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We study from the point of view of quantum logic the properties of the collective oscil-
lations of two Rydberg atoms in two harmonic traps. The difference in the frequency of

two normal modes of motion expands with the difference in the mass of the two atoms.
The probability of excitation of the motional quanta due to the strong dipole-dipole
interaction can be made to be sufficiently small. Based on the normal modes of motion

we present a scheme for quantum state transfer which is useful for quantum information
process and for precision spectroscopy of atoms that lack suitable transitions for efficient
laser cooling, internal state preparation, and detection.
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1. INTRODUCTION

Quantum information science holds promise for many fascinating potential applications such

as the factorization of large numbers[1], secure communication[2], and spectroscopic tech-

niques with enhanced sensitivity [3]. Considering their extraordinary ability of quantum

control and long coherence times, quantum optical systems like trapped ions [4, 5], neutral

atoms [7, 6], and cavity QED [8, 9], have played prominent role in the implementing quantum

information process in the laboratory. Proposals to build quantum computer with neutral

atoms seem extremely promised because of very long coherence times of the internal atomic

states and well-established techniques for cooling and trapping atoms in optical lattices [10],

standard dipole traps [11], and magnetic microtraps [12]. Compared with trapped ions, neu-

tral atoms have a huge advantage to turn on and off dipole interaction on demand with a
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926 Low temperature dynamics of netral atoms for quantum logic

surprising contrast of 12 orders of magnitude, which makes the task of fabricating a scalable

quantum register to be far easier than it may be for the trapped ions [13, 14].

To be a good qubit candidate, it should meet four key requirements: (i) possessing two

levels being relatively immune to environmental perturbations;(ii) efficient cooling to mini-

mize velocity-induced decoherence; (iii) faithful initial state preparation; (iv) accurate state

detection. It is difficult to choose an atom that simultaneously fulfills these requirement.

This difficulty can be overcome by choosing two different atomic species with one species only

needing to have good immune levels and the other species fulfilling the other requirements

[15]. For this two-species system normal modes of motions is a cornerstone of laser cooling

and state transfer which is also essential to precision spectroscopy [15].

In this paper we discuss the dynamics of two neutral Rydberg atoms confined in two

harmonic traps. The frequency difference between two normal modes increases with the

difference in the mass of the two atoms. Based on normal modes of motion [16], we suggest a

scheme for quantum state transfer from one atomic species to another. Though any unitary

transformation U acting on n qubits can be composed from two-qubit CNOT gates and

single-qubit rotation gates [17], there is a scheme for CNOT gates suggested by Jaksch et al

based on Rydberg blockade between neutral atoms [18] and recently experimentally realized

by Isenhower et al [19], and experimental
√
SWAP entangling of neutral atoms mediated by

collisions [20], it is not trivial to devise an efficient scheme for the state transfer between two

neutral atoms.
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Fig. 1. (Color online) The degeneracy of the Rydberg states of two alkali atoms confined in two
harmonic microtraps at distance Rc is removed by employing a constant electric field along the x
direction.

2. DYNAMICS OF THE NORMAL MODE OF MOTION

Consider two atom 1 and 2 of mass m1 and m2 = γ m1 (γ ≥ 1), respectively, confined in two

harmonic microtraps (see Fig.1). The atoms are excited to the Rydberg states of a principal

quantum number n. To remove the degeneracy of the Rydberg state, a constant electric field
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along the x axis is applied. The Rydberg state has a dipole moment [18]

µ = µzex =
3

2
nqea0ex, (1)

where q is a parabolic quantum number

q = n− 1− |m|, n− 3− |m|, · · · ,−(n− 1− |m|) (2)

with magnetic quantum number m. The two Rydberg atoms interact via the dipole-dipole

potential

Vdip(r) =
1

4πǫ0

[

µ1 · µ2

|r|3 − 3
(µ1 · r)(µ2 · r)

|r|5
]

, (3)

where r is the distance between the two atoms. In this paper, we will assume that due to the

sufficiently large electric field, the energy difference between two neighboring stark states is

far larger than the dipole-dipole interaction and that the transitions (m,m) → (m±1,m∓1)

due to the nondiagonal terms of Vdip are suppressed by an appropriate choice of the initial

stark eigenstate [18]. If two atoms are in the hydrogen Rydberg state

|r〉 = |n, q = n− 1,m = 0〉 (4)

one may find that

Vdip(R) = −9[n(n− 1)]2(
a0
R
)3

e2

8πǫ0a0
(5)

for a distance r = Rez. For alkali atoms n should be interpreted as an effective principle

quantum number [21].
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Fig. 2. (Color online) The frequencies Ω1,2 of the normal mode of the motion and the heat
energy Eh versus the ratio γ = m2/m1. The relevant parameters are n = 100, Rc = 8µm,

ωt1 = 2π × 5MHz, and m1 = 85.5u.

