1 + Tr [a log a]− Tr [c log a]
)

.

To calculate the derivative expressions above, we will express the log function by its Taylor

series:

log(a+ εb) = log[I − (I − a− εb)] = −
∞
∑

n=1

(I − a− εb)n

n
.

Without loss of generality (see Lemma 1, in the last equality we assumed that a is invertible,

so that for sufficiently small ε also a+εb is invertible and therefore I−a−εb < I. To calculate

the derivative of Tr [b log (a+ εb)] at ε = 0, we only need to take terms proportional to ε in

the expansion of the logarithm. Assuming a and b commute,

d

dε
Tr [b log (a+ εb)]

∣

∣

∣

ε=0
=

∞
∑

n=1

Tr
[

b2(I − a)n−1
]

= Tr
[

b2a−1
]

.

To calculate the second derivative of Tr[a log(a + εb + ε2c)] we need only take the terms

proportional to ε2. Again assuming a and b commute and a is invertible,

d2

dε2
Tr

[

a log
(

a+ εb+ ε2c
)]

∣

∣

∣

ε=0

= −
∞
∑

n=2

2

n

(

n

2

)

Tr
[

a(I − a)n−2b2
]

+ 2

∞
∑

n=1

Tr
[

a(I − a)n−1c
]

= −Tr
[

a−1b2
]

+ 2Tr[c] = −Tr
[

a−1b2
]

+ 2.

Therefore D2
yH(x) = 2Tr [a log a]− 2Tr [c log a]− Tr[b2a−1].
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Corollary 1 Assume xx∗ and xy∗ commute. Then D2
yH(x) > 0 if and only if

∣

∣Tr[(xx∗)−1(xy∗)2]
∣

∣+Tr[(xx∗)−1xy∗yx∗]

< Tr[xx∗ log xx∗]− Tr[yy∗ log xx∗] ,

where (xx∗)−1 is the inverse over the support of xx∗.

Proof. Expand (xy∗+yx∗)2 into four terms, noting that xy∗ and yx∗ commute with (xx∗)−1.

Then DyH(x) > 0 if and only if

Tr[(xx∗)−1(xy∗)2] + Tr[(xx∗)−1 + (yx∗)2] + 2Tr[(xx∗)−1xy∗yx∗]

< −2Tr[yy∗ log xx∗] + 2Tr[xx∗ log xx∗].

The first two terms on the LHS are twice the real part of Tr[(xx∗)−1(xy∗)2]; the largest value

of these two terms over all phases of y is 2
∣

∣Tr[(xx∗)−1(xy∗)2]
∣

∣.

For convenience, denote the terms in Corollary 1 as follows:

a(x, y) :=
∣

∣Tr[(xx∗)−1(xy∗)2]
∣

∣ ,

b(x, y) := Tr[(xx∗)−1xy∗yx∗], (5)

c(x) := Tr[xx∗ log xx∗],

d(x, y) := Tr[yy∗ log xx∗],

so D2
yH(x) > 0 if and only if a+ b < c− d. Each of these terms behaves nicely under tensor

products:

a(x1 ⊗ x2, y1 ⊗ y2) = a(x1, y1)a(x2, y2), (6)

b(x1 ⊗ x2, y1 ⊗ y2) = b(x1, y1)b(x2, y2),

c(x1 ⊗ x2) = c(x1) + c(x2),

d(x1 ⊗ x2, y1 ⊗ y2) = d(x1, y1) + d(x2, y2).

We can also bound the size of some of these terms for any x and y such that Tr[xy∗] = 0 and

Tr[xx∗] = Tr[yy∗] = 1. First, we claim b ∈ [0, 1]. To see this, note that P = x∗(xx∗)−1x is a

projection matrix, so

b = Tr[y∗yx∗(xx∗)−1x] = ||Py∗||2,

and 0 ≤ ||Py∗||2 ≤ ||y∗|| = 1. Second, we claim a ∈ [0, b]. To see this, note that without loss of

generality (see Lemma 1) we can assume that xx∗ is invertible and therefore positive definite,

so (xx∗)−1/2 exists and commutes with xy∗, and so (xx∗)−1(xy∗)2 = ((xx∗)−1/2xy∗)2. By

Cauchy-Schwarz,

a =
∣

∣

∣
Tr[((xx∗)−1/2xy∗)2]

∣

∣

∣

≤ Tr[((xx∗)−1/2xy∗)((xx∗)−1/2xy∗)∗] = b.

