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In practical quantum key distribution system, the state preparation and measurement
have state-dependent imperfections comparing with the ideal BB84 protocol. If the state-

dependent imperfection can not be regarded as an unitary transformation, it should not
be considered as part of quantum channel noise introduced by the eavesdropper, the
commonly used secret key rate formula GLLP can not be applied correspondingly. In
this paper, the unconditional security of quantum key distribution with state-dependent

imperfections will be analyzed by estimating upper bound of the phase error rate in
the quantum channel and the imperfect measurement. Interestingly, since Eve can not
control all phase error in the quantum key distribution system, the final secret key rate

under constant quantum bit error rate can be improved comparing with the perfect
quantum key distribution protocol.
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1 Introduction

Quantum key distribution (QKD) is the art of sharing secret keys between the transmitter

Alice and receiver Bob. It has unconditional security, even if unlimited computational power
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and storage capacity are controlled by the eavesdropper Eve. Since the QKD protocol has

been proposed by Bennett and Brassard in 1984 [1], the unconditional security attracts a lot of

attentions both in theory and experimental sides [2]. Theoretical physicists have analyzed un-

conditional security of QKD in many respects. Initially, Lo and Chau [3] proposed the security

analysis with the help of quantum computer. Then, Shor and Preskill [4] proved security of

prepare-and-measure protocol is equival to entanglement-based protocol, thus unconditional

security of QKD has been proved combining with the CSS code and entanglement distilla-

tion and purification (EDP) technology. Without applying the EDP technology, Renner [5]

has analyzed security of QKD with information theory method. More recently, Horodecki

et al. [6] have analyzed security of QKD based on Private-entanglement states. Inspired by

Horodecki’s mind, Renes and Smith [7] have analyzed noisy processing allows some phase er-

rors to be left uncorrected without compromising unconditional security of the key. However,

all of the security analysis are based on perfect states preparation and measurement. The first

unconditional security of QKD based on imperfect devices was proposed by Gottesman, Lo,

Lukenhaus, and Preskill [8] (GLLP formula), they proved that only the single photon state

transmitted in the quantum channel can be used to generate the final secret key. Applying

the GLLP formula and decoy state method [9], security of the decoy state QKD has been

analyzed by Lo [10] and Wang [11] respectively. Correspondingly, the secret key transmission

distance can be improved greatly with decoy state method [12, 13]. More recently, Berta

et al. [14, 15] have given a method for proving Bob’s device independent QKD protocol by

using the uncertainty relation, which is related to the earlier work by Koashi [16], but it also

requires that the state preparation in Alice’s side should be well characterized.

Obviously, if the imperfection is basis-dependent, we can consider a slightly changed pro-

tocol, where the state preparation and measurement are perfect, while there is an virtual

unitary transformation controlled by Eve introduces the basis-dependent imperfection in the

quantum channel. Since security of the original protocol is no less than the slightly changed

protocol, the final secret key rate can be estimated utilizing the GLLP formula. However,

most of the imperfection in states preparation and measurement are state-dependent [17, 18],

which can not be controlled by Eve in the security analysis. For instance, the wave plate

may be inaccurate in polarization based QKD system, while the phase modulator may be

modulated by inaccurate voltage in phase-coding QKD system. If the imperfection can not

be illustrated as an unitary transformation, it can no be considered as part of the quantum

channel controlled by Eve.

In this paper, security of practical QKD system with state-dependent imperfections will be

analyzed by considering imperfect states preparation in Alice’s side and imperfect states mea-

surement in Bob’s side respectively. We apply the EDP technology by considering the most

general imperfection, and a much better secret key rate under constant imperfect parameters

has been analyzed in comparation with previous works. Comparing with the security analysis

given by Marøy et al. [17] and Lydersen et al. [18], we apply a much simpler method and get a

much higher secret key rate. We consider that states prepared by Alice and measured by Bob

both have individual imperfections. The whole security analysis can be divided into two steps

based on an virtual protocol. Firstly, we consider that Alice prepares perfect entangled quan-

tum state pairs, and she keeps half of the perfect entangled quantum state, sends half of the

imperfect modulated quantum state to Bob, which illustrate the imperfect states preparation.
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Meanwhile, Bob applies perfect Hadamard transformation in the receiver’s side, thus Alice

and Bob can share the maximally entangled quantum state utilizing the EDP technology.