We encode Qubits in two internal atomic ground states (e.g., hyperfine levels) |g〉 and

|s〉. The distance between the centers xci(i = 1, 2) of the two harmonic microtraps is Rc =

|xc1−xc2| (see Fig.1). Rr = |xr1−xr2| denotes the distance between the equilibrium positions

of the two atoms xri(i = 1, 2) when they are in the Rydberg state |r〉. In the following we

assume the harmonic potential of frequencies in the y and z directions is sufficiently strong that

the motion along these directions can be neglected and we only need to consider the motion

along the x direction. The atoms have been previously laser cooled in all three dimensions so
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that they fluctuate around the equilibrium position. When the two atoms is excited to the

Rydberg state |r〉, the potential energy of the system is given by

V (x2 − x1) =
2

∑

i=1

1

2
k0[xi(t)− xci]

2 +
A

[x2(t)− x1(t)]3
, (6)

where xi is the coordinate of the atom i and k0 = ω2
t1 · m1 = ω2

t2 · m2 is a constant with

ωti(i = 1, 2) being the frequencies of the ith microtrap , respectively, and the constant

A = −9[n(n− 1)]2a20e
2

8πǫ0
. (7)

The equilibrium positions of the two Rydberg atoms xri(i = 1, 2) are the solutions of the

equations ∂V/∂xi = 0 (i = 1, 2), i.e.

k0(x1 − xc1) +
3A

(x2 − x1)4
= 0, (8)

and

k0(x2 − xc2)−
3A

(x2 − x1)4
= 0. (9)

Those equations can be solved numerically if xci is given.
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Fig. 3. (Color online) The frequencies Ω1 of the normal mode of the motion and the heat energy
Eh versus the principle quantum number n. The relevant parameters are γ = 1.5, Rc = 8µm,

ωt1 = 2π × 5MHz, and m1 = 85.5u.

Assuming the collective motions of the two atoms around the equilibrium position are

small, we approximate V with its Taylor expansion around xri truncated to second order.

The dynamics of the system are characterized by the Lagrangian

L =
1

2

2
∑

i=1

miq̇
2
i −

1

2

2
∑

i,j=1

Vijqiqj , (10)
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where qi = xi − xri are the displacements of the atoms from the equilibrium positions xri,

and

Vij =
∂2

∂xi∂xj
V (x2 − x1)|xri

= k0 + kd if i = j

= −kd if i 6= j (11)

with

kd =
12A

R 5
r

. (12)

From Eq. (10), we have the equations for the normal modes of the motion

2
∑

j=1

Vijb
j
α = λαmib

i
α with α = 1, 2, (13)

where the eigenvalues λα ≥ 0 since the matrix Vij is real, symmetric, and non-negative

definite, and bα is the eigenvector at λα. The frequency of the normal mode α is Ωα =
√
λα.

Introducing the mass-weighted coordinates q′i =
√
miqi, we can rewritten the eigenvalue

problem as
2

∑

j=1

V ′
ij b

j′
α = Ω2

α b
i′
α for α = 1, 2, (14)

where V ′
ij = Vij/

√
mimj [22, 23].
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Fig. 4. (Color online) The frequencies Ω1 of the normal mode of the motion and the heat energy
Eh versus the distance between the centers of the two microtraps Rc. The relevant parameters

are n = 100, γ = 1.5, ωt1 = 2π × 5MHz, and m1 = 85.5u.

Solving the secular equation (14) gives the eigenfrequencies of the motion

Ω1 =
1

2m1



(k0 + kd)(1 +
1

γ
)−

√

(k0 + kd)2(1−
1

γ
)2 + 4

k2d
γ



 (15)

and

Ω2 =
1

2m1



(k0 + kd)(1 +
1

γ
) +

√

(k0 + kd)2(1−
1

γ
)2 + 4

k2d
γ



 (16)
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with corresponding displacements

b1 = N1

(√
γ,−1

4

[

3(1− γ)−
√

9(1− γ)2 + 16γ
]

)

(17)

and

b2 = N2

(√
γ,−1

4

[

3(1− γ) +
√

9(1− γ)2 + 16γ
]

)

, (18)

where the first and second components describe the motion of atom 1 and 2, respectively.

