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The ability to protect quantum information from the effect of noise is one of the major
goals of quantum information processing. In this article, we study limitations on the
asymptotic stability of quantum information stored in passive N -qubit systems. We
consider the effect of small imperfections in the implementation of the protecting Hamil-

tonian in the form of perturbations or weak coupling to a ground state environment.
We thus depart from the usual Markovian approximation for a thermal bath by concen-
trating on models for which part of the evolution can be calculated exactly. We prove

that, regardless of the protecting Hamiltonian, there exists a perturbed evolution that
necessitates a final error correcting step for the state of the memory to be read. Such
an error correction step is shown to require a finite error threshold, the lack thereof
being exemplified by the 3D XZ-compass model [1]. We go on to present explicit weak

Hamiltonian perturbations which destroy the logical information stored in the 2D toric
code in a time O(log(N)).
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1 Introduction

Quantum information processing promises exciting new capabilities for a host of computa-

tional [2, 3, 4] and cryptographic [5, 6] tasks, if only we can fabricate devices that take

advantage of the subtle and very fragile effects of quantum mechanics. The theory of quan-

tum error-correcting codes (QECCs) and fault-tolerance [7, 8, 9, 10] assure that this fragility

can be overcome at a logical level once an error rate per element below a certain threshold is

achieved. However, providing a scalable physical implementation of computational elements
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with the required degree of precision and control has proven to be a task of extreme diffi-

culty. Thus, one might hope to design superior fault-tolerant components whose robustness

is enforced in a more natural way at a physical level.

A first step in this daunting task is to concentrate not on universal quantum computation,

but on one sub-protocol within this; the storage of quantum information. Thus, the aim is

to find systems naturally assuring the stability of quantum information, just like magnetic

domains in a hard disk provide stable storage of classical information. The quest for such a

passive quantum memory was pioneered by Kitaev [11], who introduced the toric code as the

first many body protecting Hamiltonian. The promising conjunction of properties shown by

his proposal has fueled a search, which is yet to provide a definitive result.

For families of protecting Hamiltonians, such as Kitaev’s toric code [11, 12], a constant

energy gap γ separates the degenerate ground space, used for encoding, from low energy

excited states. Furthermore, the stabilizer representation of these Hamiltonians naturally

associates it with a QECC, which permits an error threshold without the use of concatenation

[12]. A perturbation theoretic expansion of local errors V in the Hamiltonian must then cancel

to orders increasing with the distance of the associated QECC. Recently Bravyi et al. [13, 14]

have used this to rigorously prove that under the effect of sufficiently weak yet extensive

perturbations, the energy splitting of the degenerate ground space decays exponentially with

the system size. Together with previous results by Hastings and Wen [15], this guarantees

the existence of perturbed logical operators and local observable. Additionally, it also implies

that it takes this splitting an exponentially long time to implement logical rotations on the

perturbed ground space (e.g. a phase gate). A non trivial condition being that encoding is

actually performed onto the perturbed ground space.

However, such perturbation theoretic results must be applied with caution. The most im-

portant limitation probably arises from the fact that they deal with a closed quantum system

whereas actual noise may be better modeled by perturbative coupling to an environment.

Even if local observables can be adapted for to a high degree of accuracy [15], the global

eigenstates of the system may change and become very different. Within our understand-

ing, the possibility of adapting encoding and decoding protocols relies on the perturbation

being characterized, something that seems unrealistic for such many-body systemsa. This is

why we consider an uncharacterized perturbation introduced through a quench. By this we

mean that encoding is performed according to the ideal (unadapted) code-space of the unper-

turbed Hamiltonian as will the decoding and order parameters considered. This allows us to

derive no-go, or limitation, results from the exact analysis of adversarially engineered noise

instances. However, it must be noted that error correction to the perturbed encoding may be

performed without explicit knowledge of the perturbation. This is for example the case, for

the self-correcting mechanism which is based on energy dissipation.

The first systematic study of limitations of passive quantum memories can be atributed

to Nussinov and Ortiz [17], finding constant (system size independent) bounds for the auto-

correlation times. They study the effect of infinitesimal symmetry breaking fields on topo-

logical quantum order at finite temperature [18]. More recently, Alicki et. al. have presented

results supporting the instability of quantum memories based on Kitaev’s 2D toric code [19]

and the stability of its 4D version [20] when coupled to a sufficiently cold thermal environ-

aA possible exception to this is given by proposals of adiabatic state preparation [16].
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ment. They analyse the evolution of correlation functions for the case of Markovian dynamical

semigroup [21]. Chesi et al. [22] have made progress in providing a general expression giving

a lower bound for the lifetime of encoded information. The approach taken in these articles

is thermodynamic in nature and has the advantage of allowing the derivation of positive re-

sults. A weak coupling Markovian approximation to an environment at thermal equilibrium

is assumed, thus neglecting any memory effects from the environment. In a previous article

[23], we considered a Hamiltonian system subject to independent depolarizing noise (corre-

sponding to the high temperature limit of the above approach) and proved that O(logN) is

the optimal survival time for a logical qubit stored inside N physical qubits.

Our current approach directly deals with Hamiltonian perturbations and environment cou-

plings without going through a Markovian approximation for the environment. A comparative

advantage of our approach is the capability of exactly dealing with certain weak but finite

perturbations and couplings, and providing restricted no go results. Thus, approximations

needed for a Markovian description of a bath are not required and do not pose an issue. The

drawback of this approach is that coupling and environment are atypical, breaking a possibly

implicit typicality requirement for self-correcting memories.

To falsify claims of protection against any possible noise of a certain class (such as weak

local perturbations to the Hamiltonian), it suffices to consider an adversarial noise instance

within such a class. In such a noise model, different perturbations and environments are not

assigned probabilities; a perturbation is simply considered possible if it adheres to certain

conditions. There is a range of different conclusions that one may reach from such an analysis

of noise instances. One may simply provide upper bounds on how fast a passive memory may

be erased by a perturbation complying to a certain noise class. We may prove or extrapolate

requirements for a memory model to protect against the given noise class. We may find that a

class of noise is unreasonable by showing that it invalidates a memory model which we expect

to work (i.e. a magnetic domain). An intermediate scenario arises when we consider the

noise class to be reasonable but expect a certain notion of typicality for which the considered

instance is not representative. Such a typicality condition would then be needed explicitly to

provide proof of robustness for the memory model.

We consider the effect of relatively weak yet unknown perturbations of an N qubit local

protecting Hamiltonian and coupling to an ancillary environment starting out in its ground

state. We show that as the number N of physical subsystems used grows, it is impossible to

immunize a quantum subspace against such noise by means of local protecting Hamiltonians

only. We further show that if one wishes to recover the quantum state by means of an

error correction procedure, the QECC used must have some finite error threshold in order to

guarantee a high fidelity; this result is applied to the 3D XZ-compass model [1] which is shown

not to have such a threshold. In the case of the 2D toric code [11], we propose Hamiltonian

perturbations capable of destroying encoded information after a time proportional to log(N),

suggesting that some form of macroscopic energy barrier may be necessary. Weak finite range

Hamiltonian perturbations are then presented which destroy classical information encoded

into the 2D Ising model; in this case interactions involving a large, yet N independent, number

of qubits are required. Finally, we consider time dependent Hamiltonian perturbations and

coupling to an ancillary environment with a high energy density; here we provide constructions

illustrating how these more powerful models may easily introduce logical errors in constant
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time into information protected by all stabilizer Hamiltonians, and certain generalizations.

Drawing from practical experience with classical memories, the one likely conclusion here is

that general time dependent Hamiltonian perturbations are not a relevant noise model to

consider, as it is in general too powerful to protect against.

1.1 Noise model motivation

A prerequisite to assess protecting Hamiltonians is a precise definition of the noise model

they will be expected to counter. Our aim is to understand the protection lifetime they

provide to (quantum) information as well as to identify the properties a good protecting

Hamiltonian should have. In order to be able to make such predictions, we will study noise

models admitting a mathematically tractable description while striving to keep our choices

physically motivated.

The most elementary way in which the Hamiltonian evolution of a closed system can

be altered is by including a small perturbation V to the Hamiltonian H. A simple physical

interpretation for such a perturbation is to associate V to imperfections in the implementation

of the ideal protecting Hamiltonian H. Furthermore, Hamiltonian perturbations extending

beyond the system under experimental control are modeled by a weak coupling between

the system and an environment. We focus on families of protecting Hamiltonians satisfying

certain locality and boundedness conditions, and naturally extend similar restrictions on the

perturbations and couplings considered.

Let us first introduce some definitions. A family of protecting Hamiltonians {HN} is

parametrized by a number N which grows with the number of physical subsystems partici-

pating in HN . A Hamiltonian H is called “k-local” when it can be represented as a sum

H =

N
∑

i=1

Ti, (1)

with at most k physical subsystems participating in each interaction term Tl. The interaction

strength of a physical subsystem s in a k-local Hamiltonian H is given by the sum
∑

i ‖Ti‖ of

operator norms over those interaction terms Ti in which the physical subsystem s participates.

A family of k-local Hamiltonians is called “J-bounded” if, for every Hamiltonian HN in the

family, the largest interaction strength among the physical subsystems involved is no greater

than J . Finally, a family of Hamiltonians will be D-dimensional if the physical subsystems

involved can be arranged into a D-dimensional square lattice, such that all interaction terms

are kept geometrically local.

We will concentrate on families of k-local, J-bounded protecting Hamiltonians, with J > 0,

and k, J ∼ O(1). Furthermore, the specific Hamiltonians treated in this article admit an

embedding into 2, 3 or 4 spatial dimensions and we may assume such embeddings also when

dealing with generic protecting Hamiltonians.

The families of Hamiltonian perturbations {VN} which we will consider will be J̃-bounded,

with the strength J̃ small in comparison to J . The perturbations will be taken to be k̃-local,

with k̃ possibly different, and even larger, than k. This allows, for example, taking into

consideration undesired higher order terms which may arise from perturbation theory gadgets

[24]. Allowed perturbations should also admit a geometrically local interpretation under the

same arrangement of subsystems as the protecting Hamiltonian.
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When considering coupling to an environment, an additional set of physical subsystems will

be included as the environment state. A family of local environment Hamiltonians {H
(E)
N } will

be defined on these additional subsystems. The coupling between system and environment

will be given by a family of weak local Hamiltonian perturbations V
(SE)
N , acting on both

system and environment.

H̃N = H
(S)
N ⊗ I

(E)
N + I

(S)
N ⊗H

(E)
N + V

(SE)
N (2)

Finally, it should be possible to incorporate the additional physical subsystems from the

environment while preserving the number of spatial dimensions required for the Hamiltonian.

To simplify notation, the sub-index N shall in general be dropped.

The engineering of k-body interactions is increasingly difficult as k grows [25, 24]. This is

why we limit our study to families of k-local Hamiltonians (i.e. k independent ofN). It is under

such criteria that we exclude proposals such as quantum concatenated-code Hamiltonians

[26], for which the required degree of interactions would grow algebraically with the number

of qubits.

The J-bounded condition guarantees that the rate of change for local observables re-

main bounded. Furthermore, this condition is strictly weaker than the rigorous requirements

stated for the simulation through the use of perturbation theory gadgets [24]. There, con-

stant bounds are imposed both on the norm of each interaction as well as on the number of

interactions in which each subsystem participates. The J-bounded condition also leaves out

systems with long range interactions, as, for those systems, the total interaction strength of

individual physical subsystems diverges as the system size grows. Such long range interacting

systems are physically relevant, and may lead to protecting Hamiltonian proposals [27, 28].

However, we abstain from treating such models for which our notion of weak perturbation

seems inappropriate.