Thirdly, we claim that c ≤ 0, since it is the negative of the entropy function. We are now

ready to prove the main result of this paper.
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Theorem 2 Suppose x1 and x2 are strong local minima of x 7→ −Tr[xx∗ log xx∗] subject to

Tr[xx∗] = 1 and xi ∈ Ki, where Ki is a subspace. Further assume that for every yi ∈ Ki, the

matrices xix
∗
i and xiy

∗
i commute. Then x := x1⊗x2 is a strong local minimum in K1⊗K2.

Proof. We show that under the hypotheses of the theorem, if D2
yi
H(xi) is positive for every

yi ∈ x⊥
i , then D2

yH(x) is positive for every y ∈ x⊥. We break the proof into several cases

depending on y.

First, suppose y is a tensor product.

Case y = x1 ⊗ y2, y2 ∈ x⊥
2 : Since y2 ∈ x⊥

2 and x2 is a strong local minimum, we know that

a(x2, y2) + b(x2, y2) < c(x2)− d(x2, y2).

It is also easy to see from the expressions (5) that

a(x1, x1) = b(x1, x1) = 1, c(x1) = d(x1, x1).

So, using the expressions for tensors in (6), we have

a(x, y) + b(x, y) = a(x2, y2) + b(x2, y2)

≤ c(x2)− d(x2, y2)

= c(x)− d(x, y).

Thus the second directional derivative is positive for this choice of y.

Case y = y1 ⊗ x2, y1 ∈ x⊥
1 : This case is similar to y = x1 ⊗ y2.

Case y = y1 ⊗ y2, yi ∈ x⊥
i : Here we require the arithmetic-geometric mean inequality. For

two terms a1, a2 ≤ 1,

a1a2 ≤
(a1 + a2

2

)2

≤ 1

2
(a1 + a2).

In particular, a(x1, x1)a(x2, y2) ≤ a(x1, y1) + a(x2, y2) and similarly for b. Now, since yi ∈
x⊥
i , we have a(xi, yi) + b(xi, yi) < c(xi) − d(xi, yi). Combining these inequalities we get

a(x, y) + b(x, y) ≤ c(x)− d(x, y).

Next, we consider cases where y is a linear combination of terms.

Suppose y is in x⊥
1 ⊗ x⊥

2 . In this case, we break y into two orthogonal pieces according to

the projection matrix P = x∗(xx∗)−1x. Let Pi = x∗
i (xix

∗
i )

−1xi: this is the projection matrix

onto the range of x∗
i , which we denote R(x∗

i ). Then P = P1 ⊗ P2 is the projection matrix

onto the range R(x∗) = R(x∗
1)⊗R(x∗

2). Write y as a direct sum:

y = αu+ βv,

where u∗ ∈ R(x∗) (so Pu∗ = u∗), and Pv∗ = 0. The normalizations are chosen so that α ∈ R

and β ∈ R satisfy α2 + β2 = 1, and ||u||2 = ||v||2 = 1. We deal with the u and v components

separately.

Case y = u ∈ (x⊥
1 ⊗ x⊥

2 ) ∩R(x∗): Here we have b(x, u) = ||Pu∗||2 = ||u∗||2 = 1. Note that

if yi is in x⊥
i , then

Tr[xiPiy
∗
i ] = Tr[xix

∗
i (xix

∗
i )

−1xiy
∗
i ] = Tr[xiy

∗
i ] = 0,
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so Piy
∗
i is also in x⊥

i . If we write u =
∑

j y1j ⊗ y2j with yij ∈ x⊥
i , so that

u = Pu =
∑

j

P1y1j ⊗ P2y2j ,

then Piyij is in x⊥
i ∩ R(x∗

i ), and it follows that u is in (x⊥
1 ∩ R(x∗

1)) ⊗ (x⊥
2 ∩ R(x∗

2)). Now

perform a Schmidt decomposition of u with respect to this tensor space: we get

u =
∑

j

αju1j ⊗ u2j ,

where uij ∈ x⊥
i ∩ R(x∗

i ), Tr[uiju
∗
ik] = δjk, αj ≥ 0, and

∑

j α
2
j = 1. Since uij is in R(x∗

i ), we

have b(xi, uij) = 1. Since uij is in x⊥
i , we know

a(xi, uij) + b(xi, uij) ≤ c(xi)− d(xi, uij), (7)

and also 0 ≤ a(xi, uij) ≤ 1. Under this decomposition, we also have

d(x, u) =
∑

j

α2
j (d(x1, u1,j) + d(x2, u2,j)). (8)

Therefore, from (7) and (8),

a(x, u) + b(x, u)

≤ 2b(x, u)

=
∑

j

α2
j [b(x1, u1,j) + b(x2, u1,2)]

≤
∑

j

α2
j [c(x1)− d(x1, u1,j)] + c(x2)− d(x2, u1,2)

= c(x)− d(x, u).

