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We consider the computational complexity of Hamiltonians which are sums of commut-

ing terms acting on plaquettes in a square lattice of qubits, and we show that deciding
whether the ground state minimizes the energy of each local term individually is in
the complexity class NP. That is, if the ground states has this property, this can be
proven using a classical certificate which can be efficiently verified on a classical com-

puter. Different to previous results on commuting Hamiltonians, our certificate proves
the existence of such a state without giving instructions on how to prepare it.
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1 Introduction

Understanding the ground state properties of spin systems on a lattice is of central impor-

tance in many-body physics, but at the same time, it is a highly challenging problem in many

scenarios. An important step in understanding its difficulty has been the insight that com-

puting e.g. the ground state energy of a classical spin system is, in general, an NP–complete

problem [1]: While the energy of any given spin configuration can be easily computed, finding

the configuration with minimal energy is in general a difficult task – it can be as hard as any

problem in NP, i.e., any problem whose solution can be efficiently verified. For quantum spin

systems, an additional difficulty arises: Generally, we cannot even expect to have an efficient

description of the ground state. Thus, it seems that the only statement we can make about

the difficulty of the problem is that given a quantum register with the ground state, we will be

able to efficiently estimate its energy using a quantum computer. Indeed, it has been shown

that this is the best we can say, as the problem of estimating the ground state energy of a

quantum system is a complete problem for the class QMA [2, 3], the quantum analogue of

NP: It contains all problems which have a quantum solution which can be efficiently checked

on a quantum computer, and thus, determining the ground state energy of a quantum spin

system is as hard as any of these problems; in fact, the problem retains its hardness even

when restricted to two-dimensional lattices of qubits with nearest-neighbor interactions [4] or

one-dimensional chains [5].

It is an interesting question to understand the reasons underlying the additional complexity

of quantum spin systems as compared to classical systems. To this end, restricted version of
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the problem which lie between classical and general quantum spin Hamiltonians have been

studied: For instance, it has been shown that so-called stoquastic Hamiltonians, where all

off-diagonal elements are negative, have a complexity which lies in between NP and QMA, as

those systems can be related to classical random processes [6, 7]; in fact, these are exactly

the Hamiltonians which allow for Quantum Monte Carlo simulations as they do not exhibit

a sign problem.

Another restricted class of Hamiltonians are commuting Hamiltonians, that is, Hamiltoni-

ans which can be written as a sum of mutually commuting few-body terms. For those systems,

all terms can be simultaneously diagonalized, just as for classical systems; however, the cor-

responding eigenbasis can be highly entangled, making it unclear whether a useful classical

description of the ground state can be provided. In fact, commuting Hamiltonians encompass

systems which exhibit rich non-classical physics, in particular models with topological order

and even anyonic excitations, such as Kitaev’s toric code and quantum double models [8], or

Levin and Wen’s string net models [9]. Commuting Hamiltonians are also of interest since

the fixed points of renormalization flows in gapped phases are expected to be commuting

Hamiltonians, and thus understanding their structure might give insight into the structure of

gapped quantum phases. Finally, understanding the complexity of commuting Hamiltonians

is of interest in quantum complexity, as it might be a step towards a quantum PCP theorem,

which would assess how the difficulty of estimating the ground state energy is related to the

desired accuracy which is integer for commuting projectors.

What is know about the complexity of finding the ground state energy of commuting

Hamiltonians, or rather, of determining whether the ground state minimizes each term in the

Hamiltonian individually – the commuting hamiltonian problem? For lattices in two and

higher dimensions, commuting hamiltonian is an NP–hard problem, as it e.g. encompasses

the Ising model on a planar graph [1]. On the other hand, it is not clear whether the general

commuting hamiltonian problem is inside NP, since it is not clear in general how to

provide an efficiently checkable description of the ground state. For two-local (i.e., two-body)

