
Quantum Information and Computation, Vol. 10, No. 9&10 (2010) 0872–0890
c© Rinton Press

QUANTUM ADDITION CIRCUITS AND UNBOUNDED FAN-OUT

YASUHIRO TAKAHASHI1, SEIICHIRO TANI1,2, and NOBORU KUNIHIRO3

1NTT Communication Science Laboratories, NTT Corporation

3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
2Quantum Computation and Information Project, ERATO-SORST, JST

5-28-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
3Graduate School of Frontier Sciences, The University of Tokyo

5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

Received September 24, 2009
Revised July 20, 2010

We first show how to construct an O(n)-depth O(n)-size quantum circuit for addition
of two n-bit binary numbers with no ancillary qubits. The exact size is 7n − 6, which
is smaller than that of any other quantum circuit ever constructed for addition with
no ancillary qubits. Using the circuit, we then propose a method for constructing an
O(d(n))-depth O(n)-size quantum circuit for addition with O(n/d(n)) ancillary qubits
for any d(n) = Ω(log n). If we are allowed to use unbounded fan-out gates with length

O(nε) for an arbitrary small positive constant ε, we can modify the method and construct
an O(e(n))-depth O(n)-size circuit with o(n) ancillary qubits for any e(n) = Ω(log∗ n).
In particular, these methods yield efficient circuits with depth O(log n) and with depth
O(log∗ n), respectively. We apply our circuits to constructing efficient quantum circuits

for Shor’s discrete logarithm algorithm.

Keywords: quantum circuits, addition, unbounded fan-out, Shor’s discrete logarithm

algorithm

Communicated by: R Jozsa & M Mosca

1 Introduction

Since Shor’s discovery of quantum algorithms for factoring and discrete logarithm problems

[1], many studies have investigated ways of constructing quantum circuits for the algorithms

[2, 3, 4, 5, 6, 7]. The resulting circuits are important not only for implementing the algorithms

on a quantum computer but also for understanding the computational power of small quantum

circuits. These studies have shown that addition of two binary numbers is a key operation

for constructing quantum circuits for Shor’s algorithms.

We consider the problem of constructing quantum circuits for addition of two binary

numbers with a reduction in overall complexity. The complexity measures of a quantum

circuit are its size, depth, and qubit tally. In general size and depth are closely correlated

to the number of time steps required, whereas the number of qubits closely approximates

the memory requirements. It is crucial to investigate quantum circuit optimization in terms

of various cost measures such as size, depth, and essential qubits, considering that a lot of

research projects have extensively been examining not a few ways of implementing quantum

computers. While the size and depth of a quantum circuit can be decreased through the

application of efficient classical gates, there is no obvious way to apply these techniques to

reduce the number of essential qubits. In this paper, we regard the number of qubits as a

Y. Takahashi, S. Tani, and N. Kunihiro 873

primary consideration.

An unbounded fan-out gate on n + 1 qubits copies a classical source bit into n copies. In

particular, the gate on two qubits is a CNOT gate. If unbounded fan-out gates are avail-

able, sublogarithmic-depth quantum circuits for various operations can be constructed [8, 9].

Several studies [10, 11, 12, 13, 14] demonstrated the possibility of building the gate on a

quantum computer using the techniques such as ion traps. This raises an important question:

How much can we reduce the number of target qubits in a circuit without increasing overall

complexity of the circuit in terms of size and depth? When we use unbounded fan-out gates,

we consider the complexity measures (size, depth, and the number of qubits) for the number

of target qubits of the gate. We call the number of target qubits the length of an unbounded

fan-out gate.

There have been many studies of efficient quantum circuits for addition of two n-bit

binary numbers. These circuits can be classified according to complexity with respect to

depth. Draper’s and Takahashi and Kunihiro’s circuits have depth O(n) and use no ancillary

qubits [15, 16]. Takahashi and Kunihiro’s is more efficient than Draper’s since the sizes of

Takahashi and Kunihiro’s and Draper’s are O(n) and O(n2), respectively. Draper et al.’s

and Takahashi and Kunihiro’s circuits have depth O(log n) [17, 18]. Draper et al.’s uses

O(n) ancillary qubits and its size is O(n). Takahashi and Kunihiro decreased the number of

ancillary qubits to O(n/ log n) without increasing the size asymptotically. Høyer and Špalek

showed that, if unbounded fan-out gates with length O(n) are available, an O(log∗ n)-depth

circuit can be constructed [9]. They have not analyzed their circuit in terms of ancillary qubit

tallies or overall size.

In this paper, we first show how to construct an O(n)-depth O(n)-size quantum circuit,

based on the ripple-carry approach, with no ancillary qubits. The exact size is 7n − 6,

which is smaller than that of any other quantum circuit ever constructed for addition without

ancillary qubits. Moreover, the circuit is easier to implement than the previous circuits with

no ancillary qubits in the sense that the circuit can be used directly on a linear nearest

neighbor architecture [6], i.e., on a unidimensional array of qubits with nearest neighbor

interactions only. By combining the circuit with the carry-lookahead approach, we then

propose a method for constructing an O(d(n))-depth O(n)-size quantum circuit for addition

with O(n/d(n)) ancillary qubits for any d(n) = Ω(log n). The method is a generalized and

simplified version of Takahashi and Kunihiro’s method for constructing a logarithmic-depth

circuit with a small number of qubits [18]. In particular, for d(n) = log n, our method yields

an O(log n)-depth O(n)-size circuit with O(n/ log n) ancillary qubits. The count of ancillary

qubits in the purposed circuit is identical to that of Takahashi and Kunihiro’s (TK) circuit

while the overall complexity in terms of size is less than half of the TK circuit.

If we are allowed to use unbounded fan-out gates with length O(nε) for an arbitrary small

positive constant ε, we can modify our method and construct an O(e(n))-depth O(n)-size

circuit with O(n log∗∗ n/e(n)) ancillary qubits for any e(n) = Ω(log∗ n), where log∗∗ n is a

slowly-growing function satisfying log∗∗ n = o(log∗ n). The main point of this modification is

to decrease the depth of the carry-lookahead part of our method by using a quantum version

of Chandra et al.’s constant-depth classical circuit for addition with unbounded fan-in and

fan-out gates [19]. In order to construct the quantum version, we require a quantum gate

corresponding to an unbounded fan-in gate. We use Høyer and Špalek’s small-depth quantum

874 Quantum addition circuits and unbounded fan-out

circuit for a generalized Toffoli operation with unbounded fan-out gates [9] as the gate. In

particular, for e(n) = log∗ n, the modified method yields an O(log∗ n)-depth O(n)-size circuit

with o(n) ancillary qubits. Though Høyer and Špalek have constructed an O(log∗ n)-depth

circuit for addition as mentioned above, our construction differs in so far as the number of

ancillary qubits, overall size, and length of an unbounded fan-out gate can be minimized

concurrently.

This construction demonstrates that unbounded fan-out gates with a small length are

sufficient to construct a sublogarithmic-depth circuit. For example, if we are allowed to use

unbounded fan-out gates with length O(log n), we can construct an O(log n/ log log n)-depth

O(n)-size circuit with o(n) ancillary qubits. Such a sublogarithmic-depth circuit cannot be

constructed by using a quantum circuit only with gates on a bounded number of qubits [20]

or by using a classical circuit only with bounded fan-in and unbounded fan-out gates [21].

Using our circuits for addition, we construct efficient quantum circuits for Shor’s discrete

logarithm algorithm for elliptic curves over the prime field GF(p). This is done by simply using

our addition circuits in Proos and Zalka’s circuit for Shor’s discrete logarithm algorithm [5].

Since Proos and Zalka’s circuit uses n ancillary qubits during addition, the use of our circuit

with no ancillary qubits decreases the n ancillary qubits without increasing the original depth

or size asymptotically, where n is the length of the binary representation for p. Moreover, we

decrease the depth asymptotically by adding o(n) ancillary qubits. Proos and Zalka’s circuit

with our addition circuits is more efficient than with the previous ones described above.