Each physical subsystem may independently be subject to control imprecision. Such is

the case for weak unaccounted “magnetic field” acting on every component of the system or

a weak coupling of each component to an independent environment. Thus, relevant physical

scenarios involve perturbations with extensive operator norm (i.e. scaling with the number

of subsystems). The J̃-bounded condition encapsulates these scenarios and seems to better

describe what we understand by a weak perturbation.

Finally, it is expected that scalable physical implementations should be mapped to at most

three spatial dimensions. This would rule out the 4D toric code Hamiltonian [12], a proposal

which was otherwise shown to provide increasing protection against weak local coupling to a

sufficiently cold thermal bath [20]. As would occur with an actual physical embedding, we

expect that the perturbations considered may be included into the same geometrical picture

as the protecting Hamiltonian they affect.

1.2 Outline of results

In the following sections, we analyze the problem of obtaining increased protection for quan-

tum information by means of an encoding and a protecting Hamiltonian acting on an in-

creasing number of physical subsystems. We consider the effect of adversarial noise models

consisting of local Hamiltonian perturbations and/or a weakly coupled environment. The

aim is to examine the assumptions and limitations of memory schemes based on Hamiltonian
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protection with a growing number of physical subsystems as quantified by the survival time

of stored information.

We will prove in complete generality that the survival of information should be associ-

ated to a subsystem and not to a particular subspace. The figure of merit considered here

is S(t) = tr (|ψ(0)〉〈ψ(0)|ρ(t)), the overlap between initial and evolved state after a constant

time t. For arbitrary protecting Hamiltonians we provide a completely general construction

involving a weakly coupled environment starting in its ground state (Sec. 2.2) which yields

an exponentially small (in N) upper bound on S(t) after a constant time. For gapped Hamil-

tonians, a proof proceeding without reference to an environment (Appendix 1) can provide

an upper bound to the time averaged overlap which is close to 1
2 . We thus infer that the

information should be associated to a subsystem.

Having found that subspaces can not provide robust encoding, we consider protecting

Hamiltonians together with a recovery operation R, which can be thought of as applied on

read-out. This provides the formal means to project information from a logical subsystem onto

a code subspace and leads to a more robust figure of merit given by SR(t) = tr (ρ(0)R(ρ(t))).

Although throughout the article, we assume R to be an unperturbed error correction pro-

cedure associated to an encoding, it is important to emphasize that other means may allow

keeping information in a logical subsystem. In particular, self-correcting Hamiltonians advo-

cate the use of a local thermalizing coupling as a way of continuous error correction at finite

temperature. This is, while an unperturbed order parameter may be shown to be inadequate

for the storage of information, it may be possible for a robust yet implicit logical subsystem

to arise by including genuine dissipation.

In (Sec. 3), a weak coupling construction like that of (Sec. 2.2) shows that information

content of the 3D XZ-compass model [1] can be destroyed in constant time by a zero tem-

perature environment, despite of a final recovery operation R. From a broader perspective,

the structure of our proof strongly suggests that the underlying QECC defining the recovery

operation R must have a strictly positive error threshold.

We continue by considering the effect of Hamiltonian perturbations on the 2D toric code

[11]. The recovery mechanism R is then taken as the composition of a fixed syndrome mea-

surement followed by a correction operation pairing the detected anyons. It is shown (Sec. 4)

that, although the underlying QECC has an error threshold, it is not protected against com-

binations of unknown weak local Hamiltonian perturbations, even after a final round of error

correction is considered. Our claim is based on adversarial weak local perturbations that are

capable of destroying the stored information in a time logarithmic in N . This is stronger than

previous results [29] in that, the noise model requires no interaction with the environment

and the information is destroyed exponentially faster.

In a similar manner, we consider perturbations on the 2D Ising Hamiltonian (Sec. 5),

which is often used as an example of self-correcting classical memory. Here, Hamiltonian

perturbations may transform (classical) code states into an ambiguous state in constant time.

While the number k̃ of bodies in perturbation terms is required to grow as the overall pertur-

bation strength decreases, it shows no dependence on the size N of the system. In this model,

any sequence of local errors connecting the two classical code states must go through states

with a macroscopic amount of extra energy, showing that this property alone is not sufficient

to give protection against this family of perturbations. There are two possible implications
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of this result. First we may think that since ferromagnetic domains seem to be quite stable,

our choice of perturbation may not be significant in that it is by no means typical. On the

other hand, although the lifetime obtained is independent of N , this independence is only

found for very large N in terms of the perturbation strength, possibly allowing to reconcile

this model with experience and hinting that in practice, information lifetime scaling with N

may be unnecessary.

Beyond the Hamiltonian perturbation model and coupling to a ground state environment,

we consider more aggressive noise models (Sec. 6) in which the environment can introduce large

amounts of energy. The models considered are time dependent Hamiltonian perturbations

and weak Hamiltonian coupling to an environment starting in a high energy state. For such

noise models, even the information storage capabilities of the 4D toric code and any local

ferromagnetic Ising model, proposals shown to be stable under Markovian thermal coupling,

are completely destroyed. We thus argue that requiring robustness against an adversarial

noise model of such a class is asking for too much and is not a prerequisite for practical

quantum or classical memories.

One might expect that the results presented here are not limited to the task of designing

a quantum memory. Rather, they tell us about the difficulty of keeping a state and its time

evolution confined within a specific subspace of the system, under the effect of Hamiltonian

noise. Such considerations arise in other settings, such as in the models of adiabatic and

topological quantum computation. We will outline some of these connections in Sec. 7.

2 Subsystems instead of subspaces

We start our examination of passive quantum memories by proving that regardless of the

choice of encoding subspace and protecting Hamiltonian the weak coupling to an environment

can, in constant time, exponentially reduce the fidelity with the evolved state. By this, we

wish to convey that a more robust figure of merit is required. Such figures are in general

derived from associating the information to a logical subsystem.

First, we propose weak local perturbations showing an exponentially decreasing overlap

between perturbed and unperturbed eigenstates. For general local Hamiltonians and states,

we consider a local coupling V of the system with a γ-bounded environment initialized in its

ground state. Averaging over such couplings V , we are able to derive an exponentially small

upper bound 〈S(tf )〉V ≤ [1 − sin2(2ε)]N for the overlap between initial and evolved system

states at a time tf = π
γ .

2.1 Eigenstate susceptibility to perturbations

Consider a k-local HamiltonianH, decomposable into k-body interaction terms Ti as described

in (1). We choose a perturbation V such that the initial and final Hamiltonians are related

by a composition of local unitary transformations,

H̃ = H + V = UHU†, with U =
N
⊗

l=1

eiεPl , (3)
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where Pl are normalized local Hermitian operators. Taking this definition, V can be written

as

V =

N
∑

i=1

UTiU
† − Ti, (4)

and thus is also k-local. Furthermore, if 2kε≪ 1, it is justified to call V a perturbation with

respect to H, since all terms are small with respect to those of H.

Degeneracies in H are assumed to be infinitesimally lifted to ensure uniquely defined

eigenvectors. The overlap between eigenvectors |ψi〉 of H and the perturbed eigenvectors

U|ψi〉 is then given by FU = |〈ψi|U|ψi〉|
2
.

By averaging over all possible directions Pl, we effectively obtain an independent qubit

depolarization.
∫

U†|ψi〉〈ψi|UdP1 . . . dPN = ∆⊗N
λ(ε)(|ψi〉〈ψi|) (5)

Here, ∆λ(ρ) = λρ+ (1 − λ) I2 is the qubit depolarizing channel and λ(ε) = 1 − 3
2 sin2(ε). We

may then denote 〈F 〉U as average of the overlap FU over all local rotations U having a given

strength ε. This average is expressed in terms of the depolarizing channel as

〈F 〉U = 〈ψi|∆
⊗N
λ(ε) (|ψi〉〈ψi|) |ψi〉. (6)

A result of King [30], known as multiplicativity of the maximum output p-norm for the

depolarizing channels, states that

max
|φ〉

∥

∥∆⊗N
λ (|φ〉〈φ|)

∥

∥

p
≤

(

max
|φ〉

‖∆λ (|φ〉〈φ|)‖p

)N

. (7)

For qubit subsystems and for p = ∞, Eq. (7) bounds the overlap of ∆⊗N
λ (|φ〉〈φ|) with any

single pure state, leading to

〈F 〉U ≤

(

1 + λ

2

)N

=

(

1 −
3

4
sin2(ε)

)N

. (8)

Not only does this imply the existence of specific rotations such that F becomes exponentially

small as the number of subsystems N grows, but that this is true for most rotations U .

While this is already known under the name of Anderson’s orthogonality catastrophe (see,

for example [31, 32]), we re-derive it for completeness and as an opportunity to introduce

techniques needed throughout the rest of the paper.

2.2 State evolution in coupled Hamiltonians

In this section, we consider a weak Hamiltonian perturbation coupling the system to a “cold”

environment. The environment is assumed to start in its ground state, corresponding to a cold

environment assumption. Averaging over a specific family of such perturbations instances V ,

an exponentially small bound on the overlap between the initial state and the evolved state

is obtained. This bound, 〈S(tf )〉V ≤ [1− sin2(2ε)/3]N , is obtained after a constant evolution

time tf = π
γ , inversely proportional to the strength of the environment Hamiltonian.
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Suppose that we start with a state |ψ0〉 “protected” by an N qubit system Hamiltonian

HS . We can introduce a simple environment, composed of 2N qubits, each of which starts in

its ground state, |0〉, and which is defined by its Hamiltonian

H = H(S) ⊗ I(E) + I(S) ⊗H(E) (9)

H(E) = γ
N
∑

i=1

|1+〉〈1+|
(E)
i − |00〉〈00|

(E)
i . (10)

When necessary, we take the supraindices (S), (E1) and (E2) to denote the system, the first,

and second components of the environment respectively. While both environment components

will interact with the system, it is the presence of both which will allow a simple interpretation

of the induced decoherence as a probabilistic application of local errors.

We again use the trick of considering a perturbed Hamiltonian H̃ = UHU† which results

from the weak local rotations U =
⊗N

j=1 Uj of the decoupled Hamiltonian H. The rotation

elements will involve both system and environment components, Uj = eiεP
(S)
j

⊗X
(E1)
j , where

the operators P
(S)
j are taken to be Pauli-like operators on site j of the system.

The perturbation V = UHU† − H must be decomposable into small local terms. Such

a decomposition for V is given in terms of the decomposition H(S) =
∑

i Ti into at most

k-body terms. Each perturbation term Vi = UTiU
† − Ti has an operator norm no greater

than 2εk ‖Ti‖ and involves up to 2k-body interactionsb. The perturbation required to rotate

the environment Hamiltonian terms involve at most 3-body terms and a total norm bounded

by 2εγ.

The initial state, |ψ0〉|00〉⊗N will thus evolve into e−itUHU†

|ψ0〉|00〉⊗N . The survival prob-

ability is then S(t) = 〈ψ0|ρS(t)|ψ0〉, where ρS(t) = trE (ρ(t)), and

ρ(t) = Ue−itHU†|ψ0〉〈ψ0| ⊗ |00〉〈00|⊗NUeitHU†. (11)

Here, U may be explicitly decomposed as

U = exp(iε
∑

j P
(S)
j ⊗X

(E1)
j )

=
∑

p cos(ε)N−w(p)(i sin(ε))w(p)P
(S)
p ⊗X

(E1)
p ,

(12)

where p denotes a binary vector indicating the sites on which rotations are applied in P
(S)
p

and w(p) is the weight of the bit string p (number of non identity factors in P
(S)
p ).