Hamiltonians, Bravyi and Vyalyi [10] have shown that the problem is in NP by using C∗–

algebraic techniques (their result also implies that one-dimensional commuting Hamiltonians

are efficiently solvable); subsequently, Aharonov and Eldar [11] have proven containment in

NP for Hamiltonians with three-body interactions both for qubits on arbitrary graphs, and

qutrits on nearly-Euclidean interaction graphs. In both of these works, the classical certificates

do not only prove the problem to be in NP, but can in fact be used to construct constant

depth quantum circuits which prepare the ground state. This, in particular, implies that the

corresponding Hamiltonians – including qutrits with three-body interactions – cannot exhibit

topological order [11, 12]. On the other hand, Kitaev’s toric code, which is the ground state of

a commuting Hamiltonian with four-body interactions of qubits, does have topological order,

and thus, we cannot expect any approach which yields a low-depth circuit to work beyond

three qutrits.

In this paper, we study the commuting hamiltonian problem on a square lattice of

qubits with plaquette-wise interactions, and prove that it is in NP. That is, we consider a

square lattice of qubits, with a Hamiltonian with mutually commuting terms acting on the four

qubits adjacent to each plaquette, and show that the problem of deciding whether its ground

state minimizes the energy of each local term in the Hamiltonian is in NP: i.e., in case the
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ground state has this property, a classical certificate exists which can be checked efficiently by

a quantum computer. Our approach differs considerably from the aforementioned approaches

in that the certificate cannot be used to devise a quantum circuit for preparing the ground

state, and is thus also applicable to systems with topological order; it should be noted that

the same holds true for the proof in Ref. [10] that commuting hamiltonian with factorizing

projectors is in NP.

2 The setup

We will consider a 2D square lattice with spins on the vertices, and either open or periodic

boundary conditions. The Hamiltonian

H =
∑
p

hp

consists of plaquette terms hp which act on the four spins adjacent to the plaquette p, and

we impose that all the terms in the Hamiltonian commute, [hp, hq] = 0 ∀ p, q.
As the Hamiltonian terms commute, there is a basis of eigenstates of H which are simul-

taneously eigenstates of all the hp. We would like to know the computational difficulty of the

following problem, called commuting hamiltonian: Is there an eigenstate |ψ〉 of H which

minimizes the energies for all hp individually, i.e., are the ground states of H also ground

states of each hp? In the following, we will show that in the case of qubits, the existence of

such a state can be proven within NP, i.e., there is a classical certificate which proves the

existence of such a |ψ〉, and which can be checked efficiently classically. Note that on the

other hand, it is clear that the problem is NP–hard, as it e.g. encompasses classical Ising spin

glasses in a field which are known to be NP–hard even for two-level systems [1].

For the following, it will be useful to reformulate commuting hamiltonian as follows:

Define the local ground state projectors Πp as the projectors onto the ground state subspace

of hp; the Πp commute again, [Πp,Πq] = 0. Then,

ΠGS =
∏
p∈P

Πp

is the projector onto the subspace spanned by the states which are ground states of all hp.

Since commuting hamiltonian asks whether such states exist, it is equivalent to asking

whether ΠGS 6= 0.

3 Commuting Hamiltonian in NP

3.1 Two layers

We start by coloring the plaquettes of the square lattice black and white in a checkerboard

pattern, and denote the set of black and white plaquettes by PB and PW , respectively. Let

ΠB =
∏

p∈PB

Πp and ΠW =
∏

p∈PW

Πp

be the projectors onto the joint ground state space of the black and white hp, respectively;

then, commuting hamiltonian corresponds to determining whether ΠBΠW 6= 0. This is

equivalent to asking whether

tr[ΠBΠW ] 6= 0 (1)
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(this can be seen using eigendecompositions of ΠW and ΠB), and we will consider this formu-

lation of the problem from now on; to prove commuting hamiltonian is contained in NP,

we therefore need to show that a classical certificate for the validity of (1) can be provided.