Case y = v ∈ x⊥
1 ⊗ x⊥

2 , Pv∗ = 0: We know that 0 ≤ a(x, v) ≤ b(x, v) = ||Pv∗|| = 0, and

so a(x, v) = b(x, v) = 0. Perform a Schmidt decomposition of v with respect to the space

x⊥
1 ⊗ x⊥

2 :

v =
∑

j

βjv1j ⊗ v2j ,

where vij ∈ x⊥
i , Tr[vijv

∗
ik] = δjk and

∑

j β
2
j = 1. Since vij is in x⊥

i , we have 0 ≤ a(xi, vij) ≤
b(xi, vij) and

0 ≤ a(xi, vij) + b(xi, vij) ≤ c(xi)− d(xi, vij). (9)

It follows quickly that a(x, v) + b(x, v) ≤ c(x)− d(x, v).

Next we deal with a combination of u and v.

Case y ∈ x⊥
1 ⊗ x⊥

2 : Write y = αu + βv, where u∗ ∈ R(x∗)), Pv∗ = 0, α2 + β2 = 1, and

||u||2 = ||v||2 = 1. Then since uv∗ = uPv∗ = 0, we have

yy∗ = α2uu∗ + β2vv∗,
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from which it follows that

b(x, y) = α2b(x, u) + β2b(x, v), (10)

d(x, y) = α2d(x, u) + β2d(x, v). (11)

(In fact, b(x, u) = 1 and b(x, v) = 0.) Combining (10) and (11) with the results for u and v

from the previous cases, we get

a(x, y) + b(x, y) ≤ 2b(x, y)

= α22b(x, u) + β22b(x, v)

≤ α2[c(x)− d(x, u)] + β2[c(x)− d(x, v)]

= c(x)− d(x, y).

Finally, we have the case where y is an arbitrary element of x⊥.

Case y ∈ x⊥: Here y may be written in the form

y = αx1 ⊗ y2 + βy1 ⊗ x2 + γy′,

where yi ∈ x⊥
i and y′ ∈ x⊥

1 ⊗ x⊥
2 , with real constants satifying α2 + β2 + γ2 = 1. Expanding

out terms of yy∗ and simplifying, we find that most terms disappear under trace:

d(x, y) = α2[c(x1) + d(x2, y2)] + β2[c(x2) + d(x1, y1)]

+ γ2d(x, y′), (12)

b(x, y) = α2b(x2, y2) + β2b(x1, y1) + γ2b(x, y′), (13)

a(x, y) =
∣

∣

∣
α2 Tr[(x2x

∗
2)

−1(x2y
∗
2)

2] (14)

+β2 Tr[(x1x
∗
1)

−1(x1y
∗
1)

2] + γ2 Tr[(xx∗)−1(x(y′)∗)2]
∣

∣

∣
.

The expression for d(x, y) requires the observation that Tr[xiy
∗
i log xix

∗
i ] = 0, because the first

directional derivative of Dyi
H(xi) is 0 when xi is a local minimum. The expression for a(x, y)

is bounded as follows:

a(x, y) =
∣

∣

∣
α2 Tr[(x2x

∗
2)

−1(x2y
∗
2)

2]

+ β2 Tr[(x1x
∗
1)

−1(x1y
∗
1)

2] + γ2 Tr[(xx∗)−1(x(y′)∗)2]
∣

∣

∣

≤ α2
∣

∣Tr[(x2x
∗
2)

−1(x2y
∗
2)

2]
∣

∣

+ β2
∣

∣Tr[(x1x
∗
1)

−1(x1y
∗
1)

2]
∣

∣+ γ2
∣

∣Tr[(xx∗)−1(x(y′)∗)2]
∣

∣

= α2a(x2, y2) + β2a(x1, y1) + γ2a(x, y′). (15)

Combining (12), (13) and (15), we get a(x, y) + b(x, y) ≤ c(x)− d(x, y).