In contrast to the previous methods for constructing efficient quantum circuits for addition

[15, 16, 17, 18, 9], our method is general in the sense that it can yield various types of efficient

quantum circuits for addition. The greater level of generality and abstraction allows us to

construct a variety of quantum circuits for various applications, a few of which we will explore

here. For example, if we want to constrain the number of qubits, we can obtain a qubit-efficient

circuit by setting d(n) = n in our method. We can decrease the depth by setting d(n) = log n.

Moreover, we can choose an “intermediate” circuit by setting d(n) =
√

n.

2 Circuit with Depth O(n)

2.1 Ripple-Carry Approach

We use the standard notation for quantum states and the standard diagrams for quantum

circuits [22]. As described, the measures of complexity of a quantum circuit are the associated

size, depth, and number of qubits. While the relationship between the number of qubits and

the circuit complexity is straightforward, other complexity metrics such as depth and size are

less straightforward. The size of a circuit is defined as the total number of elementary gates

in it. The elementary gates are one-qubit unitary gates, CNOT gates, controlled-Rt gates,

and Toffoli gates, where Rt|x〉 = e2πix/2t |x〉 for t ≥ 1 and x ∈ {0, 1}. In Section 4, we use the

gate for an unbounded fan-out operation Ft as an elementary gate, where Ft (on t+1 qubits)

is defined as

Ft

(

|y〉
t−1⊗

i=0

|xi〉
)

= |y〉
t−1⊗

i=0

|xi ⊕ y〉

for y, xi ∈ {0, 1}. The symbol ⊕ denotes addition modulo 2. All the gates explicitly used in our

circuits are classical in the sense that they map computational basis states to computational

basis states. The depth of a circuit is defined as follows. Input qubits are considered to have

Y. Takahashi, S. Tani, and N. Kunihiro 875

 !"

 !"#$%&'

!"#$%&'

 !"#$%&'

Fig. 1. The MAJ gate.

depth 0. For each gate G, the depth of G is equal to 1 plus the maximal depth of a gate

on which G depends. The depth of a circuit is equal to the maximal depth of a gate in it.

Intuitively, the depth is the number of layers in the circuit, where a layer consists of gates

that can be performed simultaneously. A quantum circuit can use ancillary qubits, which

start and end in the state |0〉. We usually count the number of ancillary qubits instead of the

number of all qubits used in the circuit.

We consider the problem of constructing quantum circuits for the operation ADDn defined

as (
n−1⊗

i=0

|bi〉|ai〉
)

|z〉 →
(

n−1⊗

i=0

|si〉|ai〉
)

|z ⊕ sn〉,

where an−1 · · · a0 and bn−1 · · · b0 are the input binary numbers, z ∈ {0, 1}, and sn · · · s0 is the

sum of the input binary numbers. Our linear-depth circuit and most of the previous ones with

a small number of qubits are based on the ripple-carry approach. To explain the approach,

we define the carry bit ci (0 ≤ i ≤ n) as follows:

ci =

{
0 i = 0,
MAJ(ai−1, bi−1, ci−1) 1 ≤ i ≤ n,

where MAJ is the majority function for three bits defined as MAJ(a, b, c) = ab ⊕ bc ⊕ ca. In

the ripple-carry approach, the first step is to compute the carry bit c1 by using a0 and b0

and c0. Then, c2 is computed by using a1 and b1 and c1. This procedure is repeated until all

carry bits are computed. After that, si (0 ≤ i ≤ n) is computed by the relationship

si =

{
ai ⊕ bi ⊕ ci 0 ≤ i ≤ n − 1,
cn i = n.

When the ripple-carry approach is used, the key issue for constructing a quantum circuit

with a small number of qubits is how to store carry bits. Cuccaro et al.’s circuits, which

are based on the approach, use one ancillary qubit to store c0 = 0 [23]. The carry bit ci is

stored in the qubit initially storing ai−1 for 1 ≤ i ≤ n. To do this, they defined the gate

for MAJ depicted in Fig. 1, which is the main component of their circuits. The gate maps

|ci〉|bi〉|ai〉 to |ci ⊕ ai〉|bi ⊕ ai〉|ci+1〉. Takahashi and Kunihiro’s circuit, which is also based on

the ripple-carry approach, uses no ancillary qubits [16]. All the carry bits are stored in the

qubit initially storing z. The main component of their circuit is also the MAJ gate. They use

the property that the gate maps |z ⊕ bi〉|z ⊕ ai〉|z ⊕ ci〉 to |bi ⊕ ci〉|ai ⊕ ci〉|z ⊕ ci+1〉.

2.2 Our Circuit

We store the carry bit ci in the qubit initially storing ai for 0 ≤ i ≤ n − 1 and store the

high-order bit cn in the qubit initially storing z. This would be difficult to do if we use the

876 Quantum addition circuits and unbounded fan-out

MAJ gate directly. Our idea is to divide the MAJ gate into two parts. The first part consists

of two CNOT gates and the second one consists of one Toffoli gate. It is easy to verify that a

Toffoli gate maps |bi ⊕ai〉|ai ⊕ ci〉|ai+1 ⊕ai〉 to |bi ⊕ai〉|ai ⊕ ci〉|ai+1 ⊕ ci+1〉 for 1 ≤ i ≤ n− 1,

where we consider an as z. Thus, using CNOT gates (the first parts of the MAJ gate) and a

Toffoli gate, we first prepare the state

|b1 ⊕ a1〉|a1 ⊕ c1〉
(

n−1⊗

i=2

|bi ⊕ ai〉|ai ⊕ ai−1〉
)

|z ⊕ an−1〉.

By applying Toffoli gates (the second parts of the MAJ gate), we can compute ci and store it

in the qubit initially storing ai. The final Toffoli gate computes cn and stores it in the qubit

initially storing z. The detailed construction is described below.

Let Ai and Bi denote the memory locations initially storing ai and bi, respectively, for

0 ≤ i ≤ n−1. Let An be the memory location initially storing z. Location Ai (0 ≤ i ≤ n−1)

will store ai, Bi (0 ≤ i ≤ n − 1) will store si, and An will store z ⊕ sn at the end of the

computation. Our circuit is constructed in the following six steps.

1. For i = 1, . . . , n − 1:

Apply a CNOT gate to a pair of memory locations Bi and Ai where Ai is used for the

control qubit.

2. For i = n − 1, . . . , 1:

Apply a CNOT gate to a pair of memory locations Ai and Ai+1 where Ai is used for

the control qubit.

3. For i = 0, . . . , n − 1:

Apply a Toffoli gate to a tuple of memory locations Bi, Ai and Ai+1, where Bi and Ai

are used for the control qubit.

4. For i = n − 1, . . . , 1:

Apply a CNOT gate to a pair of memory locations Bi and Ai where Ai is used for the

control qubit. Then, apply a Toffoli gate to a tuple of memory locations Bi−1, Ai−1

and Ai, where Bi−1 and Ai−1 are used for the control qubit.

5. For i = 1, . . . , n − 2:

Apply a CNOT gate to a pair of memory locations Ai and Ai+1 where Ai is used for

the control qubit.

6. For i = 0, . . . , n − 1:

Apply a CNOT gate to a pair of memory locations Bi and Ai where Ai is used for the

control qubit.

The circuit for ADD5 is depicted in Fig. 2.

We describe the changes of the input state of ADDn to show that the circuit works

correctly. In Step 1, the input state is transformed into

|b0〉|a0〉
(

n−1⊗

i=1

|bi ⊕ ai〉|ai〉
)

|z〉.

Y. Takahashi, S. Tani, and N. Kunihiro 877

 ! " " !"#$%&' ! !
 " ! " " " " !
 !! !"#$%&' " " !"#$%&' !"#$%&' !!!

 "!! " " !"#$%&' " " " !"#$%&' " " "!!

 "! !"#$%&' " " !"#$%&' !"#$%&' !"!

 ""! " " !"#$%&' !"#$%&' " " " !"#$%&' !"#$%&' " " ""!

 #! !"#$%&' " " !"#$%&' !"#$%&' !#!

 "#! " " !"#$%&' !"#$%&' " " " !"#$%&' !"#$%&' " " "#!