A helpful example to keep in mind in the first part of our discussion is Kitaev’s toric

code [8]: There, Πp = 1
2 (1 + Z⊗4) for p ∈ PB , and Πp = 1

2 (1 + X⊗4) for p ∈ PW , with X

and Z the Pauli matrices.

3.2 The structure of one layer

In the following, let us study the structure of each layer individually (we will w.l.o.g. choose

black). To this end, we will use a result of Bravyi and Vyalyi based on C∗-algebraic tech-

niques [10]; a detailed explanation of those techniques can also be found in [11]. The basic

insight from Ref. [10] is the structure of two commuting projectors. Consider two projectors

L ≡ LAB ⊗ 1C and R ≡ 1A ⊗ RBC acting on a space HA ⊗ HB ⊗ HC ; the two operators

overlap on HB . Now consider the Schmidt decompositions

L =
∑

Ai
L ⊗Bi

L and R =
∑

Bi
R ⊗ Ci

R ,

i.e. tr[Ai
L(A

j
L)

†] = 0 for i 6= j, and similarly for Bi
L, B

i
R, and C

i
R. Then, [L,R] = 0 implies

that [Bi
L, B

j
R] = 0 for all i, j, and thus, Bi

L and Bi
R span commuting C∗-algebras, cf. [10].

Using the standard form of finite C∗-algebras, it follows that the space HB has a canonical

decomposition

HB =
⊕
α

Hα
L ⊗Hα

R ⊗Hα
Z︸ ︷︷ ︸

=:Hα
B

(2)

where the Bi
L span the full matrix algebra on Hα

L while acting trivially on the rest, and

correspondingly for Bi
R and Hα

R.

This shows that the space HB can be cut into direct sum “slices” (the α) such that in each

slice, L and R act on independent subsystems. More formally, there exists a decomposition

1 =
∑

α πα of HB , with πα the projectors onto Hα
B , such that

[πα, L] = 0 and [πα, R] = 0

and thus

L =
∑
α,β

παLπβ =
∑
α

παLπα︸ ︷︷ ︸
=:Lα

, R =
∑
α

παRπα︸ ︷︷ ︸
=:Rα

,

where Lα and Rα act on different subsystems Hα
L and Hα

R, i.e., factorize. Note that the above

decomposition allows to compute the πα and thus the Lα and Rα efficiently.

Each vertex in the black sublattice is acted upon by exactly two commuting projectors

Πp; thus, we can apply the preceding argument to all vertices to find decompositions πv
αv
,∑

αv
πv
αv

= 1, of the Hilbert space at each vertex v, such that ΠB projected onto the slice

~α = (αv)v∈V factorizes, ⊗
p∈PB

Π~α
p =

∏
v∈V

πv
αv

ΠB π
v
αv

(this implicitly defines the Π~α
p ), and ΠB can be written as

ΠB =
⊕
~α

⊗
p∈PB

Π~α
p ≡

∑
~α

⊗
p∈PB

Π~α
p . (3)
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Note that in the sum on the right hand side, we implicitly regard the tensor products as

being canonically embedded into the full Hilbert space, and we will use this convention in the

following.

The analogous decomposition can be performed for the white sublattice, yielding a (in

general different!) decomposition

ΠW =
⊕
~β

⊗
p∈PW

Π
~β
p ≡

∑
~β

⊗
p∈PW

Π
~β
p . (4)

Note that in order to distinguish the decomposition for the the black and the white layer, we

strictly use labels ~α and ~β, respectively; moreover, we denote the projectors decomposing the

white layer by π̄v
βv
.

E.g., for Kitaev’s toric code the πv
αv

are projectors onto the Z eigenstates, and the π̄v
βv

onto the X eigenstates.