Now consider a time tf = π
γ such that e−itfH transforms components of the environment

from |10〉 to |11〉, while leaving components in state |00〉 unaltered. At such a time tf ,

substituting U into expressions (11) allows explicitly tracing over the environment to yield

ρS(tf ) =
∑

p,q

cos2(ε)2N−w(p)−w(q) sin2(ε)w(p)+w(q)×

Ppe
−itfH

(S)

Pq|ψ0〉〈ψ0|Pqe
itfH

(S)

Pp.

(13)

bFor εk ≪ 1, a further decomposition of such terms can be provided in which subterms involving k + b bodies
are of strength O(εb), guaranteeing that the strength of terms decays exponentially with the number of bodies
involved.
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Thus, ρS(tf ) may be considered as the density matrix resulting from the independent proba-

bilistic application of the local unitary rotations prescribed by U on |ψ0〉〈ψ0|, followed by the

evolution under the unperturbed system Hamiltonian, followed by a second round of random

application of the local rotations prescribed by U . Defining

ER,p(ρ) = pRρR+ (1 − p)ρ, (14)

and the Hamiltonian evolution

Ht(ρ) = e−iH
(S)tρeiH

(S)t, (15)

we can take p = sin2(ε) and define ρvirt :=
(

⊗N
i=1 EPi,p

)

|ψ0〉〈ψ0|, so that we can express

S(tf ) as

S(tf ) = tr
(

ρvirte
−itfHSρvirte

itfHS
)

. (16)

This is the overlap between a density matrix and its own unitary evolution, and can be upper

bounded by

S(tf ) ≤ tr
(

ρ2
virt

)

. (17)

In turn, using the fact that Pi are Pauli-like operators we may rewrite it as

S(tf ) ≤ 〈ψ0|

(

N
⊗

i=1

EPi,2p(1−p)

)

(|ψ0〉〈ψ0|)|ψ0〉. (18)

Averaging over the Pauli-like operators, we obtain

〈S(tf )〉V ≤ 〈ψ0|∆
⊗N
λ(ε)(|ψ0〉〈ψ0|)|ψ0〉, (19)

which is the overlap at time tf averaged over the proposed family of weak perturbative

couplings. Here ∆λ(ρ) is again the depolarizing channel, and λ(ε) = is 1− 4
32p(1− p). Using

Eq. (8), we obtain

〈S(tf )〉V ≤ [1 −
4

3
p(1 − p)]N , (20)

which by substituting p for sin2(ε) yields

〈S(tf )〉V ≤ [1 − sin2(2ε)/3]N . (21)

By averaging over different possible weak couplings, we obtain an overlap between initial and

evolved states which is exponentially decreasing in N .

The norm γ of Hamiltonian terms in the environment should be bounded, since it is in

part these terms which are rotated by U to introduce a weak coupling between system and

environment. Thus, the proposed evolution time tf = π
γ is constant. Furthermore, if one

considers an environment of N semi-infinite chains of coupled two level systems (such as

Heisenberg chains), it is possible to ensure that the overlap with the initial state is small for

all times larger than t ∼ π
γ , rather than have the recurrences that arise from the discrete

spectra of the described model.

In appendix (1), the evolution of an unperturbed eigenstate is considered under the effect

of pure Hamiltonian perturbations (no environment). In this case, a constant rate of change in

the system state is guaranteed by an energy gap γ in the system Hamiltonian. If an initial state

belongs to an energy band separated from the rest of the Hilbert space by such an energy gap

γ, we provide an upper bound on the time averaged overlap 〈S(t′)〉t′∈[0,t] ≤
1
2 + 1

2γt between

initial and evolved state.
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2.3 Discussion

We were able to show after a constant time tf , an exponentially large degradation of the over-

lap S(tf ) in terms of N . If we are to find a benchmark by which to evaluate a memory scheme,

we expect that the memory improves as more resources are dedicated to its implementation.

It is now clear that many-body quantum states are inherently unstable with respect to the

uncorrected overlap, i.e. S(t) is not the appropriate benchmark.

The fact that we may count on N physical subsystems to implement a quantum memory

should not exclude using only one of them and ignoring whatever noisy evolution is affecting

the others. This corresponds to considering an overlap reduced to the relevant subsystem

and not on the whole state. Already such a simple idea guarantees that information storage

quality is non-decreasing with N .

One may further generalize this by realizing that the relevant subsystem need not corre-

spond to an actual physical subsystem. This corresponds to providing a new decomposition

for the physical Hilbert space which allows factoring out a logical subsystem. The resulting

benchmark is SR(t) = tr (ρ(0)R(ρ(t))), quantifying the quality of the information recoverable

from the evolved state and not of the state itself. Here, R may be thought of as an operation

zeroing the irrelevant subspace, which may also be interpreted as the recovery super-operator

of a QECC. Conversely, given the recovery operation R of a QECC, one may define the cor-

responding logical subsystem. Robust error corrected logical observablesc can analogously be

defined via the extension provided from the code space to the whole Hilbert space by the

recovery operation R. In the following sections, we shall consider protecting Hamiltonians

toghether with such error correcting codes and robust logical observables.

3 Error threshold required

A desirable property for a quantum memory is that any sequence of local operators mapping

between different logical code-states should have energy penalties which grow with the system

size. It has been shown that this happens for schemes in four dimensions, such as the 4D toric

code [12]. Seeking to provide such an example in three spatial dimensions, Bacon proposed

the 3D XZ-compass model [1], a scheme based on subsystem error correcting codes [33] and

requiring only 2-body nearest neighbor interactions. Furthermore, mean field arguments

suggest that this model might show such an increasingly large energetic barrier.

However, we will show that the zero temperature (local, but non-Markovian) environment

construction of the previous section is capable of giving a false read-out from the code after

constant time. A recovery operation R is assumed on read-out, and taken to be the unadapted

version of the associated error correcting code. We show that the shortcoming is inherent to

the choice of recovery procedure R by illustrating that the same flaw is present for the 4D

toric code if one assumes an alternative recovery protocol similar to the one considered for

the 3D XZ-compass model. This failure is a general feature of recovery protocols not having

a local error threshold (i.e. those which are unable to handle errors on a constant fraction of

randomly chosen sites).

For the 3D XZ-compass model, quantum information is first encoded into the groundspace

of a 2-local Hamiltonian HS defined on a N×N×N arrangement of two level systems (where

cAlicki et al. [20] use the name dressed observables, whereas Chesi et al. [22] use the self-explanatory name
of error corrected logical operators, which we will adopt.
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N is an odd number).

HS = −λ

N
∑

i,j=1

N−1
∑

l=1

(Xl,i,jXl+1,i,j +Xi,l,jXi,l+1,j

+Zi,l,jZi,l+1,j + Zi,j,lZi,j,l+1) .

(22)

This is not a stabilizer code but a subsystem code. This means that a recovery operation need

not correct certain errors which have no effect on the logical observables, and information may

be preserved even if the recovered state is different.

First, note that pairs of planes of operators Ẑl =
∏

i,j Zi,j,lZi,j,l+1 and X̂l =
∏

i,j Xl,i,jXl+1,i,j

commute with the Hamiltonian H for all l. This also holds for logical operators, which con-

sist of products along a single plane Z̄ ≡ Z̄l =
∏

i,j Zi,j,l and X̄ ≡ X̄l =
∏

i,j Xl,i,j operators

respectively, for an arbitrarily chosen l. In the ground space, the choice of l is irrelevant, since

the operators Ẑl, X̂l all have +1 eigenvalues. Provided N is odd, X̄ and Z̄ anti-commute,

giving a qubit algebra. In the presence of errors (outside of the ground space), the error

corrected logical observables will be defined as the majority vote among plane observables

Z̄ec = majlZ̄l X̄ec = majlX̄l (23)

where maj stands for a majority vote among the ±1 eigenvalued commuting operators. Mea-

suring all pairs of adjacent planes Ẑl allows a majority vote error correction scheme to be

performed on the value of the Z̄l plane observables without extracting whether the corrected

state yields +1 or −1 values for all such planes.

Considering a perturbation on the system plus an environment, as presented in section

2.2. By explicitly developing the final expectation values for the observables of interest

(tr
(

X̄ecρS(tf )
)

and tr
(

X̄ecρS(tf )
)

), it can be seen that the information stored in the code

will not be reliable after a time tf . For this, we can pick up from the evolved state of the

system in Eq. (16)

ρS(tf ) =

(

N
⊗

i=1

EPi,p

)

◦ Htf ◦

(

N
⊗

i=1

EPi,p

)

|ψ0〉〈ψ0|. (24)

Since all plane observables (X̄l and Z̄l) of a given type mutually commute, and also do so

with the Hamiltonian, we can independently consider the probability of each plane observable

having suffered a flip. If the Pi in Eq. (14) are taken to be single X or Z rotations, they will

anticommute with overlaping Z̄l or X̄l plane observables respectively, changing their value

upon an odd number of applications. Taking the Pi to be simple Z operators, the probability

of flipping the value of an X̄l plane observables by applying
⊗N3

i=1 EPi,p once is given by

pplane∗ =

i≤N
∑

i∈odd

cos2N
2−2i(ε) sin2i(ε)

(

N2

i

)

=
1 − cosN

2

(2ε)

2
, (25)

which is exponentially close to 1/2. Since all observables involved commute with the system

Hamiltonian, the probability of observing any result configuration will be preserved by Htf .
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Finally, a second round of errors
⊗N3

i=1 EPi,p will again flip the observed value for each plane

with a probability pplane∗. The final independent probability of flipping the value of each

plane is

pplane = 2pplane∗(1 − pplane∗) =
1 − cos2N

2

(2ε)

2
. (26)

The proposed correction scheme is equivalent to a majority voting among such planes.

Thus, if more than half the planes suffer such an error, the majority vote will fail. The

probability for incorrectly measuring the error corrected logical observable X̄ec on read-out

is then

plogic =

N
∑

i=(N+1)/2

piplane(1 − pplane)
N−i

(

N

i

)

. (27)

Given that 1
2 [1 − cos2N

2

(2ε)] ≤ pplane ≤
1
2 , we have that

1

2
[1 −N cos2N

2

(2ε)] ≤ plogic ≤
1

2
. (28)

Assuming ε to be a small constant independent of N , the probability plogical will exponentially

approach 1/2 for large N . We conclude that the encoding is not robust against the error model

posed by local coupling to a cold adversarial environment.

The problem lies in the error correction mechanism rather than the protecting Hamiltonian

itself. This becomes apparent if one applies a similar analysis to the 4D Toric code. There,

the suggested noise model does not present a problem, since the usual error correction [12] of

the 4D toric code has an error threshold. That is, provided the probability of per-site error,

p = sin2 ε is below this threshold, there exist error correction criteria which succeed with a

probability approaching 1 exponentially with N . On the other hand, we could consider a

majority voting version of error correction in this setting, where we measure hyperplanes of

X operators, and apply a majority vote to choose the correct result. In this case, an analysis

completely analogous to that of the 3D XZ-compass code would hold proving such a read-out

technique unreliable. We conclude that the error correction procedure of the 3D XZ-compass

code does not allow sufficient resolution to use any potentially topological properties of the

encoded quantum information.

The errors introduced by
⊗N

i=1 EPi,p are sufficiently general to suggest a necessary crite-

rion for Hamiltonian protection of information from weak coupling to a cold environment.

Even if we consider the first round of errors and the Hamiltonian evolution as part of the

encoding procedure, information should still be able to withstand the probabilistic application

of arbitrary local errors. This means that the information, either quantum or classical, should

be encoded in such a way as to provide a finite error threshold in the thermodynamic (large

N) limit. Of course, in practice, it will be desirable to have a code with a fault-tolerance

threshold such that when we try to implement the round of error correction, faulty operations

can be compensated for.