Here, the constant N1,2 are the normalization factor, satisfying the scalar products

bi1b
j
1 + γbi2b

j
2 = δij with i, j = 1, 2, (19)

and

b1i b
1
j + γb2i b

2
j = δij with i, j = 1, 2. (20)

In Fig. (2, 3, 4) we plot the eigenfrequencies as a function of γ, the principle quantum number

n, and the distance between the two center of the harmonic microtraps.
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Fig. 5. (Color online) Quantum state transfer scheme for two atoms sharing a common normal
mode of motion with τ denoting the number of the excitation of the normal mode Ω1. See text

for explanation.

The normal modes of the atom motion are defined by

Qi(t) =

2
∑

j=1

bji q
′
j(t). (21)

In terms of the normal modes of the motion the Lagrangian for the atoms oscillations Eq.(10)

may be rewritten as

L =
1

2

[

2
∑

i=1

(

Q̇2
i − Ω2

iQ
2
i

)

]

. (22)

From this expression we see that the modes Qi are uncoupled, thus we have the Hamiltonian

H =
1

2

[

2
∑

i=1

(

P 2
i +Ω2

iQ
2
i

)

]

(23)
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with the canonical momentum Pi = Q̇i. By introducing the operators

Qj → Q̂j =

√

h̄

2Ωj

(aj + â†j) with j = 1, 2, (24)

and

Pj → P̂j = i

√

h̄

2Ωj

(aj − â†j) with j = 1, 2, (25)

where the annihilation and creation operators âj and â
†
j obey the usual commutation relation

[âi, â
†
j ] = δij and Q̂j and P̂j satisfy the canonical commutation relation [Q̂i, P̂j ] = ih̄δij . From

Eqs. (21, 24), we have

qi =
1√
mi

2
∑

α=1

(biα)
−1

√

h̄

2Ωα

(aα + a†α). (26)
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Fig. 6. (Color online) The relevant levels and laser pulses for the stimulated Raman transition
|r1, 1〉 → |r2, 0〉 [24].

When both atoms are excited to the Rydberg state the mechanical force due to Vdip

Fdip =
dVdip(R)

dR
|R=R0

= −3A

R4
0

(27)

will heat the two-atom system. Considering the contribution from the harmonic microtraps

the heat energy can be estimated by

Eh = −1

4
k0(Rr −Rc)

2 +
3A

R 4
r

(Rr −Rc) (28)

for a duration of π/2Ω1 [25]. In Fig. (2, 3, 4) we also plot Eh in unit of the spacing of the

normal mode ∆Enm = h̄Ω1 as a function of the mass ratio γ, the principle quantum number

n, and the distance between the two center of the harmonic traps.



932 Low temperature dynamics of netral atoms for quantum logic

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

t  (ms)

p
1

p
3

p
4

p
2

p
o

p
u

la
ti

o
n

Fig. 7. (Color online) The simulation of the atomic state evolution |r1, 1〉 → |r2, 0〉 under a π
laser pulse illumination, assuming δ = Ω1 = 2π × 4 MHz, Ω2 = 2π × 5 MHz, ∆ = 2π × 100GHz,
g1 = g2 = 2π × 102MHz, td = 5.67µs, φ1 = φ2, η = 0.5, Γ = 2 KHz.

Fig.2 shows that with the increasing of γ, the normal mode frequency Ω1 decreases and Ω2

changes little, and the heat Eh increases with γ but remained small for the given parameters.

Ω1 and Eh increase with the principle quantum number n (Fig. 3). We have Eh > h̄Ω1 if

Rc < 6.1µm (Fig. 4). Assuming m1 = 85.5 u (the atomic mass unit), n = 100, γ = 1.5,

Rc = 8µm, ωt1 = 2π× 5 MHz, and ωt2 = ωt1/
√
γ = 2π× 4.082 MHz, we have Rr = 7.997µm,

Ω1/2π = 4.084MHz, Ω2/2π = 5.002MHz. Though the frequencies of the normal modes

Ω1,2 are only slightly different from the two trap frequencies ωti(i = 1, 2), the dipole-dipole

interaction has an important role in the motion of normal modes, since the work done by this

interaction is

Wd = − 3A

(xr2 − xr1)4
(xr1 − xc1)−

3A

(xr2 − xr1)4
(xc2 − xr2), (29)

the work done by the traps on the two atoms from xci(i = 1, 2) to xri(i = 1, 2) approximately

equals

Wt =

2
∑

i=1

1

2
k0(xri − xci)

2, (30)

and we haveWd = 2Wt according to Eqs (8,9). The normal modes are collective modes shared

by the two atoms and can be used for quantum information transfer between two qubits. The

fluctuation of the coordinate of m1 is ∆x1 =
√

h̄/2m1Ω1 = 3.4 nm which is very small and its

effect on the normal motion can be safely neglected, and the heating energy Eh/h̄Ω1 = 0.12 is

small and can be neglected considering that it will average to zero over a whole period 2π/Ω1.