3.3 Combining the layers

Using the stucture of ΠB and ΠW , Eqs. (3) and (4), we can rewrite the commuting hamil-

tonian problem, Eq. (1), as

0 6=
∑
~α,~β

tr

[ (⊗
p∈PB

Π~α
p

)(⊗
p∈PW

Π
~β
p

)]
; (5)

recall that we regard the tensor products as being canonically embedded into the full Hilbert

space. Since each of the traces is positive (as it is the trace of the product of two positive

operators), the above is equivalent to the existence of ~α and ~β such that Ω(~α, ~β) 6= 0, where

Ω(~α, ~β) := tr

[ (⊗
p∈PB

Π~α
p

)(⊗
p∈PW

Π
~β
p

)]
. (6)

Thus, we can ask the prover to provide us as a certificate with some ~α and ~β for which

Ω(~α, ~β) 6= 0; if we can moreover show that Ω(~α, ~β) can be computed efficiently (or rather in

NP), this will prove that commuting hamiltonian is in NP.

Note that Ω(~α, ~β) can be interpreted as the overlap of the (unnormalized) states
⊗

Π~α
p

and
⊗

Π
~β
p , both of which are tensor products of states supported on individual plaquettes,

but with different partitions in the two layers. Computing such an overlap can in general be

as hard as contracting Projected Entangled Pair States (PEPS) [13], i.e., PP-hard [14]: any

PEPS can be expressed this way by using one layer for the bonds and the other for the PEPS

projections. Of course, the fact that these states arise from two commuting layers ΠB and

ΠW yields additional constraints, and we will show in the following that those constraints

allow for the efficient evaluation of Ω(~α, ~β) in the case of qubits.

For Kitaev’s toric code, e.g., we could choose ~α = ~β = (0, . . . , 0): This yields

Ω(~α, ~β) = tr
[
(|0〉〈0|)⊗N (|+〉〈+|)⊗N

]
= 2−N 6= 0 ,

proving the existence of a zero-energy ground state; note that this certificate does not carry

any information on how to prepare the state.
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3.4 Computing the overlap

Let us now show that for a lattice of qubits, the overlap O(~α, ~β) can be computed efficiently.

To this end, we will show that the computation of the overlap can be decomposed into a

product of overlaps of one-dimensional structures which can be computed efficiently.

Let us first consider the black layer. For each vertex v, the decomposition (2) of the local

Hilbert space can either be trivial (no direct sum) or non-trivial, 1 =
∑
πv
αv
. In the former

case, this implies that at most one of the adjacent plaquette terms Πp acts non-trivially of

vertex v; in the latter case, the sum consists of exactly two one-dimensional projectors πv
αv
,

making use of the fact that the Hilbert space at each site is a qubit, i.e., two-dimensional.

We will denote the set of vertices with a non-trivial decomposition in the black layer by FB ,

and in the white layer by FW (in which the one-dimensional projectors are labelled π̄v
βv
).

In Ω(~α, ~β), all vertices in FB ∪ FW contribute only a one-dimensional subspace and thus

can be traced out: That is, all vertices in FB ∩FW can be removed (taking care whether the

overlap of the one-dimensional projectors is non-vanishing), while for vertices where only one

layer has a one-dimensional decomposition, this yields new effective plaquette terms ρp in the

other layer by projecting the original plaquette terms Πp onto that one-dimensional subspace;

thus, the problem of checking whether Ω(~α, ~β) is non-zero reduces to computing the overlap

of the new effective plaquette terms ρp. Formally, this reads

Ω(~α, ~β) = tr

[(⊗
p∈PB

Π~α
p

)(⊗
p∈PW

Π
~β
p

)]

(A)
= tr

[ ( ∏
w∈FW

π̄w
βw

⊗
p∈PB

Π~α
p

∏
w∈FW

π̄w
βw

)
︸ ︷︷ ︸

(∗)

( ∏
v∈FB\FW

πv
αv

⊗
p∈PW

Π
~β
p

∏
v∈FB\FW

πv
αv

) ]

(B)
=

∏
v∈FB∩FW

tr
[
πv
αv
π̄v
βv

]
× tr

[ (⊗
p∈PB

ρp

)(⊗
p∈PW

ρp

)]
. (7)

