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We propose a passively self-error-rejecting single-qubit transmission scheme for an arbi-
trary polarization state of a single qubit over a collective-noise channel, without resorting
to additional qubits and entanglement. By splitting a single qubit into some wavepack-
ets with some Mach-Zehnder interferometers, we can obtain an uncorrupted state with

a success probability approaching 100% via postselection in different time bins, inde-
pendent of the parameters of collective noise. It is simpler and more flexible than the
schemes utilizing decoherence-free subspace and those with additional qubits. One can

directly apply this scheme to almost all quantum communication protocols based on
single photons or entangled photon systems against a collective noise.
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1 introduction

Quantum key distribution (QKD) supplies a secure way for two parties, say the sender Alice

and the receiver Bob, to generate a shared key, provided that they initially share a short secret

key (for identity authentication) and that they possess an unprotected quantum channel (an

optical fiber). Different from classical crypto-system in which the security of key depends on

computation difficulty with a limited computation power, the security of QKD comes from

the laws of quantum mechanics such as the uncertainty relation (non-cloning theorem), the

coherence of entangled systems, quantum measurement, and so on. As an unknown quantum

state cannot be cloned, the vicious actions done by an eavesdropper, say Eve will inevitably

disturb the quantum system and leave a trace in the outcomes obtained by the two authorized

parties. Eve’s action will be detected by analyzing the error rate of samples chosen randomly.

Since Bennett and Brassard published the original QKD protocol [1] in 1984 (called BB84),
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QKD attracts a great deal of attention [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and has

been proven unconditionally secure [18, 19]. Recently, some groups demonstrated successfully

long-distance quantum cryptography [20, 21, 22, 23] and its network [24, 25, 26, 27, 28, 29].

Implementations of practical QKD rely on either the polarization or the differential phases

of photons. Preventing Eve from eavesdropping by disguising her action as noise with a better

quantum channel requires the two legitimate users to reduce the influence of the noise in their

quantum channels. Otherwise, they can only distill a short shared key from a large raw string

with privacy amplification [2]. When the noise in the quantum channels is too large, secure

key generation is impossible. For overcoming the birefringence of the optical fiber which al-

ters the polarization state of photons, some QKD schemes are proposed with Mach-Zehnder

interferometers (MZIs) and a Faraday mirror which is used to compensate polarization mode

dispersion, such as the ”plug and play” QKD system [30] and its modifications [31, 32]. How-

ever, these two-way quantum communication schemes are vulnerable to the Trojan horse

attack [33]. Also, it is not easy for the two legal users in quantum communication to reduce

the noise effect caused by the thermal fluctuation, vibration, and the imperfection of the fiber.

Recently, some novel techniques are developed for protecting quantum information transmis-

sion, such as decoherence-free subspaces (DFS) [34, 35, 36, 37], error-correcting codes [38, 39],

faithful qubit distribution [40, 41], faithful qubit transmission [42], error-rejecting codes [43],

and so on. In DFS, a single logical qubit can be encoded in two physical qubits [44], i.e.,

|0̄〉 → |HV 〉 ≡ |H〉A1
|V 〉A2

, |1̄〉 → |V H〉 ≡ |V 〉A1
|H〉A2

. Here |H〉 and |V 〉 represent the hori-

zontal polarization and the vertical polarization, respectively. Usually, there is a time delay

∆t between the qubit A1 and the qubit A2. This code makes the logical qubits be immune

to a collective-dephasing noise which is described with a transformation [34]: |H〉 → |H〉,
|V 〉 → eiφ|V 〉 (the additional phase φ is unknown to any one). Under this transformation,

the states of two physical qubits |HV 〉, |V H〉, and 1√
2
(|HV 〉 ± |V H〉) all are immune to this

collective-dephasing noise, and can be used for quantum communication perfectly [34]. Wang

showed that DFS can also used for QKD over a collective- random-unitary-noise channel by

checking parity and sacrificing a proportion of qubits [45]. In error-correcting codes [38], at

least five entangled physical qubits are encoded for a single logical qubit against the noise.