4 Limitations of the 2D toric code

We will now show how local Hamiltonian perturbations are capable of introducing uncor-

rectable errors in Kitaev’s 2D toric code Hamiltonian. The introduction of such errors will
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strongly rely on the lack of string tension on the toric code, suggesting a macroscopic energy

barrier may be a necessary requirement. A brief introduction to the toric code Hamiltonian

is provided in appendix B, and is recommended to the unfamiliar reader.

Logical operations in the 2D toric code can be realized by creating a pair of anyons,

propagating them so as to complete a non-trivial loop, and finally annihilating them. It is

roughly such a scheme that will be followed by the perturbations we develop here. Repeating

techniques from section 2, we may consider the initial state as containing a superposition of

local errors which are interpreted as neighboring anyon pairs. A perturbation construction

due to Kay [29] allows the deterministic propagation of such anyon pairs along predefined

adversarial paths on the lattice. Syndrome measurement allows restricting to a probabilistic

picture where error strings corresponding to anyon propagation paths are present with a

predefined probability. It is finally the recovery procedure which may possibly complete these

errors into logical operations by selecting an incorrect anyon matching.

A family of weak local perturbations capable of probabilistically introducing distant anyon

pairs will first be presented. As before, the initial state |ψ(0)〉 is assumed to be a ground state

of the unperturbed Hamiltonian H, in this case an N ×N toric code as in Eq. (B.1). After

a time tf proportional to the maximum desired anyon propagation distance D, unperturbed

syndrome read-out on |ψ(tf )〉 will probabilistically detect distant (as well as local) anyon

pairs. Our construction will then be applied to produce a simple set of O(N) distance anyons

such that no syndrome based error correction may be reliably applied. Later, shorter yet

more elaborate anyon propagation paths will require explicit analysis of the error correcting

probability of different anyon pairing protocols. In this context, we find weak Hamiltonian

perturbations are capable of introducing logical errors with a large probability (≈ 1
2 ) in a

time tf logarithmic in the system size N .

4.1 Probabilistic introduction of distant anyons

Kay [29] showed that local errors (anyons) in the 2D toric code, and other local stabilizer

Hamiltonians lacking string tension, can be propagated into logical errors corresponding to

almost complete loop operators by a local Hamiltonian perturbation P . While in his work

the initial presence of the anyons was assumed, here, anyons will be introduced with a certain

amplitude by a generalization of the Hamiltonian perturbation P .

Consider introducing perturbations of the form V = U(H + P )U† −H, where U =
⊗

i Ui
decomposes into weak local unitary rotations, and P is, as in [29], a weak local perturbation

capable of deterministically propagating anyons in a given time tf . The perturbed Hamilto-

nian

H̃ = U(H + P )U† (29)

induces a time evolution which can be written as

|ψ(t)〉 = e−itH̃ |ψ(0)〉 = Ue−it(H+P )U†|ψ(0)〉. (30)

In this context, U and P are chosen such that:

1. Neighboring vertex anyon pairs are created by U†, with a certain small amplitude O(ε),

by applying weak Z rotations on connecting edges.
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2. Each of the anyons is deterministically propagated by P along a predefined path. Thus,

local excitation pairs become strings of errors defining new positions for the anyon pair.

3. Finally, U is unable to remove both the anyons created by U† after at least one of them

has been propagated. Moreover, if none were present, U creates an anyon pair with

amplitude O(ε).

Propagation paths for each anyon are not allowed to overlap but are otherwise completely

independent. The propagation of the i-th anyon along its path ℓ(i) may be attributed to a

specific component Pi of P =
∑

i Pi. In turn, each component Pi admits a decomposition

Pi =

|ℓ(i)|
∑

j=1

J
(i)
j T

ℓ
(i)
j−1,ℓ

(i)
j

, (31)

in terms of local interaction terms Tp,q, where ℓ
(i)
j are the anyon locations along the path

ℓ. As in [29], the scalar coefficients J
(i)
j are chosen to implement a perfect state transfer

[34, 35, 36] and each term Tp,q implement a swap among vertex anyons on p and q. If p and

q are neighboring vertices, Tp,q is defined as

Tp,q = Zs
(11 −ApAq)

2
, (32)

where Ap and Aq are the vertex stabilizer operators corresponding to p and q respectively

(appendix B) and Zs is a Z rotation on physical site s corresponding to the edge connecting

p and q. Furthermore, by allowing p and q to be next nearest neighbors, it is possible to have

crossing anyon paths ℓ(j), ℓ(i) without having them overlap in the anyon locations used. If

vertices p and q are not neighbors, the same effect is obtained by substituting Zs in (32) for

a tensor product of Z operators along an edge path pq from p to q,

Tp,q =
⊗

s∈ pq

Zs
(11 −ApAq)

2
. (33)

The distance D is the maximum number of steps among the different anyon propagation

paths D = maxi
∣

∣ℓ(i)
∣

∣. It will be taken as D = N/2 − 1 in section (4.2) and as D = O(logN)

in section (4.4). Fixing the strength of perturbation terms in P as J
(i)
j = ε

D

√

j(
∣

∣ℓ(i)
∣

∣+ 1 − j)

allows the perturbation P to remain ε-bounded while allowing simultaneous perfect anyon

transfer in a time tf = Dπ
2ε . Similarly to previous sections, by taking the rotations Uj = eiεZj

as ε weak, the final perturbation required V will also be composed ofO(ε) strength interactions

involving at most 8 bodies each.

The quantum state before measurement at time tf is given in Eq. (30). Expanding U†

from Uj = eiεZj , we get

|ψ(tf )〉 = Ue−i(P+H)tf
⊗

j

(cos ε11j − i sin εZj)|ψ(0)〉, (34)

where the index j ranges over sites of non trivial action for U . The state |ψ(0)〉 is a ground

space eigenstate of H, and assuming the locations j on which U acts are non neighboring,
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each Zj will increase the energy respect to H by γ. Furthermore since the energy of a state

respects to H depends only on anyon number and P is anyon number preserving, we have

[H,P ] = 0, allowing us to write

|ψ(tf )〉 = Ue−iP tf
⊗

j

(cos ε11j − ie−iγtf sin εZj)|ψ(0)〉. (35)

Since all the propagations in P commute and correspond to exact transfer of each anyon

created by U† precisely at time tf , we may write

|ψ(tf )〉 = U
∏

j

(cos ε11 − ie−iγtf sin ε
⊗

i∈ℓℓ(j)

Zi)|ψ(0)〉 (36)

where ℓℓ(j) is the path given by the union of {j} and the two propagation paths ℓ(j+) and

ℓ(j−) of P corresponding to the each of the two anyons created by Zj . By expanding U , we

obtain

|ψ(tf )〉 =
∏

j



cos2 ε11 − ie−iγtf sin ε cos ε
⊗

i∈ℓℓ(j)

Zi

+i cos ε sin εZj + sin2 εe−iγtfZj
⊗

i∈ℓℓ(j)

Zi



 |ψ(0)〉.

(37)

The state |ψ(tf )〉 described by Eq. (37) corresponds to a coherent quantum superposition

of applying different error paths. For such unitary evolutions, initially orthogonal states will

remain orthogonal and thus fully distinguishable. However, there are at least two mechanisms

which lead us to consider a mixed density matrix as the final state. The first, is due to

the fact that the actual perturbation applied is not known, and can for instance be taken

probabilistically among the family of perturbations described. The second, is unperturbed

syndrome measurement M, which is the first step of a quantum error correction procedure

to recover the initial state.

Syndrome measurement M will probabilistically project the state |ψ(tf )〉 into a subspace

consistent with a fixed anyon distribution. This is the first step of the recovery operation

R = C ◦ M, the sequential application of unperturbed syndrome measurement M followed

by a syndrome dependent correction operation C. Analysis of different correction strategies

C need only focus on the resulting mixed state M(|ψ(tf )〉〈ψ(tf )|). Since for any anyon

configuration there is at most one combination of operators yielding it in Eq. (37), the state

|ψ(tf )〉〈ψ(tf )| is reduced to a probabilistic application of these operators on |ψ(0)〉〈ψ(0)|.

Again, taking ER,p(ρ) = pRρR+ (1 − p)ρ, one may verify that

M(|ψ(tf )〉〈ψ(tf )|) = ©jEZj ,pE
⊗

i∈ℓℓ(j) Zi,p(|ψ(tf )〉〈ψ(tf )|) (38)

with p = sin2 ε. Note that the order of application is arbitrary, since the ER,p superoperators

commute. Thus, one may consider independent probabilities p for observing each anyon pair

created by U† and propagated by P (or unpropagated anyon pairs created by U). Hence, when

instantiating the Hamiltonian perturbation described on a certain set of anyon propagation

paths, one need only deal with the independent probabilities of measuring propagated and

unpropagated anyon pairs.
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4.2 Simple error loops in O(N) time

The aim of this subsection is to provide a simple ensemble of perturbations, employing the

above construction in such a way that resulting anyon configurations are provably ambiguous,

by which we mean that a single anyon configuration could have, with equal likelihood, origi-

nated from logically inequivalent errors. This means that for such configurations, the anyon

pairing recovery procedure C can do no better than guessing, and will complete a logical error

with a 50% probability for any possible choice of C.

Fig. 1. Two hollow dots indicate positions where a pair of vertex anyons may be created by U†

and/or by U with probability p. Anyons created by U† are propagated by P along the darkening
path. A table is provided indicating the probability of possible error configurations and their
corresponding syndrome observables (1 (0) representing anyon presence (absence)).

Let us first consider weakly perturbing only in the vicinity of a single row. The joint effect

of many such perturbations, will then be shown to produce further degradation of stored

information. So, U† introduces a single Z error (neighboring anyon pair) on a physical start

site s of the row with probability p. The paths for the perturbation P are chosen such that both

of the produced anyons propagate along the row in opposite directions up to final neighboring

locations which are diametrically opposite s (see figure 1). For ε weak perturbations, this

requires no more than O(N/ε) time. Finally, with probability p, U may introduce an error

at site s or counter an element of the propagated error chain. As can be seen from the

figure, if the anyon introduction site s is chosen uniformly at random, there are observable

anyon configurations which occur with probability 2p(1−p), which are completely ambiguous

(e.g. cases B and C are indistinguishable under exchange of initial site s). However, if such a

syndrome is measured, the correction protocol has a 50% chance of completing a horizontal

Z loop on the lattice, which is equivalent to applying a completely dephasing channel on one

of the encoded qubits with probability 2p− 2p2.

By applying such a perturbation family to i ≤ N rows of the lattice, the probability of

not having such a logically dephasing action take place becomes (1 − 2p + 2p2)i, which may

be made arbitrarily small for large N (i.e. an odd number of horizontal Z loops is completed

with a probability exponentially close to 1/2). Completely analogous string like perturbations

exist for any of four logical operators defining the 2-qubit algebra associated to the ground

space. Again, by simultaneously considering such perturbations on a sufficiently large set of

parallel lines these operators too will be completed with a probability exponentially close to

1/2. Furthermore, by allowing anyons to hop directly to next nearest neighbors (i.e. Eq. (33)),

it becomes possible to simultaneously introduce perpendicular yet commuting loop operations

as a result of anyon removal.

Simultaneously introducing the four logical operators independently with probability ex-

ponentially close to 1
2 , would yield a state exponentially close to a maximal mixture over the
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code space. Our proof requires terms from different perturbation paths to commute, indi-

cating a possible obstacle to achieving this. In practice however, given that different anyons

follow roughly ballistic trajectories with a relatively small spread, this does not pose an issue.