Secondly, Alice applies perfect measurement with her maximally entangled quantum states,

and Bob applies imperfect measurement with his entangled quantum states correspondingly,

finally they can establish the raw key. Similar to Shor and Preskill’s [4] security analysis,

security of the practical QKD is equal to the virtual protocol with the EDP technology and

imperfect measurement. Since the phase error introduced by Bob’s imperfect measurement

should not be controlled by Eve, we can get a much higher secret key rate correspondingly.

The similar result has also been given by Renner et al. [19, 20, 21], they proved that adding

noise in the classical post processing can improve the secret key rate by considering that

phase errors introduced in the post processing can not be controlled by the eavesdropper

Eve [7]. Comparing with the security analysis given by Renner et al., the noise introduced

by the imperfect device are precisely known by Eve, since the random encoding choice, the

imperfection can not be corrected or controlled by Eve. Thus, the exactly known but can not

be controlled imperfection is similar to adding noise as the security analysis model given by

Kraus et al. [19, 20].

2 Security of quantum key distribution with perfect states preparation and mea-

surement

Before introducing the method to analyze security of QKD with imperfect devices, security of

QKD with perfect devices will be analyzed in this section. Suppose that Alice and Bob choose

the polarization encoding QKD system in our security analysis, the standard prepare-and-

measure QKD protocol will be introduced in the following section. In Alice’s side, the classical

bit 0 is randomly encoded by quantum states |0o〉 or |45o〉, the classical bit 1 is randomly

encoded by quantum states |90o〉 or | − 45o〉. In Bob’s side, he randomly choose rectilinear

basis {|0o〉, |90o〉} or diagonal basis {|45o〉, |−45o〉} to measure the quantum state transmitted

through the quantum channel. After Bob’s perfect measurement and some classical steps of

QKD (sifting, parameter estimation, error correction and privacy amplification), secret key

bits can be shared between Alice and Bob.

Following the technique obtained by Shor and Preskill [4], security of prepare-and-measure

QKD protocol is equal to security of entanglement-based QKD protocol, which can be con-

structed by considering the corresponding prepare-and-measure encoding scheme as shown in

Fig.1.

Alice prepares maximally entangled pairs |φ1〉 =
1√
2
(|00〉AB + |11〉AB). After applying the

Hadamard operation randomly to the second part of the pair, she sends Bob half of the pair.

Bob acknowledges the reception of his state and applies the Hadamard operation randomly.

In the security analysis, the most generally noisy channels we need to consider are Pauli

channels. By considering Eve’s eavesdropping in the Pauli channel, the quantum state about

Alice, Bob and Eve is given by

∑

u,v,i,j

√

PuvQij(IA
⊗

Hi
B1

Xu
E1

Zv
E2

H
j
A1

|φ1〉|u〉E1
|v〉E2

|i〉B1
|j〉A1

), (1)

where H = 1√
2

(

1 1
1 −1

)

is the perfect Hadamard operator, which means the transforma-
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Fig. 1. Entanglement-based protocol with Pauli channel and eavesdropper Eve. Z is Eve’s phase
error operation, X is Eve’s bit error operation. A1 is part of Alice’s system, B1 is part of Bob’s
system.

tion between different bases in practical QKD system.

(

0 1
1 0

)

is the X operator, which

means the bit error introduced by Eve.

(

1 0
0 −1

)

is the Z operator, which means the phase

error introduced by Eve. Correspondingly, XZ means the bit phase error introduced by Eve

in the quantum channel. Puv, u, v ∈ {0, 1} means the probability of the XuZv operator

introduced by Eve, which should be normalized by the following equation

∑

u,v

Puv = 1. (2)

Qij , i, j ∈ {0, 1}means the probability of Hi and Hj matrix introduced by Alice and Bob

respectively, which satisfies Qij =
1
4 for Alice and Bob’s randomly choice.

After the sifting step, the case of i 6= j will be discarded. We trace out A1, B1 and Eve’s

systems to get the following equation

ρAB =
∑

u,v

Puv(
1
2IA

⊗

Xu
E1

Zv
E2

|φ1〉〈φ1|Z
v
E2

Xu
E1

⊗

IA

+ 1
2IA

⊗

HB1
Xu

E1
Zv
E2

HA1
|φ1〉〈φ1|HA1

Zv
E2

Xu
E1

HB1
)
⊗

IA.
(3)

There are bit errors and phase errors in the Pauli channel, all of errors are considered

to be introduced by Eve in the security analysis. After transmitting through the quantum

channel, the initially shared maximally entangled state can be transformed into Bell states as

the following equation

|φ1〉 =
1√
2
(|00〉AB + |11〉AB),

|φ2〉 =
1√
2
(|01〉AB + |10〉AB),

|φ3〉 =
1√
2
(|00〉AB − |11〉AB),

|φ4〉 =
1√
2
(|01〉AB − |10〉AB).