4 The second derivative of the 2-norm

In this section we focus on the 2-norm since its second directional derivative has an elegant

analytical form. We prove that if K1 and K2 are subspaces of matrices, at least one of which

has dimension 2, and x1 ∈ K1, x2 ∈ K2 are strong local maxima of the 2-norm function

x 7→ Tr[(xx∗)2]



S. Friedland, G. Gour, and A. Roy 1039

subject to Tr[xx∗] = 1, then x1 ⊗ x2 is also a strong local maximum in K1 ⊗K2. Since it is

known that the 2-norm is not globally additive, this result sheds some light on the possibility

that there exist functions that are locally additive while they are not globally additive.

We will work with the normalized function

H2(x) := Tr

[

(

xx∗

||x||2
)2

]

=
Tr[(xx∗)2]

[Tr(xx∗)]2
.

As before, we consider (x + ǫy)(x + ǫy)∗ = xx∗ + ǫ(xy∗ + yx∗) + ǫ2(yy∗), where Tr[xx∗] =

Tr[yy∗] = 1 and Tr[xy∗ + yx∗] = 0. Noting that

[(x+ ǫy)(x+ ǫy)∗]2 = (xx∗)2 + 2ǫxx∗(xy∗ + yx∗)

+ǫ2[2xx∗yy∗ + (xy∗ + yx∗)2] +O(ǫ3),

and that Tr[(x+ ǫy)(x+ ǫy)∗]2 = (1 + ǫ2)2, we have that up to second order in ǫ,

H2(x+ ǫy) = Tr[(xx∗)2] + 2ǫTr[xx∗(xy∗ + yx∗)]

+ ǫ2 Tr[2xx∗yy∗ + (xy∗ + yx∗)2 − 2(xx∗)2].

Then the first directional derivative of H2 is

DyH2(x) = 2Tr[xx∗(xy∗ + yx∗)].

By considering iy as well as y, the condition DyH2(x) = 0 reduces to Tr[xx∗xy∗] = 0. The

second derivative is

D2
yH2(x) = 2Tr[(xy∗ + yx∗)2] + 4Tr[xx∗yy∗]− 4Tr[(xx∗)2].

For strong local maxima we expect D2
yH2(x) to be negative. Expand (xy∗ + yx∗)2 into four

terms: then

Tr[(xy∗ + yx∗)2] = 2ReTr[(xy∗)2] + Tr[x∗xy∗y],

where Re(z) denotes the real part of z. The largest value of ReTr[(xy∗)2] over all choices of

unit multiples of y is
∣

∣Tr[(xy∗)2]
∣

∣. In summary:

Lemma 5 Define F (x, y) :=

−Tr[(xx∗)2] +
∣

∣Tr[(xy∗)2]
∣

∣+Tr[xx∗yy∗] + Tr[x∗xy∗y].

Then x is a strong local maximum of the function x 7→ Tr[(xx∗)2], subject to Tr[xx∗] = 1, if

and only if every y ∈ x⊥, Tr[yy∗] = 1 satisfies Tr[xx∗xy∗] = 0 and F (x, y) < 0.

Denote the terms in F (x, y) as follows:

a(x) := Tr[(xx∗)2]

b(x, y) :=
∣

∣Tr[(xy∗)2]
∣

∣

c(x, y) := Tr[xx∗yy∗]

d(x, y) := Tr[x∗xy∗y].
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The Cauchy-Schwartz inequality implies that
∣

∣Tr[z2]
∣

∣ ≤ Tr[z∗z] for any matrix z. Letting

z = xy∗, we conclude that 0 ≤ b(x, y) ≤ c(x, y), d(x, y). Assuming a > b + c + d therefore

implies that a > b, c, d. Since a = Tr[(xx∗)2)] ≤ Tr[xx∗] = 1, we see that each of the terms

a, b, c, d are in the range [0, 1]. Furthermore, each term is multiplicative under tensor products:

a(x1 ⊗ x2) = a(x1)a(x2), b(x1 ⊗ x2, y1 ⊗ y2) = b(x1, y1)b(x2, y2), and so on.

From Section 2, we know that that tensor products of critical points of the 2-norm are

again critical points. We can now say the same for local maxima.