In appendix C, we show how it is possible to select the set of anyon trajectories in the per-

turbation such that the order of anyon crossing is well defined (exponentially well in N). In

turn, this implies an exponentially small deviation from the result of performing such anyon

propagations in order, resulting in a state exponentially close to a maximal mixture on the

four dimensional code-space.

Finally, it is worth mentioning that exactly the same perturbation construction may be

applied to the protecting Hamiltonian proposed by Chesi et al. [27] which presents long

range repulsive interactions among anyons. However, it must be made clear that the resulting

perturbation will, like the unperturbed Hamiltonian, also involve long range interactions. In

the case that has been studied numerically, which introduces a constant energy penalty for

every arbitrarily distant pair of anyons, our perturbation construction provides exactly the

same result for the information lifetime as for the original TC Hamiltonian.

4.3 Localization in 2D stabilizer codes

In the perturbations constructed to introduce logical errors in the toric code, there is a strong

use of the energy degeneracy of subspaces with the same number of anyons. The strengths

of the different stabilizer terms in the 2D toric code manifest as strengths of local magnetic

fields in the effective Hamiltonian of the propagation [29]. However, having exactly the same

strength for all local Hamiltonian terms is not an essential feature of the 2D toric code or of

stabilizer Hamiltonians in general.

In the unperturbed picture of stabilizer Hamiltonians, excitations are completely localized.

However, when different excitations live in a degenerate energy space, perturbations may be

very effective at propagating them. In the spirit of Anderson localization, different stabilizer

term strengths may be randomly chosen from some range γupper > γlower > 0, with the hope

of protecting against anyon propagation terms.

However, for each such random instance, a specific Hamiltonian perturbation may “smooth”

this distribution to take on, at random, only a finite number of discrete energy values, sepa-

rated by ε, the strength of the perturbation. The number of such possible values is given by

⌈
γupper−γlower

ε ⌉, which is therefore also the average spacing between sites of the same energy.

Hence, by selecting propagation terms of a similar size, the hopping scheme can route around

the uneven energy landscape and introduce a logical error. Thus, the argument is unable to

guarantee protection against any constant sized perturbation. Nevertheless, it may be that

the perturbation terms necessary to break the code should involve a larger number of bodies,

which would definitely be an improvement.

In the case of the 2D toric code [29], and all other 2D local stabilizer Hamiltonians [37, 38],

there are always logical operations with string like support. This means that, albeit with

some possible energetic smoothening, the scheme presented in section 4.2 can be adapted to

introduce logical errors in arbitrary 2D stabilizer Hamiltonians, meaning that the asymptotic

lifetime which 2D N × N stabilizer codes may guarantee against weak local perturbations

cannot be more than O(N).
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4S+4

Fig. 2. Anyon pairs corresponding to each thick red edge may be created by U†. After a time

tf , the right anyon from each pair introduced will be propagated a distance 4S + 2 to the right
introducing Z errors along the darkening paths. Finally, U acting on the same red segment may
move an unpropagated anyon one position to the right or create a neighboring anyon pair on it.

The number of big steps (or equivalently of crossings) during the upward propagation is given by
S, which in the case of the figure is 2.

4.4 Logical errors in O(log(N)) time

In the previous section, we gave a rigorous upper bound of O(N) on the information lifetime

of the toric code. This bound coincides with the one provided by Kay in [29], which required

initial anyons in the system to be introduced by an unspecified environment. In this subsec-

tion, we provide an exponentially tighter bound by concentrating on specific choices for error

correction protocols. We argue that it is possible for a Hamiltonian perturbation to introduce

ambiguous distributions of anyon configurations in a time logarithmic in N , i.e. after a time

tf ∼ O(logN), error correction succeeds with probability not much higher than 1/2. Figure

2 schematically presents one such perturbation, indicating where anyon pairs should be intro-

duced, and paths Pk along which they should propagate. The fact that the trajectories have

only simple crossings allows them to be implemented by weak local Hamiltonian perturbation

terms involving at most 8 bodies, as obtained from Eq. (33), with p, q being next nearest

neighbors. Furthermore, the trajectory length is no more than twice the distance at which

the anyon pair is finally separated.

The length of anyon propagation trajectories is 8S + 4, where

S =

⌈

lnN

2p

⌉

, (39)

and each has 2S simple crossings with other trajectories. The time required to perform such

a propagation by fixed strength local perturbations is proportional to S (i.e. logarithmic in

N).

A relevant property of such a perturbation is that anyons observed when performing

unperturbed error correction after an evolution time tf are always collinear. The anyon type

and line direction may be chosen to coincide with any of the logical operations, translating

to the fact that any logical error may be introduced. This also has the desirable effect of

simplifying the analysis of anyon matching criteria. There are only two logically inequivalent

anyon matchings on the line, which are the two perfect matchings in which each anyon is paired

with one of its two nearest neighbors (i.e. right or left). The point is that one matching will be

logically equivalent to the actual trajectories performed by the anyons, canceling any errors

introduced, whereas the other will complete the actual paths into a logical error. A simple

criterion to determine which case we are dealing with is to count how many times the actual
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trajectories, together with the anyon matching, cross a vertical line or any homologically

equivalent curve. An odd number of crossings means that a logical error has been completed,

whereas an even number of crossings means that the proposed pairing has been successful at

error correcting.

We study the success probability of two apparently reasonable matching criteria. The first

minimizes the furthest distance among paired anyons. The second, for which a polynomial

algorithm is known [39], consists of minimizing the sum of distances among paired anyons.

Proofs and numerics will be provided for the large N regime given by N ≫ 4S + 2 which

convey a high logical error rate.

Anyon matching that minimizes L∞

Let us first consider minimizing the furthest distance among paired anyons. This is the L∞

norm of the vector with components given by the individual distances among anyons paired

by the matching. We will prove that the probability of introducing a particular logical error

is close to 1/2 by considering two disjoint scenarios. The first is the very unlikely scenario in

which, on syndrome measurement, two consecutive anyons are measured at a distance ≥ D

(by consecutive, we mean no additional anyons were measured in the interval between them).

The second is composed of anyon distributions consistent with the measurement of a fixed

pair of consecutive anyons at a distance ≤ D. For such distributions, the number of activated

anyon paths passing completely over the fixed pair is shown to be odd with probability very

close to 1/2.

Let us first bound the probability of observing two consecutive anyons at a distance greater

than D in the syndrome measurement for the evolved state. Given a fixed region of length

D, at least ⌊D/4⌋ different potential anyon paths start and end in it. Furthermore, assuming

D < 4S, the probabilities for not measuring anyons in this region are independent and are

1 − p for each end of an anyon path and (1 − p)2 for each start of an anyon path, since both

U and U† could have created anyons in this case. The anyon-free region can begin in any

of N locations of the full loop. Thus, regardless of correlations, the probability of having D

consecutive anyon-free sites is upper bounded by N(1 − p)3⌊D/4⌋.

Assume now that a pair of consecutive anyons is measured at a distance no greater than

D. There are at least ⌊(4S − D)/4⌋ potential anyon paths going over this region, each

with independent probability p of being observed. On syndrome read-out, the number of

such paths that is activated is odd with a probability approaching 1/2 at least as fast as
1
2 (1± (1− 2p)⌊(4S−D)/4⌋). Since the L∞ norm correction completes a logical error if the most

distant consecutive anyon pair is covered by an odd number of activated anyon paths, then by

inserting S = ⌈ ln(N)
2p ⌉ and D = ⌈ 8 ln(N)

5p ⌉, we get a probability lower bound for logical errors

which approaches 1/2 as 1/2(1 −N−1/5).

Anyon matching that minimizes L1

Let us now consider the anyon pairing criterion that minimizes the total sum of distances

among paired anyons. Since all anyons are found on a loop of length N , this criterion will

always choose a pairing with total distance no greater than N/2. Thus it will successfully

error correct if and only if the total distance of regions of the loop covered an odd number

of times by observed anyons is no greater than N/2. By taking S to be ⌈ lnN
2p ⌉, we expect to
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Fig. 3. The average probability of error for L1 correction after the system evolves for a time tf
under the described Hamiltonian perturbation. Here, anyon pairs arise, and evolve to distances of
⌈20 ln(N)⌉, with a probability of 10%, all collinear on a line of length N . Each point represents
an average over 106 random samples, with error bars representing the magnitude of estimated

statistical errors.

find roughly half of the sites flipped. To see this, note that, on average, each site is covered

approximately Sε times. Moreover, the probability of each site being covered an odd number

of times is 1
2 [1− (1−2p)S ]. For small p and the chosen value of S, the average number of sites

covered an odd number of times is approximated by N
2 − 1

2N . Furthermore, we expect the

actual number of such sites to approximately follow a normal distribution around this value,

which would imply that logical errors are completed with a probability close to 1
2 . However,

since the flipping of different nearby sites are highly correlated events, it is not clear how to

go about proving this. Instead, computer simulations (Fig. 3) provide very strong numerical

evidence.

4.5 Discussion

We have proven that Hamiltonian perturbations can completely destroy the information stored

in the 2D toric code in a time proportional to N . The only assumptions are that the precise

Hamiltonian perturbation is unknown, and that recovery begins by performing unperturbed

syndrome measurements. A simple family of Hamiltonian perturbations with associated prob-

abilities, was used to justify that the introduction of logical errors in O(N) time is fully in-

dependent from the correction protocol used. This approach remains applicable for arbitrary

2D stabilizer codes, even when the stabilizer terms are of uneven strength.

Furthermore, we have argued that logical errors may be introduced by weak local pertur-

bations in a time logarithmic with the system size. In particular, two apparently reasonable

anyon pairing schemes were shown to provide an unreliable recovery mechanism against weak

local perturbations acting for O(logN) time.

A fully general proof, including all possible error correction strategies based on syndrome

measurement is currently lacking for the O(logN) error introduction. The generality of the

O(N) construction is obtained by considering a family of different perturbations which could
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produce the same syndrome outcomes through topologically inequivalent error paths. It may

be fruitful to apply such an approach for a general proof of logical errors produced in O(logN)

time.

5 Limitations of the 2D Ising model

In present day classical computers, magnetic domains are widely used to provide passive

safekeeping of classical information. The Ising model is usually used to elucidate the origin of

such long lived magnetized states as a collective effect arising from microscopic local 2-body

interactions

HIsing = −J
∑

〈i,j〉

ZiZj . (40)

In two and higher spatial dimensions, the nearest neighbor Ising model presents a finite

temperature phase transition between a disordered phase and an ordered magnetized phase.

However, it has long been known that such a system looses its asymptotic bistability under

the bias produced by even the weakest of magnetic fields [40, 41, 42]

H̃Ising = −J
∑

〈i,j〉

ZiZj + ε
∑

j

Zj . (41)

Such studies consider the dynamics of minority droplets in a 2D Ising model as given by

phenomenological equations or the Metropolis algorithm. For a Metropolis algorithm in which

such a systematic magnetic field ε is included, there is only one stable phase parallel to

the field. The anti-parallel phase becomes metastable, with a lifetime exponential in J/ε.

Dependence of the information lifetime on lattice size N appears only for the small N ≤ 4J/ε

and will thus not appear if one first takes the limit for large N .

In this section we consider storing one bit of classical information subject to a quantum

evolution of a perturbed 2D Ising Hamiltonian. The observable on which the classical bit is

encoded is assumed to be the overall direction for magnetization Z̄ = majjZj . The pertur-

bations may conceptually be split into two parts, Z parallel magnetic fields which introduce

additional degeneracies to the Hamiltonian, and transverse magnetic fields or many body

terms which couple the new ground states, introducing a hopping between them. The pertur-

bation terms considered will not show support or intensity growing with N , and they will be

capable of introducing logical errors to the unperturbed logical observable Z̄ in a time also

independent of N .