(4)

If the maximally entangled pairs |φ1〉 is transformed into Bell state |φ1〉, there is no error

can be introduced in the quantum channel. However, if the maximally entangled pairs |φ1〉

is transformed into Bell states |φ2〉, |φ3〉 and |φ4〉 respectively, the bit error, phase error and
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bit phase error will be introduced by Eve correspondingly. Thus, the bit error rate and phase

error rate can be given by

ebit = 〈φ2|ρAB |φ2〉+ 〈φ4|ρAB |φ4〉,
ephase = 〈φ3|ρAB |φ3〉+ 〈φ4|ρAB |φ4〉.

(5)

The bit error rate and phase error rate should be calculated when we analyze unconditional

security of QKD. In practical QKD system, quantum bit error rate can be estimated after

the parameter estimation step in the classical part of QKD protocol. The main difficulty in

security analysis is how to estimate upper bound of the phase error rate.

Combining equations (3), (4) with (5), the phase error rate minus the bit error rate is

ephase − ebit = 〈φ2|ρAB |φ2〉 − 〈φ3|ρAB |φ3〉 = 0. (6)

Thus, the phase error can be estimated by the bit error rate accurately in the perfect device

case. Correspondingly, the final secret key rate can be given by

R = 1− h(ephase)− h(ebit) = 1− 2h(ebit). (7)

where, h is the binary entropy function. The maximal tolerated bit error rate in the quantum

channel is 0.11 with equation (7), which has also been given by Shor and Preskill.

3 Security of quantum key distribution with state-dependent imperfections

Since practical QKD devices always have some flaws, the photon state preparation and mea-

surement are always imperfect in practical QKD realizations. In the most general case, the

imperfection is state-dependent. For example, the deflection angle has slight differences be-

tween different wave plates in polarization based QKD system. Similar to the security analysis

of QKD with perfect devices, we will give the security analysis of QKD with imperfect devices

in this section by utilizing the EDP technology and imperfect measurement. We firstly give

the model description about the imperfect states preparation and measurement, then we will

prove that the imperfect measurement is equal to the perfect measurement adding the noisy

processing in our security analysis, finally security of the virtual protocol will be analyzed

combining with the imperfect measurement and EDP technology.

3.1 Device-independent imperfections description

Angular deviation of the practical device can be used for illustrating the state-dependent

imperfection. In Alice’s side, the classical bit 0 is randomly encoded by quantum states |α1
o〉

or |45 + α2
o〉, while the classical bit 1 is randomly encoded by quantum states |90 + α3

o〉 or

| − 45+α4
o〉, where α1, α2, α3 and α4 are security parameters for illustrating Alice’s angular

deviations. In Bob’s side, he randomly choose the imperfect rectilinear basis {|β1
o〉, |90+β3

o〉}

or the imperfect diagonal basis {|45 + β2
o〉, | − 45 + β4

o〉} to measure the quantum state

transmitted in the quantum channel, where β1, β2, β3 and β4 are security parameters for

illustrating Bob’s angular deviation. Since the random encoding and decoding choice, all of

the imperfection can not be controlled or corrected by the eavesdropper, detailed illustration

of the imperfect parameter can be given as in Fig. 2. If the security parameter can be satisfied

with α1 = α3, α2 = α4, β1 = β3 and β2 = β4, it will be the basis-dependent imperfection

correspondingly.
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Fig. 2. The most general imperfect states preparation and measurement in practical QKD exper-
imental realization, where α1, α2, α3 and α4 illustrates the imperfect states preparation, β1, β2,

β3 and β4 illustrates the imperfect measurement.