In 2005, Yamamoto et al. [40] introduced a good way for faithful qubit distribution with

one additional qubit against a collective noise. Their scheme can be perfectly used for secure

key generation with two quantum channels. The proportion of uncorrupted qubits to those

transmitted approaches 1/8 (it depends on the coefficients of the noise [41]). More recently,

a scheme [42] for faithful qubit transmission without additional qubits is proposed with two

quantum channels. Its proportion of uncorrupted qubits to those transmitted approaches

1/2 in a passive way. With some delayers, the proportion can be improved to 1. In the

error-rejecting codes [43], at least two fast polarization modulators (Pockels cell), whose syn-

chronization makes it difficult to be implemented with current technology [46], are employed

[42]. In the quantum error-rejection code protocol proposed by Wang [47] against bit-flipping

errors with entanglement, the user should exploit a parity-check tool to read out the qubit

probabilistically.

In this paper, we introduce a scheme for passively self-error-rejecting single-qubit transmis-

sion over a collective-noise channel with a success probability approaching 100%, several times

of other schemes. For example, the success probability in the present scheme is about eight
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times as that in the scheme proposed by Yamamoto et al. [40] in a passive way. Moreover, it is

independent of the parameters of a collective noise. Unlike other schemes [34, 35, 36, 45, 47],

it does not require entanglement. Different from Yamamoto’s scheme [40], the present scheme

needs no additional qubits and it also works for the transmission of one photon in an entan-

gled photon pair. Moreover, our scheme works with one quantum channel, not two [40, 42]

or more, and its implement is based on some simple optical devices. All these good features

make it easy to apply for almost all quantum communication protocols existing, such as the

quantum cryptography protocols based on single photons or entangled photon systems.

BobAlice

PBS1

BS3BS2

D1

D2

L

S 1

2

BS1

 

HWP2

PBS2

t 

HWP1

channel

encoder decoder

2 t 

noise

t 

wave splitter

HWP3 PBS3

T 

3

4

Fig. 1. Schematic representation of the present self-error-rejecting single-qubit transmission scheme
over a collective-noise channel. PBSi (i = 1, 2, 3), HWP, and BSi represent a polarizing beam
splitter, a half wave plate, and a beam splitter (50/50), respectively. The intervals between the

long path and the short path in the two unbalanced Mach-Zehnder interferometers are ∆t and
∆T , respectively.

2 Passively self-error-rejecting single-qubit transmission protocol

The principle of our self-error-rejecting single-qubit transmission scheme over a collective-

noise channel is shown in Fig.1. It comprises an encoder, a collective-noise channel, a wave

splitter, and a decoder. The fluctuation in the collective-noise channel is slow in time so

that the alteration of the polarization is considered to be the same over the sequence of

several photons (or wavepackets) [40]. The encoder is made up of two unbalanced Mach-

Zehnder interferometers (MZIs) with different intervals, i.e., ∆t (∆t ≡ tL − tS) and ∆T .

A single qubit, whose original state is |ψ〉0 = α|H〉 + β|V 〉, is split into two parts by the

first polarizing beam splitter (PBS), which transmits |H〉 and reflects |V 〉. A half wave

plate (HWP) rotates the polarization of the photons in the path L by 90o, i.e., |H〉 ↔ |V 〉.
Before the first beam splitter (BS1:50/50), the state of the single qubit can be described as

|ψ〉B = α|H〉S + β|H〉L ≡ α|H〉0 + β|H〉∆t. Therefore, the single qubit before it enters the

collective-noise channel is in the state

|ψ〉C =
1√
2
(α|H〉0 + iβ|H〉∆t + iα|V 〉∆T + β|V 〉∆T+∆t) ≡

1√
2
(|ψ〉H + |ψ〉V ), (1)

where

|ψ〉H = α|H〉0 + iβ|H〉∆t, (2)
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|ψ〉V = iα|V 〉∆T + β|V 〉∆T+∆t. (3)

The complex coefficient i comes from the phase shift aroused by the BS1 reflection (we assume

that the surface of the BS1 has the phase shift i between the wave packet reflected and that

transmitted), and the subscripts represent the signal time slots arrived.