5.1 Hamiltonian perturbation proposal

Consider dividing the N × N 2D periodic lattice with a chessboard pattern of squares of

M×M spins whereM > 4J/εmax and J is, again, the nearest neighbor Ising coupling constant

and εmax is the greatest local perturbation strength one expects the Hamiltonian to protect

information against. For simplicity, we assume N = 2nM , where n is an integer. Consider

alternately introducing ±εZj magnetic fields in the lattice site j belonging to white/black

squares of the chessboard pattern respectively. The value ε is chosen homogeneously for

each square such that the energy difference, 2εM2, from fully field parallel and anti-parallel

configurations of each square exactly matches the maximum energy difference for border Ising

terms 8MJ . For N ≫ J/ε such a perturbation is always possible.
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The point is that now, the ground space of the system acquires a much higher degeneracy,

i.e. between 22n2+1 − 1 and 24n2

. Each black square could be fully magnetized parallel to

its preferred field direction or parallel to the direction of its four neighboring squares if it is

opposite. By taking one spin variable for each square, the ground states may be identified

with those of a 2D n × n anti-ferromagnetic Ising model with magnetic field. Three impor-

tant ground states are the two fully magnetized lattice configurations and the checkerboard

configuration in which all spins are fully aligned to their local magnetic field. The gap of

these ground states with respect to low lying exited states is 2ε, which is the energy penalty

of flipping a corner lattice site of a square that is fully oriented in the direction of the field

but anti-parallel to the two neighboring squares adjacent to the stated corner.

A flipping term for each square of the chessboard should be of the form α
⊗

j Xj , where

the j is taken over all the M2 sites in the square. Such terms can be introduced either on

all black squares or all white squares. This would respectively couple one of the two fully

magnetized configurations with the checkerboard configuration, achieving a full swap of state

in a time tflip = π
α . This evolution is exact when such M2-body terms of norm α are allowed,

which implies that a proof of Hamiltonian stability will not only require assuming sufficiently

weak perturbation terms but also a specific bound for the number of bodies on which such

terms act.

Let us now focus on the magnitude of α. This is the coefficient for a many body term, in

which the size of the support scales like M2 = (4J/ε)2, independent of N . One may consider

obtaining such a term from theM2-th order degenerate perturbation theory expansion of fields

of the form ε2
∑

j Xj . For perturbation theory to be strictly valid, one needs M2ε2 < ε. Even

then, this small magnitude must be taken to the M2-th power to obtain the first non vanishing

expansion term. The time required to flip all spins in a plaquette is then proportional to:

α ≈ ε2

(ε2
ε

)M2

≈ εM−2(M2−1) = ε
( ε

4J

)
32J2

ε2 +2

. (42)

This expression has no dependence on N and the same perturbation can be introduced in all

squares of a given color to yield a fixed flip time. Furthermore, we note that the state of those

chessboard squares which are not perturbed is fixed and may be traced out exactly. Hence,

the second set of perturbations applied are fully independent and degenerate perturbation

theory may be rigorously applied.

5.2 Discussion

Although the flip time shows no dependence on N , it grows faster than exponentially in

terms of 4J/ε. It may well be that for magnetic domains, describable by such a 2D Ising

Hamiltonian as Eq. (40), the ratio 4J/ε is sufficiently large to provide a lifetime longer than

would be experimentally verifiable. More importatntly, we are dealing with an extremely

simplified model, with the particularity of neglecting any long range interactions of actual

physical systems and more importantly, dissipative terms in the form of decoherence which

would dissallow the coherent evolution and thus help in preserving the classical information.

The fact that the perturbation is unknown means that if such a checkerboard state is

observed on read-out, information is not recoverable. Such schemes may clearly be generalized

to higher dimensions and to deformations of the checkerboard pattern. The existence of such

perturbations elucidates important limitations for statements one may formally prove about
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the classical memory reliability of the Ising model, and therefore what conclusions one might

draw about the presence of a macroscopic energy barrier (string tension) which the 2D Ising

model certainly possesses. However, it is not clear that these arguments can be applied, for

instance, to the 4D toric code since it is a feature of classical memories, but not quantum

ones, that local fields can split degeneracies.

6 Aggressive noise models

In previous sections, we explored the effects of Hamiltonian perturbations on quantum mem-

ories, and particularly on the 2D toric code. We also considered examples of local cold

environments perturbatively coupled to a system, as illustrated by Secs. 2.2 and 3. The only

energy available in these scenarios was due to local perturbations on the system plus environ-

ment. Intuitively, a small but constant energy density proportional to ε was allowed. While

this energy is potentially O(Nd) for a d spatial dimension lattice of Nd qubits, it is difficult to

concentrate it in specific regions in order to generate logical errors. In comparison, stabilizer

codes only require O(Nd−1) energy to implement a logical gate through local rotations.

More aggressive noise models may locally introduce large amounts of energy into the

system while keeping perturbation magnitudes weak. Such an example is provided by weak yet

time dependent Hamiltonian perturbations. These are relevant when one considers effective

protecting Hamiltonians in the interaction picture [43]. Another possibility is to consider the

weak coupling of the system to an environment which starts in a high energy state. Noise

constructions for these models shall be presented in this section.

In calling such noise models aggressive, we convey the fact that we do not expect “reason-

able” Hamiltonian protection schemes to guarantee a long lifetime against such models. Thus,

their study may help identify required restrictions on the noise model in order to allow for

provably robust Hamiltonian protected memory models. Furthermore, it may provide insight

regarding potentially fruitful proof techniques.

6.1 Time-varying Perturbations

When considering Hamiltonian perturbations, we assumed that we were unable to determine

the new ground space due to the perturbation, and thus encoded in the original ground state

space. One might consider an intermediate setting where encoding can be achieved in the

perturbed code-space, perhaps due to an adiabatic evolution such as proposed by [16], or by

a precise characterization and compensation of the perturbations present at the start of the

storage time. However, in real experiments, stray fields responsible for perturbations may

fluctuate in time. Again, if one can track adiabatic changes in the perturbations, the proof of

Hastings and Wen [15] continues to hold because Lieb-Robinson bounds apply to time-varying

local Hamiltonians, and we can therefore adapt the final error correction step as well. Instead,

we proceed assuming it is impossible to precisely learn this time variation.

6.1.1 Adiabatically varying perturbations

One extreme case to consider is that the perturbation varies adiabatically, so that the system

remains in its ground state space. If we do not apply error correction, then we are concerned

with how long it takes before the initial and final ground states have a small overlap. We

shall assume that the original Hamiltonian H of N qubits has an energy gap γ, and we will



604 Limitations of passive protection of quantum information

consider the time-varying perturbation

V = U(t)HU†(t) −H

where, as before,

U(t) =

N
∏

j=1

e−itεXj/T

and T is the total time of the evolution, i.e. small local rotations are gradually introduced.

At any time 0 ≤ t ≤ T , the effective Hamiltonian U(t)HU†(t) has the same energy gap as

H, which means that the adiabatic condition is satisfied for T ∼ 1/poly(γ). From previous

considerations, Eqn. (A.9), we know that the overlap of the initial state |ψ(0)〉 and the evolved

state, the ground state of the adiabatically perturbed Hamiltonian, have an average overlap

of no more than tr (P0) (1 − 3
4 sin2(tε/T ))N . For large N and small ε, this means that the

final overlap is of the order tr (P0) exp(− 3ε2N
4 ) if a phase of error correction is not involved.

When error correction is introduced to this scenario, this maps into the situation where

our quantum memory is initially encoded in the perturbed subspace, but decoding is using the

original, unperturbed, error correction strategy. In the specific instance of the perturbation

U(T ), we find that X rotations are applied probabilistically on each site, and hence our QECC

must have a superior error threshold.

Hastings and Wen [15] reveal a similar interpretation holds for all possible perturbations

since all local terms are converted into quasi-local rotations.

6.1.2 Rapidly oscillating perturbations

Another extreme scenario is when perturbations are allowed to oscillate with arbitrary fre-

quencies. A simple construction shows that for stabilizer Hamiltonians, this allows the in-

troduction of arbitrary errors in constant time. We expect that optimal control theory may

provide the tools to generalize such results to arbitrary Hamiltonians.

Consider a stabilizer HamiltonianH0 and a logical error to implement L = PMPM−1 . . . P2P1,

which is decomposed into Pauli operators Pi on different sites. We then consider the time

dependent Hamiltonian perturbation

V (t) = ε(t)
∑

i

e−iH0tPie
iH0t. (43)

This perturbation is weak if ε(t) is sufficiently small. Furthermore, given thatH0 is a stabilizer

Hamiltonian, V (t) may be written as a sum of local terms (at least as local as the stabilizer

operators). Finally, the dependence of ε(t) on time, is to allow for ε(0) = 0 which makes the

initial encoding equivalent for both perturbed and unperturbed Hamiltonians.

The point of such a perturbation, is that it is possible to explicitly calculate the evolution

of the system state in the interaction picture.

|ψI(t)〉 = Πie
−iPi

∫

t

0
ε(t′)dt′ |ψI(0)〉 (44)

This means that after a constant time tf such that π
2 =

∫ tf
0
ε(t′)dt′, the target operation L

is perfectly implemented in the interaction picture. If |ψ(0)〉 is an eigenstate, then L is also

implemented in the Schrödinger picture, modulo a global phase.
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Taking L to be a logical operator of the stabilizer code used, this means that time depen-

dent perturbations of sufficiently high frequency can destroy stored information in constant

time. Here, sufficiently high frequency refers to having perturbation terms which oscillate

with frequencies at least as high as those corresponding to localized excitations.

6.2 Stabilizer Hamiltonians and energetic environment

In what follows, we consider a model in which an environment starts out in an arbitrarily

energetic state. However, the couplings between system and environment are required to

remain small and local.

For simplicity, we assume that the system is defined by a stabilizer Hamiltonian HS and

that it starts out in an eigenstate |ψ0〉 of all stabilizer operators. We will consider a sequence

of M Pauli operators on different sites L = PMPM−1 . . . P2P1 compounding to a logical

operation. In the case of translationally invariant stabilizer codes, explicit constructions

for these operators are given in [38]. Finally, we may assume a code state |ψ0〉, such that

〈ψ0|L|ψ0〉 = 0.

Motivated by the realization that, in order to introduce logical errors, we need to transfer

some energy from the environment to the system, we choose a specific environment Hamilto-

nian HE = −H∗
S (at this point, the complex conjugate is unnecessary, but will become useful

later). This means that all steps up in energy in the system correspond to an identical step

down in energy in the environment. We start the environment state in |ψ∗
0〉.

In this scenario, the coupling

HSE = ε
M
∑

i=1

PS,i ⊗ P ∗
E,i (45)

is enough to produce the logical error L in constant time π
2ε . To see this, consider the two

states PS,i|ψ0〉P
∗
E,i|ψ

∗
0〉 and PS,iPS,i|ψ0〉P

∗
E,iP

∗
E,i|ψ

∗
0〉. Here, the subindex i is an arbitrary

binary vector indicating which values of j a product of PS,j (respectively P ∗
E,j) should be

taken over. First of all, since we have assumed HS is a stabilizer, and the PS,i are Pauli

operators, the aforementioned states are zero eigenstates of HS⊗11E+11S⊗HE . Furthermore,

the effective Hamiltonian for the perturbation term εPS,i ⊗ P ∗
E,i acting on the pair of states

PS,i|ψ0〉P
∗
E,i|ψ

∗
0〉 and PS,iPS,i|ψ0〉P

∗
E,iP

∗
E,i|ψ

∗
0〉 is just a matrix

ε

(

0 1
1 0

)

,

independent of i. This means that we can consider the action of the different PS,i ⊗ P ∗
E,i

terms independently:

e−iHSEt|ψ0〉 =

(

M
⊗

i=1

e−iεPS,i⊗P
∗
E,it

)

|ψ0〉.