3.2 Imperfect measurement

In practical QKD system with imperfect devices as illustrated in the previous subsection,

Bob gets the classical bit 0 with the projective measurement operator |β1
o〉〈β1

o| and |45 +

β2
o〉〈45 + β2

o|, gets the classical bit 1 with the projective measurement |90 + β3
o〉〈90 + β3

o|

and | − 45 + β4
o〉〈−45 + β4

o| respectively. Since the rectilinear basis and diagonal basis will

be selected randomly, the quantum bit error rate introduced by the imperfect measurement

can be given by

ebit1

= 1
2 [

1
2 (

〈90+β3
o|0o〉〈0o|90+β3

o〉
〈90+β3

o|0o〉〈0o|90+β3
o〉+〈β1

o|0o〉〈0o|β1
o〉 +

〈β1
o|90o〉〈90o|β1

o〉
〈β1

o|90o〉〈90o|β1
o〉+〈90+β3

o|90o〉〈90o|90+β3
o〉 )+

1
2 (

〈−45+β4
o|45o〉〈45o|−45+β4

o〉
〈−45+β4

o|45o〉〈45o|−45+β4
o〉+〈45+β2

o|45o〉〈45o|45+β2
o〉

+ 〈45+β2
o|−45o〉〈−45o|45+β2

o〉
〈45+β2

o|−45o〉〈−45o|45+β2
o〉+〈−45+β4

o|−45o〉〈−45o|−45+β4
o〉 )]

= 1
2 [

1
2 (

sin2β1

sin2β1+cos2β3

+ sin2β3

sin2β3+cos2β1

) + 1
2 (

sin2β2

sin2β2+cos2β4

+ sin2β4

sin2β4+cos2β2

)].

(8)

From this calculation, we can get the result that the imperfect measurement will introduce bit

flipping with the probability ebit1. Comparing with the imperfect measurement, the perfect

measurement will introduce the bit flipping with zero probability. In our security analysis, Al-

ice and Bob should establish the maximally entangled pairs before applying the measurement,

which means that the eavesdropper can only get the error bit information about the secret

key through the imperfect measurement in Bob’s side. Thus, we can simplify the imperfect

measurement as the perfect measurement adding a noisy processing protocol, where the bit

0(1) will be transformed into 1(0) with the probability ebit1.

3.3 Virtual EDP protocol

We propose the virtual protocol based on the EDP technology as in Fig. 3. The new protocol

mainly contain two steps: the first step is considering the maximally entangled state |φ1〉 to

be shared between Alice and Bob. In the rectilinear basis case, the classical bit 0 is prepared

by the quantum state cos(α1)|0
o〉 + sin(α1)|1

o〉, while the classical bit 1 is prepared by the
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Fig. 3. Entanglement-based quantum key distribution protocol with imperfect devices. We intro-

duce the third party A1, B1 in the new protocol, which can not be controlled by Alice, Bob and
Eve respectively. In the first step, Alice and Bob share the maximally entangled pairs. In the
second step, Alice applies the perfect measurement, Bob applies the perfect measurement and a
noisy processing protocol to get the raw key.

quantum state −sin(α3)|0
o〉+cos(α3)|1

o〉. In the diagonal basis, the classical bit 0 is prepared

by the quantum state cos(α2+
π
4 )|0

o〉+sin(α2+
π
4 )|1

o〉, while the classical bit 1 is prepared by

the quantum state cos(α4−
π
4 )|0

o〉+sin(α4−
π
4 )|1

o〉. For simplicity, the state preparation can

also be illustrated as the following case, Alice prepares the quantum state 1√
2
(|0o〉IA1

|0o〉 +

|1o〉IA1
|1o〉)|e0〉 +

1√
2
(|0o〉HA1

|0o〉 + |1o〉HA1
|1o〉)|e1〉 and transmits half of the perfect state

to Bob, where HA1
=

(

cos(α2 +
π
4 ) cos(α4 −

π
4 )

sin(α2 +
π
4 ) sin(α4 −

π
4 )

)

, IA1
=

(

cos(α1) −sin(α3)
sin(α1) cos(α3)

)

, |e0〉

and |e1〉 are Alice’s auxiliary quantum states. If Alice want to transmit the state |0o〉 to

Bob, the auxiliary quantum state |e0〉 will be selected, and the practical quantum state

IA1
|0o〉 = cos(α1)|0

o〉+ sin(α1)|1
o〉 will be transmitted in the quantum channel. Since all of

the imperfect state can be analyzed similarly, the non-unitary matrixHA1
and IA1

can be used

for illustrating the imperfect state preparation. In the receiver’s side, Bob applies the unitary

transformation HB1
or IB1

randomly, where HB1
= 1√

2

(

1 1
1 −1

)

is the perfect Hadamard

transformation, IB1
=

(

1 0
0 1

)

is the perfect identity transformation. Since Alice and Bob

can apply the EDP technology, they will share the maximally entangled quantum pairs before

the imperfect measurement.