 $! !"#$%&' " !"#$%&' !"#$%&' !$!

 "$! " " !"#$%&' !"#$%&' " " !"#$%&' !"#$%&' " "$!

 #! !"#$%&' !"#$%&' # # !%!

Fig. 2. The circuit for ADD5.

In Step 2, the state is transformed into

|b0〉|a0〉|b1 ⊕ a1〉|a1〉
(

n−1⊗

i=2

|bi ⊕ ai〉|ai ⊕ ai−1〉
)

|z ⊕ an−1〉.

The first Toffoli gate in Step 3 transforms the state into

|b0〉|a0〉|b1 ⊕ a1〉|a1 ⊕ c1〉
(

n−1⊗

i=2

|bi ⊕ ai〉|ai ⊕ ai−1〉
)

|z ⊕ an−1〉.

This is repeated by using a Toffoli gate. The state after Step 3 is

|b0〉|a0〉
(

n−1⊗

i=1

|bi ⊕ ai〉|ai ⊕ ci〉
)

|z ⊕ sn〉. (1)

In Step 4, the state is transformed into

|b0〉|a0〉|b1 ⊕ c1〉|a1〉
(

n−1⊗

i=2

|bi ⊕ ci〉|ai ⊕ ai−1〉
)

|z ⊕ sn〉.

In Step 5, the state is transformed into

|b0〉|a0〉
(

n−1⊗

i=1

|bi ⊕ ci〉|ai〉
)

|z ⊕ sn〉.

Since si = ai ⊕ bi ⊕ ci for 0 ≤ i ≤ n − 1, the final step gives us the desired output state.

2.3 Complexity Analysis

From the construction, clearly our circuit makes no use of ancillary qubits. We compute the

depth and size of the circuit for n ≥ 3 precisely. In Step 1, the number of CNOT gates is n−1

and these gates can be performed simultaneously. Thus, the depth and size of Step 1 are 1

and n − 1, respectively. In Step 2, the number of CNOT gates is n − 1 and thus the depth

and size of Step 2 are n − 1. In Step 3, the number of Toffoli gates is n and thus the depth

878 Quantum addition circuits and unbounded fan-out

Table 1. Comparison of Our Circuit and Previous Circuits

Circuit Ancilla Size Toffoli Depth LNN
Cuccaro et al. [23] 1 6n + 1 2n 6n + 1

√

Cuccaro et al. [23] 1 9n − 8 2n − 1 2n + 4
√

Draper [15] 0 1.5n2 + 4.5n + 2 0 5n + 3 —
Takahashi et al. [16] 0 10n − 9 4n − 5 8n − 7 —

Our Circuit 0 7n − 6 2n − 1 5n − 3
√

and size of Step 3 are n. In Step 4, the number of CNOT gates is n − 1 and the number of

Toffoli gates is n− 1. Thus, the depth and size of Step 4 are 2n− 2. In Step 5, the number of

CNOT gates is n−2 and thus the depth and size of Step 5 are n−2. In Step 6, the number of

CNOT gates is n and these gates can be performed simultaneously. Thus, the depth and size

of Step 6 are 1 and n, respectively. Thus, the depth and size of the whole circuit are 5n − 3

and 7n − 6, respectively. The numbers of CNOT and Toffoli gates are 5n − 5 and 2n − 1,

respectively.

As discussed in [6], many proposed quantum computer architectures deal with a unidi-

mensional array of qubits with nearest neighbor interactions only. Thus, it is important for

a circuit to work on such a linear nearest neighbor (LNN) architecture. When the input and

output binary numbers are arranged on an LNN architecture in an interleaved manner (as in

Fig. 2), our circuit can be used directly on an LNN architecture in the sense that the circuit

can be transformed into one on an LNN architecture without increasing the size or depth

asymptotically.

A comparison of our circuit and the previous ones with a small number of qubits is

summarized in Table 1. The symbol “
√

” in the LNN column means that the circuit can be

used directly on an LNN architecture in the sense described above. The symbol “—” means

that we do not know whether this is the case for the circuit. The size of our circuit is less

than that of any other quantum circuit ever constructed for ADDn with no ancillary qubits.

When we regard the number of qubits as a primary consideration, our circuit is more efficient

than the previous circuits in Table 1.

Although there exists a size-efficient or depth-efficient circuit with a single ancillary qubit

[23], it is worth noting that the difference between the total number of ancillary qubits used

by parallel applications of our circuit (as in the next section) and that of previous circuits

with a single ancillary qubit depends on the number of circuits applied in parallel and may

become large. Moreover, since Toffoli gates are on three qubits and thus may be harder to

implement than the other gates (on a smaller number of qubits), it is worth noting that the

number of Toffoli gates in our circuit is 2n − 1, which is less than or equal to those of the

previous circuits in Table 1 (excluding Draper’s O(n2)-size circuit).

3 General Method

3.1 Combination Method

The ripple-carry approach decreases the number of ancillary qubits but requires a greater

depth. The carry-lookahead approach decreases the depth but requires many qubits [17].

Our method is based on the combination of these methods and is a generalized and simplified

version of Takahashi and Kunihiro’s method for constructing a logarithmic-depth circuit with

Y. Takahashi, S. Tani, and N. Kunihiro 879

a small number of qubits [18]. In this section, we review the previous method. The carry-

lookahead approach is described by using two bits p[i, j] (1 ≤ i < j ≤ n) and g[i, j] (0 ≤ i <

j ≤ n) [17]. The bit p[i, j] is 1 if a carry bit is propagated but not generated from bit position

i to bit position j, and g[i, j] is 1 if a carry bit is generated between bit positions i and j.

The p[i, j] and g[i, j] are computed by the following relations:

• For any i such that 1 ≤ i ≤ n − 1, p[i, i + 1] = ai ⊕ bi.

• For any i, j such that 1 ≤ i < i + 1 < j ≤ n, p[i, j] = p[i, t]p[t, j] for any t satisfying

i < t < j.

• For any i such that 0 ≤ i ≤ n − 1, g[i, i + 1] = aibi.

• For any i, j such that 0 ≤ i < i + 1 < j ≤ n, g[i, j] = g[i, t]p[t, j] ⊕ g[t, j] for any t

satisfying i < t < j.

We note that p[i, j] and g[i, j] are mutually exclusive, that is, p[i, j]g[i, j] = 0 for all i < j and

thus p[i, j] ⊕ g[i, j] = p[i, j] ∨ g[i, j]. It holds that g[0, j] = cj for all 1 ≤ j ≤ n.

Draper et al.’s quantum carry-lookahead adder first computes p[i, i + 1] (1 ≤ i ≤ n − 1)

and g[i, i + 1] (0 ≤ i ≤ n − 1). Then, it computes g[0, i] (1 ≤ i ≤ n) by successively doubling

the sizes of the intervals under consideration. Lastly, it computes si (0 ≤ i ≤ n), where

s0 = p[0, 1], si = p[i, i + 1] ⊕ g[0, i] (1 ≤ i ≤ n − 1), and sn = g[0, n]. The key circuit is the

one for the second step. We call this circuit the CARRY1 gate. In general, the CARRYl gate

is a circuit for the operation

⌊n/2l−1⌋−1
⊗

i=1

|pl−1[i]〉
⌊n/2l−1⌋−1
⊗

j=0

|gl−1[j]〉 →
⌊n/2l−1⌋−1
⊗

i=1

|pl−1[i]〉
⌊n/2l−1⌋−1
⊗

j=0

|g[0, 2l−1(j + 1)]〉, (2)

where 1 ≤ l ≤ ⌊log n⌋ − 1, pl−1[i] = p[2l−1i, 2l−1(i + 1)], and gl−1[i] = g[2l−1i, 2l−1(i + 1)]

[18]. The CARRYl gate uses
∑⌊log n⌋−1

t=l (⌊n/2t⌋ − 1) ancillary qubits and its depth and size

are O(log n − l) and O(
∑⌊log n⌋−1

t=l (⌊n/2t⌋ − 1)), respectively. Draper et al.’s quantum carry-

lookahead adder uses O(n) ancillary qubits and its depth and size are O(log n) and O(n),

respectively.