Suppose that the collective noise in an optical fiber transforms the polarization states of

a photon as

|H〉 → δ1|H〉+ η1|V 〉, (4)

|V 〉 → δ2|H〉+ η2|V 〉, (5)

where

|δ1|2 + |η1|2 = |δ2|2 + |η2|2 = 1. (6)

The four parameters δ1, η1, δ2, and η2 vary with the time t slowly, which means that only the

photons transmitted close to each other suffer from the same noise. The decoherence channels

represented by the unitary transformations shown in Eqs.(4) and (5) indicate that a photon

is in a pure polarization state when it is emitted from the noisy channel although it is rotated

and its state is unknown to us accurately (for a large number of single photons, we should

use a mixed state to describe the state of a photon statistically).

The states shown in Eqs.(2) and (3) have the same form but different parameters, and so

do the rotations arisen from the noisy channels shown in Eqs.(4) and (5). That is, Bob can

distill an uncorrupted state from the states |ψ〉H and |ψ〉V with the same principle. We first

discuss the principle of the decoder for distilling an uncorrupted state from the state |ψ〉H in

detail as follows and then generalize it from the state |ψ〉V .
The rotation by the collective-noise channel on the state |ψ〉H will transform it into the

state |ψ′〉H , i.e.,

|ψ〉H noise → |ψ′〉H = δ1(α|H〉0 + iβ|H〉∆t) + η1(α|V 〉0 + iβ|V 〉∆t)

≡ δ1[α+ iD̂(∆t)β]|H〉0 + η1[α+ iD̂(∆t)β]|V 〉0
≡ δ1|φ〉H + η1|φ〉V . (7)

Here

|φ〉H = [α+ iD̂(∆t)β]|H〉0,
|φ〉V = [α+ iD̂(∆t)β]|V 〉0, (8)

and D̂(∆t) is a time-delay operator. That is,

D̂(∆t)|ψ〉0 = |ψ〉∆t,

D̂(∆t1)D̂(∆t2) = D̂(∆t1 +∆t2). (9)

Bob uses a wave splitter and a decoder to distill an uncorrupted state, shown in Fig.1. The

time interval between the two paths of the wave splitter is 2∆t. The wave splitter and the

decoder has the same role for the states |φ〉H and |φ〉V but different outports of the PBS3.
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The combination of the wave splitter and the decoder will complete the transformation on

the state |φ〉H as follows,

|φ〉H → |φ′〉H = {σ̂x + iD̂(∆t) + D̂(2∆t)[i2σ̂x + iD̂(∆t)]}|φ〉H
= {σ̂xα+ iD̂(∆t)[σ̂xβ + α] + i2D̂(2∆t)[β + σ̂xα]

+iD̂(3∆t)[i2σ̂xβ + α] + i2D̂(4∆t)β}|H〉0
≡ K̂|H〉0, (10)

where K̂ is a quantum operator used for describing the principle of the reconstruction of

the unknown state |ψ〉0 and σ̂x = |H〉〈V | + |V 〉〈H| is a bit-flip operation. Bob can get an

uncorrupted state |ψ〉0 from the outport D2 of the PBS3 at the time slots ∆t, 2∆t, and 3∆t

with the unitary operations I, σ̂x, and σ̂z, respectively, which takes place with the success

probability 3/4, shown in Fig.2. That is,

∆t : (α+ σ̂xβ)|H〉 = α|H〉+ β|V 〉 I → α|H〉+ β|V 〉,
2∆t : (σ̂xα+ β)|H〉 = α|V 〉+ β|H〉 σ̂x → α|H〉+ β|V 〉,
3∆t : (α+ i2σ̂xβ)|H〉 = α|H〉 − β|V 〉 σ̂z → α|H〉+ β|V 〉. (11)

Here I = |H〉〈H|+ |V 〉〈V | and σ̂z = |H〉〈H| − |V 〉〈V |.
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Fig. 2. Schematic representation for the reconstruction of the original state |ψ〉0 = α|H〉 + β|V 〉
from the state |φ〉H . The two wavepackets closed in an ellipse represent the fact that they will
emerge at the PBS3 at the same time and interfere with each other, which takes place with a

success probability of 3/4.