Lemma 6 Suppose x1 and x2 are strong local maxima of x 7→ Tr[(xx∗)2] subject to Tr[xx∗] = 1

and xi ∈ Ki, where either K1 or K2 has dimension 2. Then x := x1 ⊗ x2 is a strong local

maximum in K1 ⊗K2.

Proof. Without loss of generality, assume K1 has dimension 2, so x⊥
1 has dimension 1. Let

y1 be an element of x⊥
1 and let y2j be elements of x⊥

2 . Then every element of x⊥ in K1 ⊗K2

is a linear combination of vectors of the form y1 ⊗ y21, x1 ⊗ y22, and y1 ⊗ x2. First, we check

that for each y of that form, F (x, y) is negative.

Case y = y1 ⊗ y21: Here

F (x, y) = −a(x1)a(x2) + b(x1, y1)b(x2, y21)

+c(x1, y1)c(x2, y21) + d(x1, y1)d(x2, y21).

Since a(xi) > b(xi, yi) + c(xi, yi) + d(xi, yi) and each term is nonnegative, it follows that

a(x1)a(x2) > b(x1, y1)b(x2, y21) + c(x1, y1)c(x2, y21) + d(x1, y1)d(x2, y21), and so F (x, y) is

negative.

Case y = x1 ⊗ y22: Here

F (x, y) = −a(x1)a(x2) + a(x1)b(x2, y22)

+a(x1)c(x2, y22) + a(x1)d(x2, y22).

But −a(x2) + b(x2, y22) + c(x2, y22) + d(x2, y22) < 0 and a(x1) > 0, so F (x, y) is negative.

Case y = y1 ⊗ x2: Similar to y = x1 ⊗ y22.

Now consider a linear combination of the three elements of x⊥, say

y = α(y1 ⊗ y21) + β(x1 ⊗ y22) + γ(y1 ⊗ x2).

In considering b(x, y), most terms disappear under trace:

b(x, y) =
∣

∣

∣
α2 Tr[(x1y

∗
1)

2] Tr[(x2y
∗
21)

2]

+ β2 Tr[(x1x
∗
1)

2] Tr[(x2y
∗
22)

2] + γ2 Tr[(x1y
∗
1)

2] Tr[(x2x
∗
2)

2]
∣

∣

∣

≤ |α|2 b(x1, y1)b(x2, y21)

+ |β|2 a(x1)b(x2, y22) + |γ|2 b(x1, y1)a(x2).

Likewise we have

c(x, y) = |α|2 c(x1, y1)c(x2, y21)+

|β|2 a(x1)c(x2, y22) + |γ|2 c(x1, y1)a(x2),
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and similarly for d(x, y). Adding together, we conclude that

F (x, y) ≤ |α|2
[

¬a(x1)a(x2) + b(x1, y1)b(x2, y21)

+c(x1, y1)c(x2, y21) + d(x1, y1)d(x2, y21)
]

+ |β|2 a(x1) [−a(x2) + b(x2, y22) + c(x2, y22) + d(x2, y22)]

+ |γ|2 [−a(x1) + b(x1, y1) + c(x1, y1) + d(x1, y1)] a(x2).

The |α|2 term is negative by the argument given in the case y = y1 ⊗ y21; the |β|2 term is

negative by the case y = x1 ⊗ y22; and the |γ|2 term is negative by the case y = y1 ⊗ x2.

If both K1 and K2 have dimension higher than 2, the linear combinations seem to be more

difficult.

Acknowledgments

We appreciate many valuable discussions with Jon Yard. Research by GG and AR was

supported by NSERC, PIMS, and iCORE.

References

1. M. B. Hastings. A counterexample to additivity of minimum output entropy. Nature Physics 5,
255, 2009.

2. Alexander S. Holevo. The additivity problem in quantum information theory. In International

Congress of Mathematicians. Vol. III, pages 999–1018. Eur. Math. Soc., Zürich, 2006.
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Appendix A Affine parametrization

Let x ∈ K ⊂ Cm×n and assume that xx∗ > 0, i.e. xx∗ invertible, and Trxx∗ = 1. When

now study the second variation. Let y ∈ K and assume that Tr(xy∗ + yx∗) = 0. We then

consider

A(ǫ) := A+ ǫB + ǫ2C = (x+ ǫy)(x+ ǫy)∗,

A = xx∗, B = xy∗ + yx∗, C = yy∗ ∈ Hm. (A.1)