In Takahashi and Kunihiro’s combination method, the input binary number an−1 · · · a0 is

divided into n/k blocks of length k, where we assume that n is a power of two for simplicity

and set k = 2⌊log log n⌋ and l = ⌊log log n⌋ + 1. Note that k = Θ(log n) and n is divisible by

k. That is, we consider a k-bit binary number a(j) = a(j+1)k−1 · · · ajk for 0 ≤ j ≤ n/k − 1.

Similarly, we consider b(j) for bn−1 · · · b0. Roughly speaking, the previous method is described

as follows:

1. Compute the high-order bit of a(j) + b(j), which is gl−1[j] = g[jk, (j + 1)k], using the

ripple-carry approach [16] for 0 ≤ j ≤ n/k − 1.

2. Compute the value
∧k−1

i=0 (ajk+i⊕bjk+i), which is pl−1[j] = p[jk, (j+1)k], using Barenco

et al.’s circuit for a generalized Toffoli operation Tk [24] for 0 ≤ j ≤ n/k − 1, where Tt

(on t + 1 qubits) is defined as

Tt

(

|y〉
t−1⊗

i=0

|xi〉
)

= |y ⊕
t−1∧

i=0

xi〉
t−1⊗

i=0

|xi〉.

880 Quantum addition circuits and unbounded fan-out

3. Compute the carry bit cjk = g[0, jk] using the values computed in Steps 1 and 2 for

1 ≤ j ≤ n/k. This is done by using the CARRYl gate.

4. Compute the carry bit g[0, i] using the carry bits computed in Step 3 for 1 ≤ i ≤ n and

obtain si for 0 ≤ i ≤ n. This is done by a circuit based on the ripple-carry approach as

in Step 1.

The whole circuit uses O(n/k) (= O(n/ log n)) ancillary qubits and its depth and size are

O(k) (= O(log n)) and O(n), respectively.

3.2 Our Method

Our idea is to divide the input binary numbers into n/d(n) blocks of length d(n) in Takahashi

and Kunihiro’s method, where d(n) = Ω(log n). By using the CARRYlog d(n)+1 gate, we can

construct an O(d(n))-depth O(n)-size circuit with O(n/d(n)) ancillary qubits. This is a simple

generalization of the previous method. Though this allows us to construct an O(d(n))-depth

circuit for any d(n) = Ω(log n) in contrast to the previous method, it, of course, does not

improve the previous O(log n)-depth circuit.

To obtain an efficient circuit, we simplify Steps 1, 2, and 4 in the previous method using

the circuit for addition in Section 2. The simplification of Step 4 is due to a direct application

of the circuit for addition. To simplify Steps 1 and 2, we use only the first halves of our circuit

for addition and Barenco et al.’s circuit for Tn [24]. The first half of the circuit for addition

outputs the high-order bit of a(j)+b(j) and appropriate inputs to Barenco et al.’s circuit. We

use only the first half and we can thus save Toffoli gates, but some qubits represent unuseful

values. An important point is that Barenco et al.’s circuit can use these qubits as uninitialized

ancillary qubits. We use the first half of Barenco et al.’s circuit and we can thus again save

Toffoli gates, but some qubits have unuseful values. This is not a problem since these qubits

are reset to the initial values in later steps. The details are described below.

To simplify Steps 1 and 2, since we need to compute only the two bits g[i, j] and p[i, j] for

some i, j, it suffices to construct an efficient quantum circuit for the operation

(
w−1⊗

i=0

|bi〉|ai〉
)

|0〉|0〉 →
(

w−1⊗

i=0

|p[i, i + 1]〉|ri〉
)

|g[0, w]〉|p[0, w]〉,

where aw−1 · · · a0 and bw−1 · · · b0 are the input binary numbers, r0 = a0, and ri = ai⊕g[0, i]⊕
p[0, i] (1 ≤ i ≤ w − 1). Let Ai and Bi denote the memory locations initially storing ai and

bi, respectively. Let G and P be the memory locations initially storing 0. Location Ai will

store ri, Bi will store p[i, i + 1], G will store g[0, w], and P will store p[0, w] at the end of the

computation. The circuit is defined as follows:

1. Apply Steps 1, 2, and 3 of the circuit (for two w-bit binary numbers) in Section 2 to a

tuple of memory locations Ai (0 ≤ i ≤ w − 1) and Bi (0 ≤ i ≤ w − 1) and G to obtain

the state (1) with n = w and z = 0.

2. Apply a CNOT gate to a pair of memory locations A0 and B0, where A0 is used for the

control bit.

Y. Takahashi, S. Tani, and N. Kunihiro 881

 ! " !"#$%&' " ! !" "℄!

 # ! " " $!

 !! !"#$%&' " " " ! "" $℄!

 #!! " " !"#$%&' " " !"#$%&' " $!!

 "! !"#$%&' " " " ! $" %℄!

 #"! " " !"#$%&' !"#$%&' " " !"#$%&' !"#$%&' " $"!

 #! !"#$%&' " " " ! %" &℄!

 ##! " " !"#$%&' !"#$%&' " " !"#$%&' !"#$%&' " $#!

 $! !"#$%&' " " " ! &" '℄!

 #$! " " !"#$%&' !"#$%&' " " !"#$%&' !"#$%&' " $$!

 !! !"#$%&' !"#$%&' % !" '℄!

 !!

 !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

 !"#$%&' !"#$%&' ! !" '℄!

Fig. 3. The INIT5 gate. A dashed-line box represents the part for computing g[0, 5], which is the

first half of our circuit for addition in Section 2.

3. Apply the first half of Barenco et al.’s circuit for Tw to a tuple of memory locations Ai

(0 ≤ i ≤ w − 1) and Bi (0 ≤ i ≤ w − 1) and P , where Ai is used as an uninitialized

ancillary memory location.

Step 1 writes the value sw = g[0, w] into the memory location G. The memory location Ai

stores the value ri ⊕ p[0, i] and the memory location Bi stores the value p[i, i + 1] for all

i > 0. Step 2 writes the value p[0, 1] into the memory location B0 and thus the memory

location Bi stores the value p[i, i+1] for all i. The first half of Barenco et al.’s circuit outputs

p[0, 1] ∧ · · · ∧ p[w − 1, w] = p[0, w] without changing the value in the memory location Bi.

Step 3 writes the value p[0, w] into the memory location P and writes the value ri into the

memory location Ai. The whole circuit uses no ancillary qubits and its depth and size are

O(w). We call the circuit the INITw gate. The INIT5 gate is depicted in Fig. 3.

To simplify Step 4, it suffices to construct an efficient quantum circuit for the operation
(

|c〉
w−1⊗

i=0

|bi〉|ai〉
)

→
(

|c〉
w−1⊗

i=0

|ti〉|ai〉
)

,

where c ∈ {0, 1}, aw−1 · · · a0 and bw−1 · · · b0 are the input binary numbers, tj = aj ⊕ bj ⊕ dj

(0 ≤ j ≤ w − 1), and dj is defined as

dj =

{
c j = 0,
MAJ(aj−1, bj−1, dj−1) 1 ≤ j ≤ w − 1.

We can directly apply the circuit in Section 2 to constructing such a circuit and thus omit

the details. The circuit uses no ancillary qubits and its depth and size are O(w). We call the

circuit the SUMw gate. The SUM5 gate is depicted in Fig. 4.

3.3 The Whole Circuit

We construct a quantum circuit for ADDn. For simplicity, we assume that n is a power of two.

Let d(n) = Ω(log n). We set k = 2⌊log d(n)⌋ and l = ⌊log d(n)⌋+1. Note that k = Θ(d(n)) and

n is divisible by k. As described in Section 3.1, we consider k-bit binary numbers a(j) and

882 Quantum addition circuits and unbounded fan-out

 ! " " !

 ! ! !"#$%&' " " !"#$%&' !"#$%&' " !

 # ! " " !"#$%&' " " " !"#$%&' " " # !

 !!! !"#$%&' " " !"#$%&' !"#$%&' "!!

 #!! " " !"#$%&' !"#$%&' " " " !"#$%&' !"#$%&' " " #!!