Bob can also distill an uncorrupted state from the state |φ〉V at the outport D1 of the

PBS3, similar to the case from the state |φ〉H . In detail, the combination of the wave splitter

and the decoder will complete the transformation on the state |φ〉V as follows,

|φ〉V → |φ′〉V = {σ̂xα+ iD̂(∆t)[σ̂xβ + α] + i2D̂(2∆t)[β + σ̂xα]

+iD̂(3∆t)[i2σ̂xβ + α] + i2D̂(4∆t)β}|V 〉0. (12)

Bob can also get an uncorrupted state |ψ〉0 from the outport D1 at the time slots ∆t, 2∆t,

and 3∆t with the unitary operations σ̂x, I, and σ̂y, respectively. That is,

∆t : (α+ σ̂xβ)|V 〉 = α|V 〉+ β|H〉 σ̂x → α|H〉+ β|V 〉,
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2∆t : (σ̂xα+ β)|V 〉 = α|H〉+ β|V 〉 I → α|H〉+ β|V 〉,
3∆t : (α+ i2σ̂xβ)|V 〉 = α|V 〉 − β|H〉 σ̂y → α|H〉+ β|V 〉. (13)

Here −iσ̂y = |V 〉〈H| − |H〉〈V |. In this way, Bob can get the uncorrupted state |ψ〉0 =

α|H〉+β|V 〉 from the states |φ〉H and |φ〉V at the time slots ∆t, 2∆t, and 3∆t. At the time slots

0 and 4∆t, Bob will lose the useful information about the unknown state |ψ〉0 = α|H〉+β|V 〉
as he can not distill the parameters α and β, which takes place with the probability 1/4.

We have discuss the principle that Bob distills an uncorrupted state from the state |ψ〉H
shown in Eq. (2). The principle that Bob distills an uncorrupted state from the state |ψ〉V
shown in Eq. (3) is similar to that from the state |ψ〉H . The rotation by the noisy channel

on the state |ψ〉V will transform it into the state |ψ′〉V , i.e.,

|ψ〉V noise → |ψ′〉V = δ2[iα+ D̂(∆t)β]|H〉∆T + η2[iα+ D̂(∆t)β]|V 〉∆T

≡ δ2|Φ〉H + η2|Φ〉V . (14)

Here

|Φ〉H = [iα+ D̂(∆t)β]|H〉∆T ,

|Φ〉V = [iα+ D̂(∆t)β]|V 〉∆T . (15)

The combination of the wave splitter and the decoder will complete the transformation on

the state |Φ〉H as follows,

|Φ〉H → |Φ′〉H = {iσ̂xα+ i2D̂(∆t)[−σ̂xβ + α]− i3D̂(2∆t)[β − σ̂xα]

+i2D̂(3∆t)[σ̂xβ + α] + iD̂(4∆t)β}|H〉∆T . (16)

Bob can get an uncorrupted state |ψ〉0 from the outport D2 at the time slots ∆T + ∆t,

∆T + 2∆t, and ∆T + 3∆t with the unitary operations σ̂z, σ̂y, and I, respectively. That is,

∆T +∆t : (α− σ̂xβ)|H〉 = α|H〉 − β|V 〉 σ̂z → α|H〉+ β|V 〉,
∆T + 2∆t : (σ̂xα− β)|H〉 = α|V 〉 − β|H〉 σ̂y → α|H〉+ β|V 〉,
∆T + 3∆t : (α+ σ̂xβ)|H〉 = α|H〉+ β|V 〉 I → α|H〉+ β|V 〉. (17)

With the same way, Bob can also distill an uncorrupted state from the wavepacket in the

state |Φ〉V . In detail, the combination of the wave splitter and the decoder will complete the

transformation on the state |Φ〉V as follows,

|Φ〉V → |Φ′〉V = {iσ̂xα+ i2D̂(∆t)[−σ̂xβ + α]− i3D̂(2∆t)[β − σ̂xα]

+i2D̂(3∆t)[σ̂xβ + α] + iD̂(4∆t)β}|V 〉∆T . (18)

Bob can get an uncorrupted state |ψ〉0 from the outport D1 at the time slots ∆T + ∆t,

∆T + 2∆t, and ∆T + 3∆t with the unitary operations σ̂y, σ̂z, and σ̂x, respectively. That is,

∆T +∆t : (α− σ̂xβ)|V 〉 = α|V 〉 − β|H〉 σ̂y → α|H〉+ β|V 〉,
∆T + 2∆t : (σ̂xα− β)|V 〉 = α|H〉 − β|V 〉 σ̂z → α|H〉+ β|V 〉,
∆T + 3∆t : (α+ σ̂xβ)|V 〉 = α|V 〉+ β|H〉 σ̂x → α|H〉+ β|V 〉. (19)



F.-G. Deng, X.-H. Li, and H.-Y. Zhou 919

In this way, Bob can get the uncorrupted state |ψ〉0 = α|H〉+ β|V 〉 from the states |Φ〉H and

|Φ〉V at the time slots ∆T +∆t, ∆T +2∆t, and ∆T +3∆t, which takes place with the success

probability 3/4.