Here, we have used in step (A) that for all v ∈ FW ,

⊗
p∈PW

Π
~β
p = π̄v

βv

(⊗
p∈PW

Π
~β
p

)
π̄v
βv

and anologously for the black layer; in step (B), we have defined new effective plaquette terms

ρp by virtue of

⊗
p∈PB

ρp = trFB∪FW

[( ∏
w∈FW \FB

π̄w
βw

⊗
p∈PB

Π~α
p

∏
w∈FW \FB

π̄w
βw

)]
,

and correspondingly for the white plaquettes; the first factor in (7) takes care of the terms in

FB ∩FW in (∗). Note that the ρp are now only supported on those vertices not in FB ∪FW ,

as those have been traced out.
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Fig. 1. Computing the overlap Eq. (8) for qubits. The diamonds at the vertices of the square
lattice denote the qubits. The connected black dots mark qubits on which the ρp act non-trivially
on plaquette p. If the ρp of two plaquettes act non-trivially on the same qubit, we say that they

“overlap”; note that this cannot happen for diagonally adjacent plaquettes. Overlapping ρp’s
form structures which we need to contract to compute the overlap Eq. (8). a) Patterns forming
one-dimensional chains can be contracted efficiently, as the size of the boundary stays constant for
any contiguous region. b) Branching structures do in general not allow for efficient contraction.

However, we show that such structures cannot occur, by proving that for any plaquette p, ρp can
overlap non-trivially at most with two adjacent ρp′ ’s.

The task of checking whether Ω(~α, ~β) 6= 0 has thus been reduced to checking this for (7):

For the first term, this can be clearly done efficiently, and so, it remains to prove that the

overlap

Θ := tr

[ (⊗
p∈PB

ρp

)(⊗
p∈PW

ρp

)]
(8)

can be computed efficiently. Note that the ρp are now supported on plaquettes of a square

lattice with vertices missing. Moreover, while the ρp do no longer commute, in each layer at

most one ρp acts non-trivially on each vertex; we will make use of this fact repeatedly in the

following.

The situation encountered in computing the overlap Θ is depicted in Fig. 1. Here, the dots

in each plaquette denote the vertices on which ρp acts non-trivially (the lines just connect the

vertices involved in ρp). If the ρp on adjacent plaquettes act non-trivially on the same qubit

(we will say they “overlap”), they form connected structures which we need to contract in

order to evaluate Θ. For one-dimensional structures as the one on in Fig. 1a, this contraction

can be carried out efficiently: One starts from one plaquette and proceeds along one direction

of the one-dimensional chain, always tracing out the degrees of freedom on the inside. This

way, at every point in the computation only the state at the boundary (which has fixed size)

needs to be stored, and thus, the contraction can be carried out efficiently. On the other

hand, branching structures like the one in Fig. 1b can in general not be contracted efficiently,

since the size of the boundary is a priori not bounded; in fact, e.g. quantum circuits, and even

postselected quantum circuits, can be encoded this way, making such contractions in general

a computationally hard task.

However, as we will show in the following, the structures formed by the ρp in Θ, Eq. (8),

will always be one-dimensional, and thus Θ can be computed efficiently. To this end, we

will consider the state ρC on a plaquette C (the “central” plaquette), and show that it can

overlap non-trivially with the states ρp of at most two of the adjacent plaquettes, thus ruling
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out branching structures as the one on the right of Fig. 1. We will make intensive use of the

fact that in each layer, at most one plaquette term ρp can act non-trivially on any given vertex;

in the graphical notation of Fig. 1, we will highlight this fact by placing a cross opposite of

any dot:

(9)

Here, the dot indicates that the corresponding ρp acts non-trivially on a vertex qubit (the

diamond in the center), while the cross indicates that the corresponding ρp does act trivially.

Note that this in particular implies that ρC can at most overlap non-trivially with the four

horizontally and vertically adjacent plaquettes from the other layer, but not with diagonally

adjacent plaquettes.