3. SCHEMES FOR QUANTUM LOGIC

Now we discuss a possible application of the normal modes of motion of two neutral atoms

based on the strong dipole-dipole interaction. Quantum state transfer between two qubits is

essential to a quantum computer, a quantum network, and precision spectroscopy of atoms

that lack suitable transitions for efficient laser cooling [22, 26], internal state preparation, and

detection. We assume that the two atom 1 and 2 are initially in the state

|ψ〉1 = (α|g〉1 + β|s〉1)|r1〉2 (31)
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Fig. 8. (Color online) The effects of errors in the coupling gi(i = 1, 2) and phase difference φ on the

fidelity of transferring state |φ〉1 = (|s〉1 + |g〉1)/
√
2 of atom 1 to atom 2 with ∆g1 = ∆g2 = ∆g

and other parameters remained the same as those in figure 7. The maximum of state transfer
fidelity Ftmax = 0.988.

where |α|2+ |β |2 = 1, and that all the motional mode are initially cooled to near their ground

state by Raman sideband cooling on atoms [27](Fig. 5A). We now drive a π pulse on transition

|g〉|0〉 ↔ |r1〉|0〉 on atom m1 leading to

|ψ〉1 → |ψ〉2 = α|r1〉1|r1〉2|0〉+ β|s〉1|r1〉2|0〉. (32)

where we have used the fact that the normal mode of motion is shared by atoms m1 and m2

and assumed the motional mode are still in their ground state considering that Eh/h̄Ω1 is

small. Then a blue sideband (BSB) π pulse on transition |s〉|0〉 ↔ |r1〉|1〉 is applied to atom

m1 leading to

|ψ〉2 → |ψ〉3 = α|r1〉1|r1〉2|0〉+ β|r1〉1|r1〉2|1〉 (33)

(Fig. 5B). During the BSB pulse duration, the |r1〉1|0〉 component of the wave function is not

affected since the state |s〉1|−1〉 is nonexistent [28, 29], which is the vital element of quantum

logic employed in literatures [15, 27, 30].

Then a π pulse tuned to the transition |r1〉2|1〉 → |r2〉|0〉 is applied to atom 2 leading to

|ψ〉2 → |ψ〉3 = |r1〉1(α|r1〉2 + β|r2〉2)|0〉. (34)

Thus the quantum state of atom 1 has been transferred to atom 2 (Fig. 5C). The Rydberg

state α|r1〉2 + β|r2〉2 is then transferred to the ground state α|g〉2 + β |s〉2, which concludes

the state transfer. The last state can be efficiently measured by projecting its state to |g〉 and
|s〉.

Based on the state transfer operations, we can measure single-laser pulse (Rabi) spec-

troscopy of atom 1. First we make a frequency scan across the resonance by applying to atom

1 interrogation pulses of constant intensity and duration, corresponding to π pulses on the
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transition |g〉 ↔ |s〉 when the laser beam was tuned to resonance. So the coefficient α and

β is dependent on the frequency of the interrogation pulses. Then we perform the aforesaid

state transfer operations and read out the states of atom 2. By repeating this experiments

many times for a given interrogation pulse frequency, the probabilities |α|2 and |β |2 as func-

tions of the spectroscopy probe frequency can be determined and therefrom the transition

frequency of atom 1 is measured [15]. For example, many wavelengths like 6822.4 Å of tran-

sition |s〉1 = 4p55s5p 4S ↔ |g〉1 = 4p54d(3D)5s 2D◦ in 87Rb are not accurate [31], we can

take 87Rb and 133Cs as atom 1 and 2, respectively, then transfer state |φ〉1 = α|g〉1 + β|s〉1
to atom 2, |φ〉2 = α|g〉2 + β|s〉2 with |g〉2 = |F,mF 〉 = |3, 0〉 and |s〉2 = |4, 0〉 to accurately

measure the transition frequency with the aid of 133Cs [32].

Table 1. Effect of errors in parameters on the fidelity of the state transfer of |φ〉1. The parameters
remain the same as those used in figure 7. When there are no errors, the fidelity of the state transfer

is F = 0.995 for the transform |r1, 1〉 → |r2, 0〉 and F = 0.999 for |g, 0〉 → |r1, 0〉, respectively.