 !"! !"#$%&' " " !"#$%&' !"#$%&' ""!

 #"! " " !"#$%&' !"#$%&' " " " !"#$%&' !"#$%&' " " #"!

 !#! !"#$%&' " " !"#$%&' !"#$%&' "#!

 ##! " " !"#$%&' !"#$%&' " " " !"#$%&' !"#$%&' " " ##!

 !$! !"#$%&' "$!

 #$! !"#$%&' !"#$%&' " !"#$%&' !"#$%&' #$!

Fig. 4. The SUM5 gate.

b(j). Let Ai and Bi denote the memory locations initially storing ai and bi, respectively. Let

Z be the memory location initially storing z ∈ {0, 1}. Location Ai will store ai, Bi will store

si, and Z will store z⊕ sn at the end of the computation. We assume that there are ancillary

memory locations initially storing 0. The first half of our circuit is defined as follows:

1. Apply the INITk gate to memory locations storing a(j) and b(j) and to two ancillary

memory locations storing 0 for 0 ≤ j ≤ n/k − 1. The gate writes gl−1[j] and pl−1[j]

into the ancillary memory locations.

2. Apply the CARRYl gate to memory locations storing all gl−1[j] and all pl−1[j] and to

ancillary memory locations storing 0. The gate writes c(j+1)k into the memory location

storing gl−1[j] for 0 ≤ j ≤ n/k − 1.

3. Apply the gates in Step 1 in reverse order, where we exclude the gates applied to memory

locations storing c(j+1)k for 0 ≤ j ≤ n/k − 1. These gates reset the whole state to the

initial state except that the value c(j+1)k is stored in the memory location as described

in Step 2 for 0 ≤ j ≤ n/k − 1.

4. Apply the SUMk gate to memory locations storing a(j+1) and b(j+1) and to a memory

location storing ck(j+1) to obtain sk(j+1), . . . , sk(j+2)−1 for 0 ≤ j ≤ n/k − 2. Apply a

simplified gate of the SUMk gate to memory locations storing a(0) and b(0) to obtain

s0, . . . , sk−1. The whole state is the desired output state except that the value c(j+1)k

is stored in the memory location as described in Step 2 for 0 ≤ j ≤ n/k − 1.

The last half part deletes unnecessary carry bits (computed in Step 2) using the fact that

the carry bits generated for computing a+s′ are the same as those for computing a+b, where

s′ is the bitwise complement of s [17].

5. Apply a NOT gate to Bi to write si ⊕ 1 into Bi for 0 ≤ i ≤ n − k − 1.

6. Apply the gates of Step 3 in reverse order, then apply the gates of Step 2 in reverse

order, then apply the gates of Step 1 in reverse order, where we exclude the gates applied

to memory locations storing a(n/k − 1) and b(n/k − 1) since we do not erase the last

carry bit. The gate writes 0 into a memory location storing ck(j+1) for 0 ≤ j ≤ n/k− 1.

Y. Takahashi, S. Tani, and N. Kunihiro 883

 ! " " " " !"#$%&' !"#$%&' " " !"#$%&' ! !
 " ! " " " " " " " " !
 !! !"#$%&' " !"#$%&' !"#$%&' !"#$%&' !"#$%&' " !"#$%&' !"#$%&' !!!
 "!! " " !"#$%&' " !"#$%&' " !"#$%&' " !"#$%&' " !"#$%&' " !"#$%&' " " "!!
 ! !"#$%&' !"#$%&' " " " " !"#$%&' !"#$%&' !

 "! " !"#$%&' " " !"#$%&' " !"#$%&' " " !"#$%&' !"#$%&' !"#$%&' " !"#$%&' " " !"#$%&' " !"#$%&' !"!
 ""! " " " " " " !"#$%&' " " " !"#$%&' " " " " " " ""!
 #! !"#$%&' " " " " " !"#$%&' !"#$%&' !"#$%&' !"#$%&' " " " " " !"#$%&' !"#$%&' !#!
 "#! " " !"#$%&' " " !"#$%&' " " !"#$%&' " !"#$%&' " !"#$%&' !"#$%&' " !"#$%&' !"#$%&' " !"#$%&' " !"#$%&' " " !"#$%&' " " !"#$%&' " " "#!
 ! !"#$%&' !"#$%&' !"#$%&' " " " " " !"#$%&' !"#$%&' !"#$%&' !
 ! !"#$%&' !"#$%&' " !"#$%&' !"#$%&' !"#$%&' !"#$%&' " !"#$%&' !"#$%&' !

 $! " !"#$%&' " " !"#$%&' " !"#$%&' " " !"#$%&' !"#$%&' !"#$%&' " !"#$%&' " " !"#$%&' " !"#$%&' !$!
 "$! " " " " " " !"#$%&' " " " !"#$%&' " " " " " " "$!
 %! !"#$%&' " " " " " !"#$%&' !"#$%&' !"#$%&' !"#$%&' " " " " " !"#$%&' !"#$%&' !%!
 "%! " " !"#$%&' " " !"#$%&' " " !"#$%&' " !"#$%&' " !"#$%&' !"#$%&' " !"#$%&' !"#$%&' " !"#$%&' " !"#$%&' " " !"#$%&' " " !"#$%&' " " "%!
 ! !"#$%&' !"#$%&' " !"#$%&' " " !"#$%&' !"#$%&' !"#$%&' !
 ! !"#$%&' !"#$%&' " " " !"#$%&' !"#$%&' !"#$%&' !"#$%&' " !"#$%&' !"#$%&' !
 ! !"#$%&' " !"#$%&' !

 &! " !"#$%&' " " !"#$%&' " !"#$%&' " " !"#$%&' !"#$%&' !&!
 "&! " " " " " " !"#$%&' " " " !"#$%&' " " "&!
 '! !"#$%&' " " " " " !"#$%&' !"#$%&' !'!
 "'! " " !"#$%&' " " !"#$%&' " " !"#$%&' " !"#$%&' " !"#$%&' !"#$%&' " !"#$%&' !"#$%&' "'!
 #! !"#$%&' !"#$%&' !"#$%&' !"#$%&' # # !(!
 ! !"#$%&' !"#$%&' " " "

 !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

 !"#$%&' !"#$%&'

 !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

 !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
 !

Fig. 5. The circuit for ADD8, where d(n) = log n. The first and third dashed-line boxes represent
the carry-lookahead part [17, 18]. The second one represents the parallel applications of the SUM2

gate.

7. Apply a NOT gate to Bi to write si into Bi for 0 ≤ i ≤ n − k − 1.

The whole circuit for d(n) = log n and n = 8 (and thus k = l = 2) is depicted in Fig. 5.

We compute the number of ancillary qubits, the depth, and the size precisely. For sim-

plicity, we count only Toffoli gates as in [17, 18]. Step 1 requires 2n
k ancillary qubits to use

n
k INITk gates. The gate consists of 3n − 2 Toffoli gates for n ≥ 3. Thus, the depth and size

of Step 1 are 3k − O(1) and 3n − O(n/k), respectively. The CARRYl gate in Step 2 uses
n
k − O(log n) ancillary qubits and its depth and size are 2 log n

k + O(1) and 4n
k + O(log n),

respectively, where n
k ≥ 4 [18]. Step 3 is the same as Step 1. Step 4 uses n

k SUMk gates.

The gate consists of 2n − 2 Toffoli gates for n ≥ 3. Thus, the depth and size of Step 4 are

2k − O(1) and 2n − O(n/k), respectively. The other steps are the same as the above steps

excluding Step 4. Our circuit uses 3n
k − O(log n) ancillary qubits and its depth and size are

14k + 4 log n
k + O(1) and 14n − O(n/k), respectively, where n

k ≥ 4. Thus, the circuit uses

O(n/d(n)) ancillary qubits and its depth and size are O(d(n)) and O(n), respectively. For

example, for d(n) = log n and n ≥ 16, the number of ancillary qubits, the depth, and the

size are approximately 3n/ log n, 18 log n, and 14n, respectively. The corresponding previous

bounds are 3n/ log n, 30 log n, and 29n. That is, in this case, the number of ancillary qubits

in our circuit is the same as that in Takahashi and Kunihiro’s [18] and the leading coefficient

of the expression of the size in our circuit is less than half that in Takahashi and Kunihiro’s.