The simplest case is when the state ρC on the central plaquette C involves only two vertices

non-trivially, for instance

Now, both qubits 1 and 3 can be acted upon non-trivially by at most one white plaquette –

the other has to be empty, following the rule (9) that opposite of any dot there has to be a

cross; this way, only one-dimensional structures can arise:

This clearly holds for any possible ρC which acts non-trivially on only two qubits, and for

any configuration of the adjacent plaquettes; it follows that only one-dimensional structures

can emerge this way.

In order to understand the cases where ρC acts non-trivially on three or four qubits, let

us first analyze the following situation:

Here, ρC acts non-trivially at least on qubits 1 and 2, and ρL acts non-trivially on qubit 1

which implies that ρT acts trivially on it. In the following, we will show that this implies

that ρT also has to act trivially on qubit 2. We will prove this by contradiction, so assume

that ρT acts non-trivially on qubit 2. Since ρT is obtained from the original projector ΠT on

that plaquette by a partial projection on some of the other vertices, this implies that ΠT acts
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non-trivially on qubit 2 (where it spans the whole C∗–algebra, since we have traced out all

vertices where this was not the case). On the other hand, ρL and thus ΠL acts non-trivially

on qubit 1, and thus spans the whole C∗–algebra on it. Since ΠL and ΠT commute, this means

that ΠT acts trivially on qubit 1; that is, ΠT and ΠC need to commute on qubit 2 alone:

However, since ΠT spans the whole C∗–algebra on qubit 2, this would imply that ΠC and

thus ρC has to act trivially on qubit 2, giving a contradiction. Thus, we have the following

“Lemma”:

=⇒ (10)

Let us now consider the case where the state on the central plaquette involves all four qubits

non-trivially, and let us start by assuming w.l.o.g. that ρL acts non-trivially on qubit 1:

This implies that qubit 1 is not acted upon by ρT . Using Eq. (10), we infer that ρT cannot

involve qubit 2 either,

Eq. (10) also shows that ρB has to act trivially on qubit 4 – otherwise, ρL would act trivially

on qubit 4 and thus qubit 1, which it doesn’t:

In order to obtain a branching structure, both ρB and ρR need to act non-trivially on some

of the qubits. However, if ρB acts non-trivially on qubit 3, Eq. (10) implies that ρR has to

act trivially on qubits 2 and 3:



910 Complexity of commuting Hamiltonians on a square lattice of qubits

This shows that for ρC acting non-trivially on all four qubits, the central plaquette can only

couple to at most two adjacent plaquettes, forming one-dimensional structures.

It remains to study what happens in the case of tripartite entanglement on the central

plaquette. We start from the following configuration:

(Note that we don’t make any assumptions on how the Hilbert space of qubit 2 decomposes.)

Clearly, in order to obtain a branching structure, either ρT has to act non-trivially on qubit

1, or ρR has to act non-trivially on qubit 3. We consider w.l.o.g. the first possibility and infer

from Eq. (10) that ρL has to act trivially on both qubits 1 and 4:

In order to obtain a branching structure, we now have to get both ρR and ρB involved.

However, if ρR acts non-trivially on qubit 3, Eq. (10) implies that ρB has to act trivially on

both qubits 3 and 4, and thus, the structure formed around ρC will again be one-dimensional.

Together, this shows that the overlap Θ, Eq. (8), decays into one-dimensional structures

for which the overlap can be computed efficiently. In turn, this implies that for given ~α and
~β, Ω(~α, ~β) can be computed efficiently, and thus, the commuting Hamiltonian problem on a

square lattice of qubits with plaquette interactions is in NP.