(Here Hm is the real space of m×m matrices.) Let λ1(ǫ), . . . , λm(ǫ) > 0 be the eigenvalues of

A(ǫ), as analytic functions of ǫ, (Rellich’s theorem [5]). We can assume that these eigenvalues

are arranged in the following order λ1(ǫ) ≥ . . . ≥ λm(ǫ) > 0 for small positive ǫ. Let A1(ǫ) =

A + ǫB. Arrange the analytic eigenvalues of A1(ǫ) in the order µ1(ǫ) ≥ . . . ≥ µm(ǫ) > 0

for small positive ǫ. Clearly, λi(ǫ) = µi(ǫ) + O(ǫ2) for i = 1, . . . ,m. The following result is

known, and can be deduced from the arguments in Kato [5].

Lemma 7 Let A,B,C ∈ Hm, and denote A(ǫ) = A + ǫB + ǫ2C,A1(ǫ) = A + ǫB. Assume

that λ1(ǫ), . . . , λm(ǫ) and µ1(ǫ), . . . , µm(ǫ) are analytic eigenvalues of A(ǫ), A1(ǫ) arranged in
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a nonincreasing order for small positive ǫ. Then, there exists a unitary matrix U ∈ Cm×m

with the following two properties. First, UAU∗ = diag(λ1, . . . , λm). Second, if we denote

UCU∗ ≡ F = [fij ]
m
i=j=1 then

λi(ǫ) = µi(ǫ) + ǫ2fii +O(ǫ3) for i = 1, . . . ,m. (A.2)

In the next proposition we use the above lemma to calculate the variation of S(A) ≡
−Tr(A logA) up to second order.

Proposition 1. Let x, y ∈ Cm×n and assume that Tr(xx∗) = Tr(yy∗) = 1, xx∗ > 0,Tr(xy∗+

yx∗) = 0. Define A(ǫ), A1(ǫ) as in Eq. (A.1). Then

S

(

A(ǫ)

TrA(ǫ)

)

= S(A1(ǫ)) + ǫ2 Tr [(xx∗ − yy∗) log xx∗] +O(ǫ3) (A.3)

Proof. First recall that

S

(

A(ǫ)

TrA(ǫ)

)

=
1

TrA(ǫ)
S(A(ǫ)) + log TrA(ǫ)

= S(A(ǫ)) + ǫ2 [−Tr(yy∗)S(xx∗) + Tr(yy∗)] +O(ǫ3). (A.4)

Next we claim

S(A(ǫ)) = −
m
∑

i=1

λi(ǫ) log λi(ǫ)

= −
m
∑

i=1

(µi(ǫ) + fiiǫ
2) log(µi(ǫ) + fiiǫ

2) +O(ǫ3) =

−
m
∑

i=1

µi(ǫ) log µi(ǫ)− ǫ2(

m
∑

i=1

fii log λi +

m
∑

i=1

fii) +O(ǫ3)

= S(A1(ǫ))− ǫ2(Tr((yy∗) log(xx∗)) + Tr(yy∗)) +O(ǫ3).

Combine this expression with the expression above it to deduce (A.3).

Note that the expression Tr [(xx∗ − yy∗) log xx∗] can be either positive or negative. In

the following we give a very simple reason why we can not ignore this term (i.e. use the

affine approximation), which also yields a necessary condition xx∗ must satisfy if x is a local

minimum.

Assume that we have an affine subspace of the form A+ tB, where Tr(A) = 1,Tr(B) = 0.

Here A = xx∗, B = xy∗ + yx∗ on all y ∈ K satisfying the condition Tr(B) = 0 and t

arbitrary real. Let Φ be the set of all A + tB such that A + tB ≥ 0. Consider the function

S(C) = −Tr(C logC) where C ∈ Φ. Our assumption that A is a critical point in Φ for the

S(C). Since S(C) is strictly concave on Φ it follows that A is a unique global MAXIMUM

on Φ! So if A was a local minimum for the H(x), x ∈ K,Tr(xx∗) = 1 it follows that the

correction term for ǫ2 that we have must be strictly positive . That is, if x is a local min then

Tr [(xx∗ − yy∗) log xx∗]

= S(yy∗)− S(xx∗) + S(yy∗‖xx∗) > 0
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for all y ∈ x⊥ (assuming the normalization Tr(yy∗) = 1).