In order to distinguish the uncorrupted state coming from the state |ψ〉H or |ψ〉V when

the photon emits from the outports D1 or D2, ∆T should not be zero. That is, Bob should

make the wavepackets from |ψ〉H and |ψ〉V attain the PBS3 in different time slots and they

do not interfere with each other. For simplification, Bob can choose ∆T = ∆t
2
.
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Fig. 3. A time-divisioned multiplexing for splitting a single qubit into 2N wavepackets with N

unbalanced MZIs.

From the discussion above, one can see that Bob can get an uncorrupted state with the

success probability 75% if he exploits the wave splitter shown in Fig.1 to split the wave pockets

of the single photon. Of course, Bob can improve the success probability by using a time-

divisioned multiplexing [48, 49, 50] to split the single photon into more wavepackets, shown

in Fig.3. In this time, the quantum operator K̂ in Eq. (10) will be replaced with K̂ ′. Here

K̂ ′ ≡ { a0σ̂xα

+ i

2
N−1−1∑

m=0

a2mD̂[(2m+ 1)∆t](α+ σ̂xβ)

+

2
N−1∑

m=1

D̂(2m∆t)(a2mσ̂xα− a2m−2β)

− i
2
N−1∑

m=2N−1

a2mD̂[(2m+ 1)∆t](α− σ̂xβ)

+

2
N−1∑

m=2N−1+1

D̂(2m∆t)(a2mσ̂xα+ a2m−2β)
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Fig. 4. Schematic representation for the reconstruction of the original state |ψ〉0 = α|H〉 + β|V 〉
with 2N+2 wavepackets. The success probability for obtaining an uncorrupted state is, in principle,

improved to be PS = 2
N+1

−1

2N+1 .

+ a2N+1−2D̂(2N+1∆t)β}, (20)

where aj ∈ {1,−1} and can be determined when the number of MZIs in the wave splitter N

is given. Also, Eq. (10) will be transformed into

|φ〉H → |φ′′〉H = K̂ ′ |H〉
0
. (21)

With the same way as the case in which Bob chooses his wave splitter shown in Fig.1, Bob can

distill an uncorrupted state |ψ〉0 = α|H〉 + β|V 〉 with the success probability PS = 2
N+1−1

2N+1 ,

shown in Fig.4. Moreover, this success probability is independent of the noise parameters δ1,

η1, δ2, and η2.

3 discussion and summary

In a practical application in quantum communication (such as QKD), the qubit is measured

immediately and no extra operations are required for recovering the original state as the

receiver can judge the time when the qubit is detected and then he can compensate for the

effect of the extra operations by flipping the measured bit value or not. That is, the present

scheme is completely passive when it is used as a part of a QKD protocol. Of course, this

is the main goal of the present scheme. Certainly, there are some other problems when the

present scheme is used in a practical quantum cryptography. One is the effect of the channel

losses and detection dark counts. The other is the requirement that the delays by ∆t and

2∆t should be done accurately, which means that the two parties should possess some stable

Mach-Zehnder interferometers. The present scheme will suffer from the channel losses and

detection dark counts, the same as other faithful qubit transmission schemes [40, 41, 42, 43]

and quantum communication protocols [2]. In fact, the detection dark counts will decease
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the key-generation rate as its effect equals to lose a portion of the single photons transmitted

over a noisy channel. This is a general problem in quantum communication. On the other

hand, the channel losses has two effects. One is that it decreases the key-generation rate if the

photon is lost before it arrives the side of the receiver. The other is that it will decrease the

success probability of the present faithful qubit transmission scheme if only some wavepackets

of the single photon are lost. In the present scheme, the wavepackets of a single photon is so

close (not more than 3∆t
2
) that we can assume that the wavepackets are lost or not as a whole

system. Under this assumption, the channel losses will decrease the key-generation rate only,

not the success probability. At present, it is not easy for us to maintain the stabilization

of a Mach-Zehnder interferometer for a long time with only linear optical elements such as

PBSs and BSs. On one hand, this feature will improve the difficulty of the implementation

of the present scheme in a practical application. On the other hand, the two parties in

quantum communication can use some reference signals to analyze periodically the stability

of the Mach-Zehnder interferometers and compensate the fluctuation with feedback. With

the improvement of technology, the parties can also use some interferometers with optical

integrations in chips to depress the fluctuation of time difference.