3.5 Finite accuracy

In the preceding proof, we have assumed infinite accuracy, but as we will now show, our

argument still applies if we compute with finite accuracy. To this end, let N denote the

number of qubits in the system; we will need to show that the computation time scales as

poly(N). We assume that the Hamiltonian terms are given exactly and can be represented

with poly(N) digits. First, note that the trace in Eq. (1), which equals the sum in Eq. (5),

evaluates to an integer, and thus, there exists at least one pair (~α, ~β) such that Ω(~α, ~β) ≥ 2−2N .

If we request this particular (~α, ~β) as a certificate, it is sufficient if we can determine Ω(~α, ~β)

to 2N + 1 = poly(N) digits. (This is crucial, since there can be (~α, ~β) for which Ω(~α, ~β) is

arbitrarily small.) Ω(~α, ~β) is obtained from contracting a polynomial number of terms which

are either Πp (which are known exactly) or πv
αv

and π̄v
βv
, and the latter can be determined

to poly(N) accuracy from the C∗–decomposition (2), which is the solution to a (fixed-size)

eigenvalue problem. It follows that Ω(~α, ~β) can be computed to the required poly(N) accuracy

in poly(N) time, and our proof still applies.
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4 Summary

We have studied the commuting hamiltonian problem on a square lattice of qubits with

plaquette-wise interaction and shown that the problem is NP–complete. Differently speaking,

we have shown that there exists a classical certificate for the fact that the ground state of the

system minimizes each term locally which can be checked efficiently on a classical computer.

The central idea for our proof has been to split the system into two layers in each of which

the commuting terms overlap on individual sites, and to argue that the existence of a state

minimizing all local terms is equivalent to the existence of a pair of ground states for the

two layers with non-zero overlap. Each layer could be decomposed using the C∗–algebraic

techniques introduced to the problem in [10], allowing to find an efficient description of its

ground state subspace. Finally, we showed that the overlap of ground states of two layers

can be computed efficiently, by showing that it gives rise to of one-dimensional structures

only. A somewhat surprising feature of our approach is that while it certifies the existence

of a ground state, it cannot (to our knowledge) be used to devise a way how to prepare the

ground state; in fact, due to the possibility of having topological order in such systems, any

circuit preparing their ground states would need to have at least logarithmic depth, or linear

depth if it was local [12].

Our method does, in principle, also apply beyond qubits: We can still split the system

into two layers, decompose both of them into direct sum slices ~α and ~β, and ask the prover to

provide labels ~α and ~β with non-zero overlap Ω(~α, ~β). While we cannot make sure any more

that Ω(~α, ~β) can be computed efficiently, we can always ask the prover to also provide us with

an instruction on how to efficiently contract the states, in case there is a way to do so, e.g.

by providing the optimal contraction order. In particular, this applies to the case where the

decomposition in the direct sum gives one-dimensional spaces, such as in Kitaev’s toric code

or quantum double models; as well as to cases where the ρp are separable states. Our idea

also applies to any other graph which can be split into two layers in such a way that the C∗–

technique of [10] can be applied to each of them, and in fact to any type of Hamiltonian which

is composed of two layers with eigenbases for the zero-energy subspace whose overlap can be

computed efficiently, such as for product bases. Note that on the other hand, a decomposition

into three layers cannot be used for our purposes, since for three positive operators A, B, and

C, tr[ABC] can have both real and imaginary parts of either sign, so that Eq. (5) is no longer

equivalent to Eq. (6) being non-zero (as the Π~α
p and Π

~β
p do not commute any more).

An interesting open question relating to the present approach to the problem is whether

it can be generalized beyond qubits. For four-level systems and beyond, this is likely not

the case, since the local Hilbert space can decompose into two qubits, and thus operators

commuting on a single spin can both act non-trivially on it, i.e., Eq. (9) does not hold any

more. On the other hand, for qutrits this is not the case once we have fixed a slice in the direct

sum; yet, it is not clear how to establish a version of Eq. (10). In particular, the non-trivial

projections πv
αv

can now have both rank 1 and 2, and in the latter case we cannot simply

trace out the corresponding degree of freedom; it is however not clear that this does rule out

an analogue to Eq. (10).
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