Due to the effective Hamiltonian, PS,i|ψ0〉P
∗
E,i|ψ

∗
0〉 is mapped to PS,iPS,i|ψ0〉P

∗
E,iP

∗
E,i|ψ

∗
0〉 in

a time π/(2ε). Thus, the effect of the entire perturbation is to rotate, in a time π/(2ε) from

|ψ0〉 to L|ψ0〉.

Of course, this approach requires the environment state to have a very high initial energy,

namely to start in one of its highest energy states. A refinement of this argument allows us
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to only change the sign of stabilizers in HE which share support with L. For a local stabilizer

code in d spatial dimensions consisting of Nd qubits, it was shown [38, 37] that there are

logical operators L with support on k ∝ Nd−1 sites. The initial state of the environment

|ψE〉 = |ψ∗
0〉 is still an eigenvector of these stabilizers, with the same eigenvalues. Thus,

coupling to an environment with an energy proportional to Nd−1, may also introduce logical

errors in the same time. This means that the energy required from the environment per

system qubit tends to 0 as 1
N (compare to perturbations, which introduce an energy ε per

site). The catch however, is that the distribution of the energy in the initial environment is

highly specific and is in general very different from distributions that may be provided by low

temperature thermal states.

We conclude that no stabilizer Hamiltonian will be capable of providing a guarantee for the

logical integrity of stored information under the presence of an adversarial, weakly coupled,

local environment. Further statistical assumptions such as energy distribution associated to a

low temperature environment state need to be included in addition to the weak local coupling

assumptions.

6.3 Non-stabilizer Hamiltonians

Stabilizer Hamiltonians are not the only possible candidates for providing information pro-

tection, although they are particularly attractive because local errors remain as local errors

(not propagating or multiplying in the absence of perturbations). Let us now consider the

more general case of distance preserving Hamiltonians i.e. ones which might not leave local

errors perfectly localized, but do not increase the distance of the error as defined by an error

correcting coded. Using the same construction as in the previous section, we will show that

weak coupling to an environment can also introduce the relevant logical error into a distance

preserving Hamiltonian (i.e. a logical operation converting between the most distant code

states) for classical memories, by which we mean that one set of local errors becomes irrel-

evant, say Z errors, and the presence of a logical error on the classical bit depends only on

the local X errors present. The distance preserving assumption means that the number of X

errors is preserved, [HS ,
∑

i Zi] = 0. The maximum distance between any 2 states is for the

eigenstates
⊗

i |0〉i and
⊗

i |1〉i, suggesting we should use these states for encoding.

Similarly to the previous subsection, we introduce an environment, and a perturbative

coupling between system and environment,

H(ε) = HS ⊗ 11E + 11S ⊗HE + ε
∑

i

Xi,S ⊗Xi,E . (46)

The system Hamiltonian is weakly coupled to a “mirror” system HE = −H∗
S . This pertur-

bative coupling is responsible for the evolution of a mirrored state |0〉⊗N |0〉⊗N , eigenstate of

the unperturbed Hamiltonian H(0).

To analyze the evolution, let us consider the action of the operators Xi in terms of the

eigenstates of HS . Due to the commutation relation, there must be
(

N
m

)

eigenstates {|ψm,j〉}

of HS which are simultaneous eigenvectors of
∑

i Zi with eigenvalue 2m − N . We can thus

dAs an aside, note that the 3D XZ-compass code [1] is an example of a code where the errors do not remain in
fixed positions, but preserve the values of the observables (since the observables commute with the Hamilto-
nian). This suggests that applying explicit error correction is already likely to become much more problematic
for these codes.
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express the eigenvectors |ψm,j〉 of HS in terms of the canonical basis as

|ψm,j〉 =
∑

i:w(i)=m

α(m)i,jXi|0〉
⊗N =

∑

i:w(i)=m

α(m)i,j |i〉, (47)

where i are binary vectors with m non zero components and |i〉 are the respective states from

the canonical basis. The matrix α(m) is unitary as it relates two orthonormal bases of the

same subspace. Define

|m〉 =
1

√

(

N
m

)

∑

i:w(i)=m

|i〉|i〉

=
1

√

(

N
m

)

∑

j,k,(i):w(i)=m

α(m)∗i,jα(m)i,k|ψm,j〉|ψ
∗
m,k〉

=
1

√

(

N
m

)

∑

j

|ψm,j〉|ψ
∗
m,j〉. (48)

From this, one obtains that

(HS ⊗ 11E − 11S ⊗H∗
S) |m〉 = 0, (49)

implying that any non trivial evolution of |m〉 arises exclusively from the perturbative coupling

and is given by

H(ε)|m〉 = εJm|m− 1〉 + εJm+1|m+ 1〉, (50)

with Jm =
√

m(N + 1 −m). These are precisely the coefficients performing perfect state

transfer between |0〉 = |0〉⊗2N and |N〉 = |1〉⊗2N in a constant time t = π
2ε [34, 36].

These results exclude the possibility of proving robustness against weak adversarial cou-

pling to an arbitrarily initialized environment, even of many classical memories using the

repetition code (such as Ising models). We learn that if the environment can provide enough

energy, then even weak local couplings may be sufficient to produce logical operations. This

also motivates the desire to encode in the ground state space of the Hamiltonian since, were

we to encode in a higher energy subspace, the environment needs less energy to cause de-

structive effects. Alternatively, the mechanism presented here could present a useful way to

implement gates on a memory.

7 Further applications

Constructed perturbations and results presented in this article have focused on elucidating

limitations of passive quantum memories. However, our results may be recast in the following

other scenarios.

Adiabatic Quantum Computation- The standard approach to adiabatic quantum

computation consists of implementing an adiabatic evolution

H(t) = f(t)Hi + (1 − f(t))Hf , (51)

between Hamiltonians Hi and Hf , where f(0) = 1 and f(T ) = 0. While the ground state of

the initial Hamiltonian Hi is expected to be readily prepared, the ground state of the final
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Hamiltonian Hf encodes the result of the desired quantum computation. An energy gap no

less than γ between ground state and excited states of H(t) is required for the duration of

the adiabatic evolution.

In this context, it is possible that Hamiltonian perturbations could change the initial or

final ground state, and maybe even close the gap during the Hamiltonian trajectory. For

example, a time dependent perturbation

V (t) = UH(t)U† −H(t), (52)

with U defined as in Eq. (3), can make the perturbed initial and final ground states almost

orthogonal to the unperturbed versions (see Eq. (8)), while keeping the same gap as H(t).

Even assuming the perturbed initial ground state is exactly prepared, only if the final state

belongs to a code space with an error threshold, will it be possible to reliably recover the

desired result, as in 6.1.

Connections between adiabatic quantum computation and passive quantum memories can

be expected to continue into the regime where error correction is incorporated, and future

studies may better elucidate the issues involved in developing a fault-tolerant theory of adia-

batic quantum computation [44].

Topological Quantum Computation- Difficulties in implementing quantum memories

can also be related to some of the difficulties in implementing a topological quantum com-

putation. In particular, in section 4 we illustrated how constant Hamiltonian perturbations

can create and propagate anyons in the 2D toric code. In the context of topological quantum

computation, where gates are implemented through the braiding of anyons, the existence of

perturbations capable of creating and propagating anyon pairs is at least equally disturbing

as in the memory scenario.

Quantum Simulations- One of the most interesting uses of a quantum computer is likely

to be the simulation of other quantum systems. While one could express these simulations

in terms of the circuit model of quantum computation, and from there create a circuit-based

theory of fault-tolerance for quantum simulation, it would be advantageous to understand

how this could be implemented more directly, via the simulation of an encoded Hamiltonian.

A logical first step would be to encode the state of each subsystem to be simulated into

a quantum memory. Thus, establishing when quantum memories exist, or when they fail,

has implications in this case. One of the most commonly applied techniques in Hamilto-

nian simulation is that of the Trotter-Suzuki decomposition, where pulses of non-commuting

Hamiltonians are combined into one effective Hamiltonian to some accuracy δ. This inaccu-

racy may be treated as a time dependent Hamiltonian perturbation. Given the power such

perturbations were shown to have, it is with great care that one should consider the use of

passive quantum memories as elements for such quantum simulators.

8 Conclusions

In this paper, we have studied several constraints on the extent to which a many body Hamil-

tonian can be expected to protect quantum information against weak local coupling to an

environment. First of all, we showed that gapped local Hamiltonians have eigenstates which

are asymptotically unstable under local Hamiltonian perturbations. This result, commonly

referred to as Anderson’s orthogonality catastrophe [31] shows that a gap is not sufficient to
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guarantee protection against errors [45, 28]. We proved that a weakly coupled cold environ-

ment can alter the evolution of any quantum state leading to an exponentially small overlap

between initial and final states in constant time. Taking these results together, we conclude

that quantum memory schemes must encode information into a logical subsystem instead of

restricting to a particular subspace.

When applied to the 3D XZ-compass model [1], a self-correcting quantum memory pro-

posal, we find that the standard QECC protocol is not capable of recovering the encoded

information after a constant time. This means that the unperturbed order parameter is not

preserved. Our results extend to other systems revealing that the code and error correct-

ing process must possess an error threshold. Similar conclusions may be drawn in scenarios

where information encoding and evolution follow a perturbed Hamiltonian but read-out and

decoding do not.

Further explicit local Hamiltonian perturbation constructions illustrate that while adapt-

ing for known perturbations is theoretically possible, arbitrary unknown perturbations can

destroy the storage properties of codes such as the 2D Toric code in a time O(logN). In

this case, the proposed adversarial Hamiltonian perturbation heavily relies on the absence

of a macroscopic energy barrier (it is possible to transform orthogonal encoded states via a

sequence of local operations while keeping intermediate states in a low energy subspace). By

considering the 2D Ising model, we have argued that, in and of itself, a macroscopic energy

barrier is not sufficient to protect against perturbations. Let us stress once more, that the

perturbations considered are highly atypical, and that furthermore, we expect that genuine

dissipation mechanisms will play a key role in analyzing the robustness of such models.

Finally, we have considered strong noise models such as time varying Hamiltonian per-

turbations and weak coupling to an arbitrarily initialized environment. We showed that

these noise models could apply logical transformations on information protected by stabilizer

Hamiltonians or distance preserving classical memories in constant time. Although we con-

sider such noise models to be too strong to be of practical relevance, we expect these result

to provide insight into how one may prove properties of passive quantum memories and un-

der which assumptions. For instance, since such time-varying Hamiltonian perturbations can

destroy the 4D toric code, then when trying to prove robustness against static perturbations,

Lieb-Robinson bounds are unlikely to be beneficial.

Having proven a variety of limitations for quantum memory models and elucidated some

required conditions, the next step is to incorporate this deeper understanding into new de-

signs for quantum memories. One major route is to establish a set of necessary and sufficient

conditions under which a quantum memory is protected against unknown weak static per-

turbations. Under such a model, we may once again raise the question of whether good

protecting Hamiltonians in two or three spatial dimensions exist. Furthermore, one would

hope to find similar conditions under an extended perturbation model allowing a perturba-

tively coupled local environment. Here, a central problem is to determine which physically

realistic assumption may be made on the environment such that positive results are still at-

tainable (i.e. conditions on the initial state of the environment, such as it being prepared in

its ground state). Finally, one may study the possibility of engineering an out of equilibrium

environment to provide additional protection to quantum information.
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Appendix A State evolution in perturbed gapped Hamiltonians
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Fig. A.1. There is an energy gap γ separating the eigenenergies corresponding to an exponentially

small subspace P0 from the energies of the Hamiltonian eigenstates giving rise to the rest of the
Hilbert space.