4 Circuit with Depth o(log n)

4.1 Chandra et al.’s Classical Circuit

If we use only one-qubit and two-qubit gates as elementary gates, we cannot construct an

o(log n)-depth circuit for ADDn. This is simply shown by using the logarithmic lower bound

884 Quantum addition circuits and unbounded fan-out

for the depth of the circuit for Fn [20]. To construct an o(log n)-depth circuit, we decrease

the depth of the carry-lookahead part of our method in Section 3 by using a quantum version

of Chandra et al.’s efficient classical circuit for addition with (classical) unbounded fan-out

gates [19]. We assume that we have unbounded fan-out gates (described in Section 2) as

elementary gates. We first consider the simple case where we have unbounded fan-out gates

with a long length and then reduce the length.

Chandra et al.’s method for constructing the circuit is a generalization of the carry-

lookahead approach. Besides the (classical) unbounded fan-out gates, the circuit uses un-

bounded fan-in gates that compute logical AND (or OR) of an unbounded number of in-

put bits. The depth and size of the circuit for two m-bit binary numbers are O(1) and

O(m log∗∗ m), respectively, where

log∗∗ t = min{j|
j

︷ ︸︸ ︷

log∗ · · · log∗ t ≤ 1}, log∗ t = min{j|
j

︷ ︸︸ ︷

log · · · log t ≤ 1}.

It can be shown that log∗∗ m = o(log∗ m). Though the definition of the depth of a classical

circuit is similar to that of a quantum circuit, the definition of the size of a classical circuit in

[19] is different from that of a quantum circuit. More precisely, a classical circuit is defined

as a directed acyclic graph and the size is the number of edges in the circuit and the depth

is the length of a longest path from an input node to an output node. Chandra et al. give a

tighter bound on the size of the circuit, but we use the above bound since it is sufficient for

showing that our circuits in Sections 4.2 and 4.3 use a sublinear number of ancillary qubits.

4.2 Simple Case

4.2.1 Quantum Version of Chandra et al.’s Circuit

We transform Chandra et al.’s classical circuit for two m-bit binary numbers into its quantum

version. Since the size (that is, the number of edges) of the circuit is O(m log∗∗ m), it suffices

to consider an unbounded fan-out gate with length O(m log∗∗ m) and a Tt gate (corresponding

to an unbounded fan-in gate with t inputs in the classical circuit) with t = O(m log∗∗ m).

We assume that we have unbounded fan-out gates with length O(m log∗∗ m). If we have one-

qubit gates, CNOT gates, Tt gates, and unbounded fan-out gates with length O(m log∗∗ m),

Chandra et al.’s classical circuit can be simply transformed into its quantum version. Note

that an OR gate in Chandra et al.’s circuit is transformed into a Tt gate with NOT gates.

However, in our setting, we have only one-qubit gates, CNOT gates, and unbounded fan-

out gates with length O(m log∗∗ m). Thus, we require a quantum circuit for Tt (consisting

of one-qubit gates, CNOT gates, and unbounded fan-out gates with length O(m log∗∗ m)).

We use Høyer and Špalek’s circuit for the Tt operation (defined in Section 3.1) as the Tt

gate [9]. They showed that, if unbounded fan-out gates with length O(t) are available, an

O(log∗ t)-depth O(t)-size quantum circuit for Tt can be constructed. We can show that

Høyer and Špalek’s circuit uses O(t) ancillary qubits. Since we have unbounded fan-out

gates with length O(m log∗∗ m), we can directly use Høyer and Špalek’s circuit for Tt with

t = O(m log∗∗ m). Thus, we obtain a quantum version of Chandra et al.’s circuit. We call

the circuit the GCLAm circuit, which stands for the generalized carry-lookahead approach for

two m-bit binary numbers.

The complexity of the GCLAm circuit is analyzed as follows. To compute the depth

Y. Takahashi, S. Tani, and N. Kunihiro 885

of the circuit, since the depth of the original circuit is O(1), it suffices to consider a Tt1

gate, where t1 is the maximum number of inputs of Tt gates in the GCLAm circuit. The

depth of the Tt1 gate is O(log∗ t1). Since t1 = O(m log∗∗ m), the depth of the Tt1 gate is

O(log∗(m log∗∗ m)). Since O(log∗(m log∗∗ m)) ⊆ O(log∗(2m)) ⊆ O(1 + log∗ m) ⊆ O(log∗ m),

the depth of the GCLAm circuit is O(log∗ m). To compute the size of the circuit, we define

At as the number of unbounded fan-in gates with t inputs in Chandra et al.’s circuit, which

is equal to the number of Tt gates in the GCLAm circuit. Since the size of Chandra et al.’s

circuit is O(m log∗∗ m),
∑

t tAt = O(m log∗∗ m). The size of a Tt gate is O(t). The number of

the other gates in the GCLAm circuit is O(m log∗∗ m) (and the size of each gate is 1). Thus,

the size of the GCLAm circuit is O(
∑

t tAt +m log∗∗ m) = O(m log∗∗ m). A similar argument

shows that the number of ancillary qubits in the GCLAm circuit is O(m log∗∗ m). That is,

the GCLAm circuit uses O(m log∗∗ m) ancillary qubits and its depth and size are O(log∗ m)

and O(m log∗∗ m), respectively.

4.2.2 Modification of Our Method

We modify our method in Section 3.3 by using the GCLAm circuit as the CARRYl gate. Let

e(n) = Ω(log∗ n). We set k and l as in Section 3.3 but with e(n) in place of d(n). Note that

k = 2l−1 = Θ(e(n)). We assume that we are allowed to use unbounded fan-out gates with

length O(n). Chandra et al.’s circuit for two ⌊n/2l−1⌋-bit binary numbers is directly applied

to perform the operation (2). Thus, we set m = ⌊n/2l−1⌋. In this case, O(m log∗∗ m) =

O(n(log∗∗(n/2l−1))/2l−1), which is bounded by O(n). Since we have unbounded fan-out

gates with length O(n), we can use the complexity analysis described in Section 4.2.1. The

GCLAm circuit, which is the CARRYl gate, uses O(n(log∗∗(n/2l−1))/2l−1) ancillary qubits

and its depth and size are O(log∗(n/2l−1)) and O(n(log∗∗(n/2l−1))/2l−1), respectively. For

simplicity, we consider slightly weaker bounds for the number of ancillary qubits and size; it

uses O(n(log∗∗ n)/2l−1) ancillary qubits and its size is O(n(log∗∗ n)/2l−1).

The complexity of the whole circuit obtained by the modified method is analyzed as in

the original method. Step 1 uses O(n/k) ancillary qubits and its depth and size are O(k)

and O(n), respectively. Step 2 uses O(n(log∗∗ n)/k) ancillary qubits and its depth and size

are O(log∗(n/k)) and O(n(log∗∗ n)/k), respectively. Step 4 requires no new ancillary qubits

and its depth and size are O(k) and O(n), respectively. The other steps are similar to the

above steps. Thus, the whole circuit uses O(n(log∗∗ n)/e(n)) (= o(n)) ancillary qubits and

its depth and size are O(e(n)) and O(n), respectively. In particular, for e(n) = log∗ n,

the modified method yields an O(log∗ n)-depth O(n)-size circuit with O(n(log∗∗ n)/ log∗ n)

(= o(n)) ancillary qubits.

4.3 Reduction of the Length of an Unbounded Fan-Out Gate

We prove that the length of an unbounded fan-out gate can be restricted to O(nε) in the

modified method without increasing the complexity of the circuit, where ε is any small positive

constant. Suppose that we are allowed to use unbounded fan-out gates with length f(n). An

unbounded fan-out gate with length t = O(m log∗∗ m) (and m = ⌊n/2l−1⌋) can be simply

simulated by using an O(log t/ log f(n)+1)-depth O(t/f(n)+1)-size circuit with no ancillary

qubits that consists only of unbounded fan-out gates with length f(n). In the following, using

this simulation, we reconsider the complexity of the Tt gate, the GCLAm circuit, and the

circuit our method in Section 4.2 yields.