The second step is applying the perfect and imperfect measurement in Alice’s side and

Bob’s side respectively. More precisely, Alice measure the entangled quantum state with per-

fect rectilinear basis {0o〉, |90o〉} or diagonal basis {45o〉, |−45o〉}. Bob measure the entangled

quantum state with the imperfect rectilinear basis {|β1
o〉, |90 + β3

o〉} or imperfect diagonal

basis {|45 + β2
o〉, | − 45 + β4

o〉} correspondingly, then Alice and Bob will share the raw key.

Similar to the security analysis based on the prefect device, A1 and B1 can not be changed

by Alice and Bob in our security analysis, it can not be changed by Eve simultaneously.

However, A1 and B1 are permitted to share the imperfection information with Alice, Bob

and Eve. In the virtual protocol, the state preparation and measurement is the same as

the original practical QKD system. If the unconditional security of the virtual protocol can

be proved, security of the practical QKD system can be proved naturally. By considering

Eve’s eavesdropping in the Pauli channel, the quantum state about Alice and Bob before the

measurement can be given by
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∑

u,v,i,j

√

PuvQij(IA
⊗

Ii+1
B1

Hi
B1

Xu
E1

Zv
E2

H
j
A1

I
j+1
A1

|φ1〉|u〉E1
|v〉E2

|i〉B1
|j〉A1

). (9)

After the sifting step, the case of i 6= j will be discarded. We trace out Eve, A1 and B′
1s

systems, the density matrix about Alice and Bob can be given by

ρ
′

AB =
∑

u,v

Puv(
1
2IA

⊗

IB1
Xu

E1
Zv
E2

IA1
|φ1〉〈φ1|IA1

Zv
E2

Xu
E1

IB1

⊗

IA+

1
2IA

⊗

HB1
Xu

E1
Zv
E2

HA1
|φ1〉〈φ1|HA1

Zv
E2

Xu
E1

HB1

⊗

IA).
(10)

Suppose that Alice prepare maximally entangled quantum states |φ1〉
⊗

N in her side. After

the EDP protocol, Alice and Bob will share maximally entangled quantum states |φ1〉
⊗

M ,

which can be illustrated as the following equation

M = N(1− h(ebit)− h(ephase)),

ebit = 〈φ2|ρ
′

AB |φ2〉+ 〈φ4|ρ
′

AB |φ4〉,

ephase = 〈φ3|ρ
′

AB |φ3〉+ 〈φ4|ρ
′

AB |φ4〉,

(11)

where ebit and ephase are the quantum bit error rate and phase error rate between Alice and

Bob by considering the EDP technology. Since the calculation of ebit and ephase are much

difficulty, we will get the calculation result based on some special imperfect parameters and

the Mathematic software. Additionally, Bob will apply the imperfect measurement with the

perfect entanglement quantum state as illustrated in the imperfect measurement subsection,

Alice will apply the perfect measurement with the perfect entanglement quantum state cor-

respondingly. Considering the virtual protocol, the practical quantum bit error rate between

Alice and Bob can be estimated by

Q = 1− (1− ebit1)(1− ebit)− ebitebit1, (12)

this equation means that the practical quantum bit error rate can be divided into two cases

(considering the EDP protocol and the perfect measurement in Alice’s side and imperfect

measurement in Bob’s side respectively). The first case is considering the EDP protocol has

the right bit, the measurement protocol has the error bit. The second case is considering

the EDP protocol has the error bit, the measurement has the right bit respectively. We can

estimate Eve’s information through the whole bit error rate and the phase error rate in the

first step. Finally, the secret key rate can be given by

R ≥ limN→∞
M(1−h(ebit1))

N

= (1− h(ephase)− h(ebit))(1− h(ebit1)).
(13)

the calculation of which is much complicated for the formula has too many security param-

eters, we will give some examples to illustrate how to use this secret key rate formula in

practical QKD system.

We give a simple example in the following, we suppose that the imperfect parameters in

our security analysis are α1 = α3 = β1 = β3 = 0, α2 = β2 = −π
4 , α4 = β4 = 3π

4 . Thus, we

can get HA1
= IA1

=

(

1 0
0 1

)

, this case means that Alice only send the rectilinear basis

{|0o〉, |90o〉}, and Bob will only measure in the rectilinear basis correspondingly. The quantum
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bit error rate and phase error rate in the EDP protocol can be calculated respectively as the

following equation
ebit =

1
4 (p00 + p01 + 3p10 + 3p11),

ephase =
1
4 (p00 + 3p01 + p10 + 3p11).