When the present scheme is used in some coherent quantum communication protocols in

which the qubits are not measured immediately but stored, it does not work in a passive

way. For example, if the present scheme is used to distribute an entangled photon pair for

a quantum repeater (not for generating a key immediately in long-distance QKD), the two

photons with a high fidelity will be stored for a period of time. At this time, the parties

should exploit some kinds of non-destructive quantum measurements to detect the presence

of the photons. It is not necessary for the two parties to perform extra operations for restoring

the original state, just get the map of the correlation between the unitary operations and the

measured bit values obtained later as they can also compensate for the effect of the extra

operations by flipping the measured bit value or not in the end of quantum communication.

We have described a passively self-error-rejecting single-qubit transmission scheme over a

collective-noise channel. Compared with the scheme proposed by Yamamoto et al. [40] for

faithful qubit distribution assisted by one additional qubit and the scheme without additional

qubit [42], the present scheme has some interesting features as follows: (1) The success prob-

ability for obtaining an uncorrupted state PS = 2
N+1−1

2N+1 approaches 100% in principle if the

number of wavepackets is large enough (when N = 3, PS = 93.75%), which is about eight

times of that in the scheme introduced by Yamamoto et al. [40]. At the aspect of success

probability, the present scheme is an optimal one. Of course, the bigger the number of the

wavepackets, the more time slots that Bob should pay for reconstructing the original state,

which maybe decrease the key-generation rate in quantum communication. (2) The present

scheme does not require an additional qubit against a collective noise, just the single qubit

itself, which makes the present scheme have some good applications in quantum communi-

cation. In detail, one can easily apply this scheme to almost all quantum communication

protocols existing, such as the quantum cryptography protocols with single photons or en-

tanglement [2]. (3) The present scheme requires only one quantum channel, not two or more

[40, 42]. (4) This scheme does not require fast polarization modulators (Pockels cell) [43] when

it is used in quantum cryptography, i.e., it works in a completely passive way for quantum

cryptography with postselection. (5) It is easy to implement this scheme with some simple
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optical devices in principle. (6) The success probability does not depend on the extent of the

collective noise, i.e., it is independent of the noise parameters (δ1, η1, δ2, and η2), which is

different from those in Refs.[40, 45]. As shown in Eq.(7) and Fig. 2, the wavepackets interfere

with only those with the same parameter of collective noise, and the success probability for

each part with the same noise parameter is PS = 2
N+1−1

2N+1 . This good feature makes the present

scheme more efficient than other schemes [40, 42]. (7) As the single qubit transmitted is in

an arbitrary state |ψ〉0 = α|H〉+β|V 〉, the present scheme can also be used to accomplish the

faithful transmission of one particle in an entangled quantum system as an entangled pure

state α′|H〉h|H〉t + β′|V 〉h|V 〉t can be rewritten as α′′|H〉t + β′|V 〉t (here the subscript h and

t represent the home particle and the traveling particle, respectively).

In summary, we have presented a passively self-error-rejecting single-qubit transmission

scheme for polarization states of photons, which is immune to the collective noise in a quantum

channel (such as an optical fiber). The success probability for obtaining an uncorrupted state,

in principle, approaches 100% via postselection in different time bins with some Mach-Zehnder

interferometers, independent of the parameters of collective noise, and the present scheme can

be implemented with some simple optical devices and photon detectors in a completely passive

way. The present scheme does not employ an entangled state in DFS, and it does not resort to

additional qubits. One can directly apply this scheme to almost all quantum communication

protocols against a collective noise, including the quantum cryptography protocols based on

single photons [1, 2] and those based on entangled photon systems [3, 4, 5, 6].
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