886 Quantum addition circuits and unbounded fan-out

4.3.1 Tt gate

The Tt gate, which is Høyer and Špalek’s circuit for the Tt operation, is constructed as follows:

1. Construct an O(1)-depth O(t log t)-size circuit with O(t log t) ancillary qubits for reduc-

ing the computation of OR of t bits to that of O(log t) bits.

2. Using the circuit in Step 1, for any d > 0, construct an O(d+log∗ t)-depth O(dt log(d) t)-

size circuit for Tt with O(dt log(d) t) ancillary qubits, where log(d) t is the d-times iterated

logarithm log · · · log t.

3. Using the circuit in Step 2, construct an O(log∗ t)-depth O(t)-size circuit for Tt with

O(t) ancillary qubits.

We can modify the above steps using unbounded fan-out gates with length f(n) as follows:

1. Construct an O(log t/ log f(n) + 1)-depth O(t log t)-size circuit with O(t log t) ancillary

qubits for reducing the computation of OR of t bits to that of O(log t) bits.

2. Using the circuit in Step 1, for any d > 0, construct an O(d + log∗ t + log t/ log f(n) +

d log log t/ log f(n))-depth O(dt log(d) t)-size circuit for Tt with O(dt log(d) t) ancillary

qubits.

3. Using the circuit in Step 2, construct an O(log t/ log f(n)+log∗ t)-depth O(t)-size circuit

for Tt with O(t) ancillary qubits.

To see this, we first analyze Step 1 in Høyer and Špalek’s construction. In this step, an

unbounded fan-out gate with length O(log t) is used in parallel to make O(log t) copies of each

of the t input bits. Moreover, an unbounded fan-out gate with length O(t) is used in parallel

to prepare appropriate ancillary qubits O(log t) times. As described above, an unbounded

fan-out gate with length O(log t) can be simulated by using an O(log log t/ log f(n)+1)-depth

O(log t/f(n) + 1)-size circuit with no ancillary qubits. Similarly, an unbounded fan-out gate

with length O(t) can be simulated by using an O(log t/ log f(n)+1)-depth O(t/f(n)+1)-size

circuit. Thus, the depth of the Tt gate is O(log t/ log f(n) + 1). The size is O(t · (log t/f(n) +

1) + (log t) · (t/f(n) + 1)) = O(t log t). These simulations do not require any ancillary qubits.

That is, in Step 1, the number of ancillary qubits and size remain unchanged even if we

consider unbounded fan-out gates with length f(n). Thus, they also do so in Steps 2 and 3.

Step 2 of Høyer and Špalek’s construction is done by using Step 1 O(log∗ t) times to reduce

the computation of OR of t bits to that of a constant number of bits. Step 3 is done by

reducing the computation of OR of t bits to that of t/ log∗ t bits and by using Step 2 with

d = log∗ t. These procedures can be simply applied to the case where we use unbounded

fan-out gates with length f(n) and imply the desired depth bound.

4.3.2 The GCLAm circuit

To compute the depth of the GCLAm circuit, it suffices to consider a Tt1 gate for some

t1 and an unbounded fan-out gate with some length t2. The depth of the Tt1 gate is

O(log t1/ log f(n) + log∗ t1) and the depth of an unbounded fan-out gate with length t2
is O(log t2/ log f(n) + 1). Since t1 and t2 cannot be greater than the size of Chandra et

al.’s circuit, the depth of the GCLAm circuit is O(log m/ log f(n) + log∗ m). To compute

Y. Takahashi, S. Tani, and N. Kunihiro 887

the size, we define Bt as the number of unbounded fan-out gates with length t used (im-

plicitly) in Chandra et al.’s original circuit, which is equal to the number of unbounded

fan-out gates with length t (that are not used in Ts gates for any s) in the GCLAm cir-

cuit. Since the size of Chandra et al.’s circuit is O(m log∗∗ m),
∑

t tBt = O(m log∗∗ m).

If t ≥ f(n), an unbounded fan-out gate with length t can be simulated by an O(t/f(n))-

size circuit. Thus, the size related to unbounded fan-out gates with length greater than

or equal to f(n) in the GCLAm circuit (that is,
∑

t≥f(n)(t/f(n))Bt) is O(m log∗∗ m) since
∑

t tBt = O(m log∗∗ m). The size related to the Tt gates (that is, O(
∑

t tAt)) is O(m log∗∗ m).

The number of the other gates is O(m log∗∗ m) (and the size of each gate is 1). Thus,

the size of the GCLAm circuit is O(m log∗∗ m). The number of ancillary qubits is the

same as the size. That is, the GCLAm circuit uses O(m log∗∗ m) ancillary qubits and

its depth and size are O(log m/ log f(n) + log∗ m) and O(m log∗∗ m), respectively. Since

m = ⌊n/2l−1⌋, the circuit uses O(n(log∗∗(n/2l−1))/2l−1) ancillary qubits and its depth and

size are O(log(n/2l−1)/ log f(n) + log∗(n/2l−1)) and O(n(log∗∗(n/2l−1))/2l−1), respectively.

For simplicity, we consider slightly weaker bounds; it uses O(n(log∗∗ n)/2l−1) ancillary qubits

and its depth and size are O(log n/ log f(n) + log∗(n/2l−1)) and O(n(log∗∗ n)/2l−1), respec-

tively.

4.3.3 Our Circuit

We set f(n) = nε and use the GCLAm circuit as the CARRYl gate, where ε is any small

positive constant. In this case, the CARRYl gate uses O(n(log∗∗ n)/2l−1) ancillary qubits

and its depth and size are O(log∗(n/2l−1)) and O(n(log∗∗ n)/2l−1), respectively. This is

the same situation as that in Section 4.2 except that the length of an unbounded fan-out

gate in the CARRYl gate is at most nε. Thus, the whole circuit uses O(n(log∗∗ n)/e(n))

(= o(n)) ancillary qubits and its depth and size are O(e(n)) and O(n), respectively. If we set

e(n) = log∗ n, we obtain an O(log∗ n)-depth O(n)-size circuit with o(n) ancillary qubits.

It is worth noting that the above method for constructing a circuit for ADDn yields an

o(log n)-depth O(n)-size circuit with o(n) ancillary qubits using unbounded fan-out gates

with a small length. For example, we set f(n) = log n and e(n) = log n/ log log n. In

this case, the CARRYl gate uses O(n log∗∗ n log log n/ log n) ancillary qubits and its depth

and size are O(log n/ log log n) and O(n log∗∗ n log log n/ log n), respectively. This yields an

O(log n/ log log n)-depth O(n)-size circuit with O(n log∗∗ n log log n/ log n) ancillary qubits.

Note that, though the size of the CARRYl gate is o(n), the size of the whole circuit is O(n)

since the other parts of the circuit uses O(n) gates. Such an o(log n)-depth circuit cannot be

constructed by using a quantum circuit only with gates on a bounded number of qubits [20]

or by using a classical circuit only with bounded fan-in and unbounded fan-out gates [21].

Hence, unbounded fan-out gates even with a small length are useful for constructing efficient

quantum circuits for addition.

5 Application

We consider the prime field GF(p) for some prime p > 3. An elliptic curve E over GF(p) is

the set of points (x, y) ∈ GF(p) × GF(p) satisfying y2 = x3 + ax + b, where the constants

a, b ∈ GF(p) and 4a3 + 27b2 6= 0, together with the point at infinity O. It is known that

the addition operation in E can be defined and that E with the addition operation forms

888 Quantum addition circuits and unbounded fan-out

an abelian group with O serving as its identity [25]. Let P ∈ E, 〈P 〉 be the subgroup of

E generated by P , and |〈P 〉| be the order of 〈P 〉. The discrete logarithm problem over the

elliptic curve E with respect to the base P is defined as follows: Given a point Q ∈ 〈P 〉, find

the integer 0 ≤ d ≤ |〈P 〉| − 1 such that Q = dP . Shor’s discrete logarithm algorithm solves

the problem in time polynomial in the length of the binary representation for |〈P 〉| with high

probability [1]. As in [5], we assume that the length of the binary representation for |〈P 〉| is

equal to that of the binary representation for p.