(14)

Correspondingly, upper bound of the phase error rate can be estimated by

ephase ≤ ebit +
1
2 | p10 − p01 |≤ ebit +

1
2 . (15)

Finally, we can only get zero secret key rate utilizing equation (13). In practical experimental

realization, Eve can measure Alice’s states in the same rectilinear basis with 0 bit error, and

she will introduce the perfect man-in-the-middle attack without being discovered.

4 Calculation

To compare our security analysis with GLLP’s security analysis, we will give the calculation

result by considering the case which can not be analyzed by the GLLP formula in this section.

We consider that the device has individual imperfections both in the transmitter’s side and

receiver’s side respectively, which means quantum states in the same basis maybe have the

different angular deviation. Precisely, we assume that the security parameters can be satisfied

with α1 = β1 = β2 = a, α2 = α3 = α4 = β3 = β4 = 0. After some lengthy but not very

interesting algebra, the bit error rate and phase error rate in the first step (Alice and Bob

establish the maximally entangled quantum pairs with the EDP technology) can be calculated

respectively as following equations,

ebit =
1
8 [cos

2(a)(p11 + p10) + sin2(a)(p00 + p01) + cos(a)(2p10 − 2p11) + 4p01 + p10 + p11]
+ 1

8 [cos
2(a)(p11 + p10) + sin2(a)(p00 + p01) + cos(a)(−2p10 + 2p11) + p10 + 5p11],

(16)
ephase =

1
8 [cos

2(a)(p00 + p01) + sin2(a)(p10 + p11) + cos(a)(2p01 − 2p00) + 4p10 + p01 + p00]
+ 1

8 [cos
2(a)(p11 + p10) + sin2(a)(p00 + p01) + cos(a)(−2p10 + 2p11) + p10 + 5p11].

(17)

Equations (16) and (17) can be directly calculated combining equation (11) with practical

imperfect parameters. From this calculation, we can find that the phase error rate is equal

to the bit error rate in case of all imperfect parameters are equal to zero.

From this calculation result, upper bound of the phase error rate can be estimated by

considering the following inequation

|ephase − ebit|
≤ 1

8 |[cos
2(a)(p11 + p10 − p00 − p01) + sin2(a)(p01 + p00 − p11 − p10)

+ 2cos(a)(p10 − p11 + p00 − p01) + 3p01 − 3p10 + p11 − p00]|
= 1

4 |[cos
2(a)(p11 + p10 − p00 − p01) + cos(a)(p10 − p11 + p00 − p01) + 2p01 − 2p10]|

= 1
4 |[(cos

2(a)− 1)(p11 + p10 − p00 − p01) + (cos(a)− 1)(p10 − p11 + p00 − p01)]|
≤ 1

4 (1 + sin2(a)− cos(a))

(18)

ephase ≤
1
2 (1 + sin2(a)− cos(a)) + ebit. (19)

Utilizing equation (8), we can get the bit error rate ebit1 as the following equation

ebit1 = 1
2

sin2(a)
sin2(a)+1 . (20)



946 Security of quantum key distribution with state-dependent imperfections

Fig. 4. Final secret key rate with perfect and imperfect devices. The blue line means the perfect
devices case, which can be satisfied with equation (7). The red line means security of imperfect
devices by considering parameters α1 = β1 = β2 = 0.2, α2 = α3 = α4 = β3 = β4 = 0.

Combining equations (12), (13) with (20), we can get the final secret key rate formula as the

following equation

R ≥ (1− h( Q−ebit1
1−2ebit1

+ 1
2 (1 + sin2(a)− cos(a)))− h( Q−ebit1

1−2ebit1
))(1− h(ebit1)), (21)

combining wit this formula, we give the simulation result of the final secret key rate by

considering practical imperfect security parameters as in Fig. 4.

Since the detection setup has the individual imperfection in our security analysis, the

GLLP security analysis result can not be applied in this case. Comparing with the perfect

QKD protocol, the final secret key rate has been improved in our calculation result, the

reason for which is that Eve can not control the phase error introduced by Bob’s imperfect

measurement, and it should no be corrected by Alice and Bob correspondingly.

5 conclusions

In practical quantum key distribution realizations, the state-dependent imperfection in Alice

and Bob’s side can not be satisfied with the GLLP formula. A simple security proof of QKD

with state-dependent imperfect states preparation and measurement have been analyzed in

this paper. Our security analysis result shows that the imperfect QKD system maybe tolerate

much higher quantum bit error rate comparing with the previous security analysis.
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