Appendix B A counter example to real additivity conjecture

During the 2008 American Institute for Mathematics workshop “Geometry and represen-

tation theory” [4], Leonid Gurvits found a counterexample to the analogue of the additivity

conjecture for real (rather than complex) matrices. In this appendix we generalize the coun-

terexample to show that the additivity conjecture fails to hold for real spaces of orthogonal

matrices containing the identity: there exist real subspaces K1 ⊆ Rm1×n1 and K2 ⊆ Rm2×n2

such H(K1 ⊗K2) < H(K1) + H(K2).

K ⊆ Rm×m is called an orthogonal subspace if any 0 6= A ∈ K is of the form aQ for

some scalar a and an orthogonal matrix Q. Note that if K is an orthogonal subspace then for

any orthogonal matrix Q0, the subspace Q⊤
0 K is also an orthogonal subspace. By choosing

Q0 ∈ K we can always assume that K contains the identity matrix Im.

The maximal size of an orthogonal subspace is given by the Radon-Hurwitz number,

defined as follows. For m ∈ N , let m = 2b · a, with a odd, and let b = 4c + d where c is a

nonnegative integer and d ∈ {0, 1, 2, 3}. Then Radon Hurwitz number of m is ρ(m) := 2d+8c.

Theorem 3 Let K ⊆ Rm×m be an orthogonal subspace. Then k := dimK ≤ ρ(m), and this

inequality is sharp for any m ∈ N . More precisely, assume that Im ∈ K and k ≥ 2. Then

K has a basis Im, Q1, . . . , Qk−1 where Q1, . . . , Qk−1 is a set of skew symmetric orthogonal

anticommuting matrices, i.e. QiQj = −QjQi for any 1 ≤ i < j ≤ k − 1.

Conversely, if Q1, . . . , Qk−1 ∈ Rm×m are k−1 skew symmetric orthogonal anticommuting

matrices then span(Im, Q1, . . . , Qk−1) is an k-dimensional orthogonal subspace.

If Q ∈ Rm×m is an orthogonal matrix, then all m singular values of Q are equal to 1. Let

Qi ∈ Rmi×mi be an orthogonal matrix for i = 1, 2. Then for any real a1, a2, the singular

values of aiQi are |ai|, and the singular values of (a1Q1)⊗ (a2Q2) are all |a1a2|.
Suppose furthermore that m1,m2 are even and Q1, Q2 are skew symmetric orthogonal

matrices. Then aiQi has
mi

2 eigenvalues equal to ai
√
−1 and −ai

√
−1 for i = 1, 2 repectively.

Furthermore, (a1Q)⊗ (a2Q) is a real symmetric matrix with m1m2

2 eigenvalues equal to a1a2
and m1m2

2 eigenvalues equal to −a1a2.

Theorem 4 Let K ⊆ Rm×m be an orthogonal subspace. Then H(K) = logm. Suppose

furthermore that m1,m2 are even and Ki ⊂ Rmi×mi are orthogonal subspaces of dimension

two at least for i = 1, 2. Then

H(K1 ⊗K2) ≤ log
m1m2

2
= log(m1m2)− log 2

= H(K1) + H(K2)− log 2 (B.1)

In particular, the additivity conjecture does not hold for real subspaces of matrices.

Proof. Since any matrix x ∈ K is of the form aQ for some orthogonal Q it follows that if

Tr(xx⊤) = 1 then the singular values of x are all equal to 1
m . Hence H(x) = logm and

H(K) = logm.

Assume now that K1,K2 are orthogonal spaces of dimension two at least. Without loss of

generality we may assume that Im1
, Q1 ∈ Rm1×m1 and Im2

, Q2 ∈ Rm2×m2 , where Q1, Q2 are

orthogonal. Hence Im1m2
= Im1

⊗Im2
and Q1⊗Q2 are both in K1⊗K2. Recall that Q1⊗Q2

is a symmetric matrix which has m1m2

2 eigenvalues equal to 1 and −1 respectively. Hence
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Q1⊗Q2+Im1m2
is a nonnegative definite real symmetric matrices which has m1m2

2 eigenvalues

equal to 2 and 0 respectively. Let x = ( 2
m1m2

)
1

2 (Q1 ⊗ Q2 + Im1m2
). Then Tr(xx⊤) = 1 and

x has m1m2

2 nonzero singular values all equal to ( 2
m1m2

)
1

2 . Hence H(K1 ⊗ K2) ≤ H(x) =

log(m1m2

2 ).
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