Proos and Zalka constructed an efficient quantum circuit for Shor’s discrete logarithm

algorithm for elliptic curves over GF(p) [5]. Let n be the length of the binary representation

for p. The depth and size of the circuit are O(n3). The dominant cost is O(n2) applications

of an O(n)-depth O(n)-size quantum circuit for ADDn with n ancillary qubits. For counting

the number of qubits in the circuit, it suffices to count the number of qubits in the circuit

for division in GF(p) that maps |x〉|y〉 to |x〉|y/x〉 for x (6= 0), y ∈ GF(p). The circuit for

division in GF(p) uses about 5n qubits: 2n qubits are used for the input register and about

3n qubits are used in the circuit for the extended Euclidean algorithm. In the circuit for the

extended Euclidean algorithm, about 2n qubits are used for the input binary numbers and

intermediate results, and n qubits are used for ancillary qubits during ADDn.

By simply replacing Proos and Zalka’s circuit for ADDn with our circuit in Section 2, we

can eliminate the n ancillary qubits during ADDn since our circuit for ADDn does not use

any ancillary qubits. The resulting circuit uses about 4n qubits. Since Proos and Zalka do

not describe the precise depth or size of their circuit for ADDn, we cannot compare the depth

or size of the resulting circuit with that of the original one precisely. However, the depth and

size of our circuit for ADDn are asymptotically the same as those of Proos and Zalka’s. Thus,

the depth and size of the resulting circuit are asymptotically the same as those of the original

circuit.

By adding o(n) ancillary qubits to the circuit obtained above, we can decrease the depth

asymptotically. As shown in Section 3, for any d(n) = Ω(log n), we have an O(d(n))-depth

O(n)-size circuit for ADDn with O(n/d(n)) ancillary qubits. If we use this circuit as above,

we obtain O(n2d(n))-depth O(n3)-size circuit for Shor’s discrete logarithm algorithm with

4n + O(n/d(n)) qubits. Moreover, as shown in Section 4, if we are allowed to use unbounded

fan-out gates with length O(nε) for an arbitrary small positive constant ε, we have an O(e(n))-

depth O(n)-size circuit for ADDn with o(n) ancillary qubits for any e(n) = Ω(log∗ n). This

circuit yields an O(n2e(n))-depth O(n3)-size circuit for Shor’s discrete logarithm algorithm

with 4n + o(n) qubits. We can also use the previous circuits for ADDn to improve Proos and

Zalka’s circuit. However, they do not yield more efficient quantum circuits for Shor’s discrete

logarithm algorithm than our circuit described above. This is simply because our circuit for

ADDn is more efficient than the previous ones.

6 Conclusions and Future Work

We constructed an O(n)-depth O(n)-size quantum circuit for ADDn with no ancillary qubits.

The size is less than that of any other quantum circuit ever constructed for ADDn with

no ancillary qubits. Using the circuit, we proposed a method for constructing a small-size

quantum circuit for ADDn with a small number of qubits that has a given depth. In particular,

we showed that, if we are allowed to use unbounded fan-out gates with length O(nε) for an

Y. Takahashi, S. Tani, and N. Kunihiro 889

arbitrary small positive constant ε, we can construct an O(log∗ n)-depth O(n)-size circuit

with o(n) ancillary qubits. We applied our circuits to constructing efficient quantum circuits

for Shor’s discrete logarithm algorithm.

Interesting challenges would be to find ways of improving the quantum circuits described

in this paper. For example, can we construct an O(log n)-depth O(n)-size quantum circuit

for ADDn with O(1) ancillary qubits? Can we construct an O(1)-depth O(n)-size quantum

circuit for ADDn with O(n) ancillary qubits using unbounded fan-out gates? In the classical

case, we cannot construct an O(1)-depth O(n)-size (that is, the number of edges) circuit for

addition with unbounded fan-in and fan-out gates [26].

Acknowledgments

The authors thank Yasuhito Kawano, Go Kato, and the anonymous referees for their valuable

comments.

References

1. P. W. Shor (1994), Algorithms for quantum computation: discrete logarithms and factoring, In
Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pages
124–134.

2. V. Vedral, A. Barenco, and A. Ekert (1996), Quantum networks for elementary arithmetic opera-

tions, Phys. Rev. A, 54(1):147–153.
3. C. Zalka (1998), Fast versions of Shor’s quantum factoring algorithm, quant-ph/9806084.
4. S. Beauregard (2003), Circuit for Shor’s algorithm using 2n+3 qubits, Quantum Information and

Computation, 3(2):175–185.
5. J. Proos and C. Zalka (2003), Shor’s discrete logarithm quantum algorithm for elliptic curves,

Quantum Information and Computation, 3(4):317–344.
6. A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg (2004), Implementation of Shor’s algorithm

on a linear nearest neighbour qubit array, Quantum Information and Computation, 4(4):237–251.
7. Y. Takahashi and N. Kunihiro (2006), A quantum circuit for Shor’s factoring algorithm using

2n + 2 qubits, Quantum Information and Computation, 6(2):184–192.
8. F. Green, S. Homer, C. Moore, and C. Pollett (2002), Counting, fanout, and the complexity of

quantum ACC, Quantum Information and Computation, 2(1):35–65.
9. P. Høyer and R. Špalek (2005), Quantum fan-out is powerful, Theory of Computing, 1(5):81–103.

10. J. I. Cirac and P. Zoller (1995), Quantum computations with cold trapped ions, Phys. Rev. Lett.,
74(20):4091–4094.

11. K. Mølmer and A. Sørenson (1999), Multiparticle entanglement of hot trapped ions, Phys. Rev.
Lett., 82(9):1835–1838.

12. X. Wang, A. Sørenson, and K. Mølmer (2001), Multibit gates for quantum computing, Phys. Rev.
Lett., 86(17):3907–3910.

13. S. A. Fenner (2003), Implementing the fanout gate by a Hamiltonian, quant-ph/0309163.
14. S. A. Fenner and Y. Zhang (2004), Implementing fanout, parity, and Mod gates via spin exchange

interactions, quant-ph/0407125.
15. T. G. Draper (2000), Addition on a quantum computer, quant-ph/0008033.
16. Y. Takahashi and N. Kunihiro (2005), A linear-size quantum circuit for addition with no ancillary

qubits, Quantum Information and Computation, 5(6):440–448.
17. T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore (2006), A logarithmic-depth quantum

carry-lookahead adder, Quantum Information and Computation, 6(4&5):351–369.
18. Y. Takahashi and N. Kunihiro (2008), A fast quantum circuit for addition with few qubits, Quantum

Information and Computation, 8(6&7):636–649.

890 Quantum addition circuits and unbounded fan-out

19. A. K. Chandra, S. Fortune, and R. Lipton (1983), Unbounded fan-in circuits and associative

functions, In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pages
52–60.

20. M. Fang, S. Fenner, F. Green, S. Homer, and Y. Zhang (2006), Quantum lower bounds for fanout,
Quantum Information and Computation, 6(1):46–57.

21. N. Pippenger (1987), The complexity of computations by networks, IBM Journal of Research and
Development, 31(2):235–243.

22. M. A. Nielsen and I. L. Chuang (2000), Quantum Computation and Quantum Information, Cam-
bridge University Press.

23. S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton (2005), A new quantum ripple-

carry addition circuit, The Eighth Workshop on Quantum Information Processing. Also on quant-
ph/0410184.

24. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A.
Smolin, and H. Weinfurter (1995), Elementary gates for quantum computation, Phys. Rev. A,
52(5):3457–3467.

25. D. Hankerson, A. Menezes, and S. Vanstone (2003), Guide to Elliptic Curve Cryptography,
Springer.

26. D. Dolev, C. Dwork, N. Pippenger, and A. Wigderson (1983), Superconcentrators, generalizers and

generalized connectors with limited depth, In Proceedings of the 15th Annual ACM Symposium
on Theory of Computing, pages 42–51.