Err 10% g1 10% g2 10% ∆ 10% η ∆δa ∆φ 10% td 200%∆Γ

F 0.881 0.909 0.987 0.992 0.965 0.981 0.989 0.990
Err 10% g1 10% g2 10% ∆ 10% η ∆δb ∆φ 10% td 200%∆Γ

F 0.968 0.971 0.991 0.998 0.993 0.975 0.993 0.997

Now we numerically simulate the state transfer of an unknown state from a qubit to an-

other. We assume state rotations are performed on |a, j〉 ↔ |b, k〉(a, b = s, g, r1, r2, j, k = 0, 1)

transition with two-photon stimulated Raman (TWSR) pulses described by Ei ∝ gi[ exp (iki ·
x− iωit+ i φi)+cc](i = 1, 2) [27, 33] . The relevant levels for the stimulated Raman transition

|r1, 1〉 → |r2, 0〉 is shown in the Fig.6 [24]. After we adiabatically eliminate the intermedi-

ate state through the standard method, the effective Hamiltonian describing the transition

|r1, 1〉 ↔ |r2, 0〉 has the following form in the interaction picture[24]

HI = −iηh̄Ω0

2
a1σ+ exp (iφ)− h̄

Ω0

2
σ+ exp (iφ+ iΩ1t)

− h̄
Ω0

2
σ+ exp (iφ+ iΩ2t) + h.c., (35)

where Ω0 = 2|g1g2|/∆ with the detuning ∆ shown in Fig.6, φ = φ1 − φ2, and σ+ = |r2〉〈r1|.
Here we have considered the effect arising from the levels |r2, 1〉 and |r2, 12〉 with |12〉 being
an excitation in the normal mode Ω2. In Fig.7, assuming the pertinent Rydberg states

spontaneously decay with a rate Γ = 2 KHz [13] we simulate a π state rotation |r1, 1〉 → |r2, 0〉
with realistic parameters δ = Ω1 = 2π × 4 MHz, Ω2 = 2π × 5 MHz, ∆ = 2π × 100GHz, Rabi

frequencies of two pulses g1 = g2 = 2π × 102MHz, pulse duration td = 5.67µs, initial phase

φ1 = φ2, the Lamb-Dicke parameter η = 0.5 [19, 34]. Here p2 denotes the population in the

level |r2, 0〉, p3 and p4, respectively, denote the population in the level |r2, 1〉 and |r2, 12〉.
Therefrom we see that the possibility (< 1.4%) of excitations to levels other than |r2, 0〉 is

negligible.

The effect of unknown experimental errors from the two-photon stimulated Raman pulses

on the fidelity of the state transfer is shown in the table ??, where the first line describes
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the errors from the transformation |r1, 1〉 → |r2, 0〉, the third line describes the errors from

the transformation |g, 0〉 → |r1, 0〉, with ∆δa = ±2π × 10KHz, ∆δb = ±2π × 2KHz, and

∆φ = φ1 − φ2 = ±0.1π. The effect of Errors from the other pulses during the state transfer

on the fidelity F are similar to those shown in the table ??. The fidelity F decrease by less

than 0.5% when the decay rate increase by two times. In figure 8 we numerically estimate the

effects of the errors in the coupling gi(i = 1, 2) and phase difference φ on the transfer fidelity

Ft of state |φ〉1 = (|s〉1 + |g〉1)/
√
2 to atom 2. The system of two neutral atoms is robust

against unknown experimental errors in the parameters.

The probability of spontaneous emission during a π TWSR pulse pse ≃ π/(2∆τl) with

τl the intermediate state lifetime [25]. Assuming τl = 10 ns gives pse ≃ 5 × 10−4. Other

experimental imperfections including background gas collisions, photon scattering, laser noise

induced heating, AC Stark shifts, and background fields may influence the coherence of the

qubit states and limit the coherence time to be on the order of a second [25]. Thus the effect

on the state transfer due to these experimental imperfections are negligible. To trap both

ground and Rydberg state atoms one can use the blue-detuned far-off-resonance optical traps

(FORTs), which will also help to improve the Rydberg state lifetime [25].

4. CONCLUSION

We have discussed the normal mode of motion of two neutral Rydberg atoms based on the

strong dipole-dipole interaction. The frequencies of the two normal modes of motion are

slightly larger than that of the two traps. To suppress the excitation of the motional quanta

the heat energy arising from the strong dipole-dipole interaction can be controlled to be

sufficiently small. Possible application of the normal modes of motion can be found in the

laser cooling, state transfer, and precise spectroscopy. In quantum information process and

precise spectroscopy, it is rather difficult to find a candidate neutral atom which has long-

lived and reliably initialized levels, at the same time can be efficiently cooled and detected

precisely. With this normal-mode-based state transfer scheme, one atom needs only have a

good level structure and the other atom satisfies the other requirements.
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