Energy gaps are considered as a positive feature for a protecting Hamiltonian, since they

are expected to provide an energetic barrier which an error process is required to overcome.

However, it will be shown that for sufficiently large N , the fidelity of the unperturbed eigen-

states acquires an upper bound close to 1/2 after being evolved under the effect of a perturbed

Hamiltonian for a time inversely proportional to the gap energy γ.

If a system is perturbed, but we do not know the nature of the perturbation, the best

strategy is, arguably, to continue using the unperturbed encoding (i.e. the eigenstates of the

unperturbed Hamiltonian). The survival probability for an unperturbed eigenstate |ψ0〉 of H

after evolution under a perturbed Hamiltonian H̃ for a given time t (Eq. (3)) is, without error

correction

S(t) =
∣

∣

∣
〈ψ0|e

−itH̃ |ψ0〉
∣

∣

∣

2

=
∣

∣〈ψ0|Ue
−itHU†|ψ0〉

∣

∣

2
, (A.1)

i.e. we can express S(t) as the overlap of U†|ψ0〉 with itself under the evolution of the

unperturbed Hamiltonian H. Furthermore, in terms of the eigenstate decomposition

U†|ψ0〉 =
∑

j

αj |ψj〉 where H|ψj〉 = Ej |ψj〉, (A.2)

S(t) may be expanded as

S(t) =
∑

i,j

|αi|
2
|αj |

2
cos[(Ei − Ej)t]. (A.3)

Assume the initial state |ψ0〉 belongs to an energy subspace P0 of H (i.e. 〈ψ0|P0|ψ0〉 = 1),

and that H imposes an energetic gap γ between the subspace P0 and its orthogonal subspace

(see figure A.1). This allows the sum in Eq. (A.3) to be split as

S(t) =
∑

|ψi〉,|ψj〉∈P0

|αi|
2
|αj |

2
cos((Ei −Ej)t)

+
∑

|ψi〉,|ψj〉6∈P0

|αi|
2
|αj |

2
cos((Ei −Ej)t)

+ 2
∑

|ψi〉∈P0,|ψj〉6∈P0

|αi|
2
|αj |

2
cos((Ei − Ej)t)

(A.4)

We then define R, the UP0U
† subspace overlap of |ψ0〉 as

R = 〈ψ0|UP0U
†|ψ0〉 =

∑

|ψi〉∈P0

|αi|
2
. (A.5)
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Taking the time average 〈S(t′)〉t′∈[0,t] = 1
t

∫ t

0
S(t′)dt′, and noting that

|Ei − Ej | ≥ γ ⇒

∣

∣

∣

∣

∫ t

0

cos ((Ei − Ej)t
′) dt′

∣

∣

∣

∣

≤
1

γ
, (A.6)

Poincaré recurrences are averaged out, providing a bound

〈S(t′)〉t′∈[0,t] ≤ R2 + (1 −R)2 +
2

γt
R(1 −R). (A.7)

Although the bound in Eq. (A.7) is minimized for R = 1/2, this does not imply that the

smallest values for 〈S(t′)〉t′∈[0,t] are actually obtained for R = 1/2.

A sufficient condition for the existence of a weak perturbation yielding R = 1
2 may now be

obtained by means of continuity arguments. First, note that R depends continuously on the

parameter ε appearing in the definition of the rotation U , and R = 1 for ε = 0. This means

that if, for some ε0 > 0, we find that R < 1/2, then R must be equal to 1/2 for some smaller

positive value 0 < ε < ε0.

As in the previous subsection, we may take 〈R〉U as an average of the overlap R over

different directions of the rotation U . An expression for 〈R〉U , in terms of the depolarizing

channel is given by

〈R〉U = tr

(

P0∆
⊗N
λ(ε) (|ψi〉〈ψi|)

)

. (A.8)

Including the dimension of the subspace P0, the same bound as in Eq. (8) may be used,

leading to

〈R〉U ≤ tr (P0)

(

1 −
3

4
sin2(ε)

)N

. (A.9)

If the asymptotic growth of tr (P0) is slower than
(

1 − 3
4 sin2(ε)

)−N
, the bound (A.9) will

be exponentially decreasing with N . This means that for sufficiently large N , and for most

directions of rotation, there is some small rotation parameter ε yielding R = 1/2. For the

important case of small ε and a constant dimension tr (P0), large N refers to N ∼ O(ε−2).

For those U leading to R = 1
2 , the time averaged survival probability 〈S(t′)〉t′∈[0,t] for the

corresponding perturbation may be bounded as

〈S(t′)〉t′∈[0,t] ≤
1

2
+

1

2γt
. (A.10)

We thus obtain that the overlap of initial encoded states and uncorrected evolved states will

drop to values not much larger than 1
2 in a time inversely proportional to the gap γ.

Appendix B The toric code

Kitaev introduced the toric code [11] with the intention of achieving reliable storage of

quantum information at the physical level, as in classical stable storage, rather than by peri-

odically performing explicit error correction procedures. He proposed that the Hamiltonian of

the physical system being used to store the quantum information could, by its nature, make

the information stable. His proposal consisted of a 2D system with non trivial topology (such

as the surface of a torus) with a stabilizer Hamiltonian composed of local terms. Qubits could
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Fig. B.1. Each edge in the grid represents a physical qubit and opposite sides of the grid are
identified by toric periodic boundary conditions. Typical plaquette and vertex operators are

depicted near the center. Two vertical loop operators, X̄1 and Z̄2, which allow breaking the
degeneracy are also presented. One can take these to be the X and Z operators for the first and
second logically encoded qubits respectively. The complementary (anticommuting) operators are
given by analogous horizontal loops.

then be stored in the ground subspace with a degeneracy of 4g, with g being the genus of the

surface on which the physical qubits are located.

In the toric code Hamiltonian, the physical qubits are located on the edges of a planar

grid covering the 2D surface. For concreteness and simplicity, we shall restrict to the case

were the surface is a torus and the grid is an N ×N square lattice (i.e. 2N2 physical qubits).

The Hamiltonian is composed of commuting terms which are products of Pauli operators on

different sites (it is a stabilizer Hamiltonian). For each vertex s of the grid, there is a star

(or vertex) term As =
∏

j∈star(s)Xj which is the product of X operators over all the qubits

of edges reaching s. Analogously, for each face p of the grid, there is a plaquette (or face)

term Bp =
∏

j∈boundary(p) Zj which is the product of Z operators over all the qubits of edges

surrounding the face p. Since each vertex and face have either 0 or 2 common edges, the

terms As and Bp always commute. Hence all terms of the toric code Hamiltonian

H = −
∑

s

As −
∑

p

Bp (B.1)

commute, and may be simultaneously diagonalized. Since
∏

sAs = I and
∏

pBp = I, there

are only 2N2 − 2 independent binary quantum numbers asociated to these terms (stabilizer

operators) and each valid configuration determines a subspace of dimension 4. Due to this,

violations of plaquette (vertex) conditions As|ψ〉 = |ψ〉 (Bp|ψ〉 = |ψ〉) always come in respec-

tive pairs. Following usual nomenclature, virtual particles called vertex (plaquette) anyons

are respectively associated to these excitations. The set of stabilizers may be completed with a

pair of logical observables consisting of the product of Z (X) operators along non contractible

loops on the lattice (dual lattice), which may not be expressed as a product of plaquette

(star) terms as illustrated in figure B.1. Together with the set of Hamiltonian stabilizers any

commuting pair of these four logical operators (X̄1, X̄2, Z̄1 and Z̄2) uniquely determine the

state.

A stated prerequisite for using the toric code as a protecting Hamiltonian is that the energy

splitting of the ground space due to Hamiltonian perturbations should be small. This is argued
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through the use of degenerate perturbation theory and the fact that it only gives non-zero

splitting when the order taken is at least the lattice width/height, claiming an exponential

suppression of perturbations in the ground space.

The interaction terms in this Hamiltonian may be used as the syndrome measurements

of an error correcting code with the desirable property that they are all geometrically local.

Such codes provide a way of obtaining a fault tolerance threshold without requiring the use of

concatenated quantum error correction. In this case, increasing the lattice size allows periodic

measurements to suppress the effect of errors up to any desired accuracy [12] provided the

accumulated error probability between measurements is below a certain threshold.

We will briefly review how error syndromes are interpreted and corrected, making the

simplifying assumption that the error syndromes are measured perfectly. These syndromes,

i.e. measurements of the stabilizers, reveal the presence of any anyons on the lattice, but do

not distinguish between their origin, so it is up to us to determine how these anyons should be

paired up in order to annihilate them. For each of the two kinds of anyon, the error correcting

procedure will pair up the anyons and annihilate them by applying a connecting string of

operators on them. If the connections performed and the actual origin of the anyons form

topologically trivial loops (contractible loops), the error correction will have been successful.

If however, the actual error pathways, together with the connections performed by the error

correction procedure complete one, or an odd number of, non-trivial loops, then a logical error

will have been implemented.

Different criteria for pairing anyons may lead to logically different results. This is illus-

trated in figure B.2, where two different criteria are used to pair up six anyons. In particular,

if one of the criteria compensates the actual error path, allowing recovery of the initial state,

the other will complete the error path into an undesired logical operation.

There are two correction protocols which we will consider, as they are expected to perform

adequately when correcting a small proportion of randomly located errors. The first, which

we refer to as l1-EC, consists of minimizing the sum of distances among paired anyons, for

which there is a polynomial time algorithm [39]. The second, l∞-EC minimizes the furthest

distance among paired anyons.

Appendix C Full Depolarization of the Toric Code’s Protected Subspace

In the main body of the paper (Sec. 4.2), we gave a construction for a single logical errorX1,

X2, Z1 or Z2 to be applied with a probability exponentially close to 50%, independent of the

model used for error correction. This is not sufficient to show that we get full depolarization

of the two-qubit subspace because it is not automatically clear that all 4 logical errors can

be introduced simultaneously in the same model; the problem being that crossing paths for

anti-commuting operations do not necessarily have a well-defined phase, and the perfect state

transfer operations can fail. Indeed, if two non commuting anyon propagation paths of equal

length cross at their midpoints, the amplitude corresponding to full propagation on both paths

can be seen to be 0 at times! It is the aim of this section to extend the setting of (Sec. 4.2) to

multiple logical errors while ensuring that the failure probability remain exponentially small

with system size, thereby allowing a fully depolarizing map on the code-space with probability

exponentially close to 1.

The basic idea behind this construction is that, for large systems, the propagation of



616 Limitations of passive protection of quantum information

Fig. B.2. Illustration of a possible configuration of three vertex anyon pairs (small circles). Seg-
ments indicate possible qubits where Z rotations could be introduced in order to remove the

anyons. Solid and dotted segments illustrate the anyon matching arising from l1-EC and l∞-EC
respectively. Since together they complete a non-trivial loop, the matchings are logically inequiv-
alent.

the anyons is essentially ballistic. Hence, we can divide our lattice into sections, and ensure

that the paths for anyons of different types only cross in regions where we can be (almost)

guaranteed of the order in which the anyons pass through. It is then our task to bound the

error probability.

Let us first consider the probability ps(t) of finding a propagated anyon at site s after a

propagation time t which is given in [46] as

ps(t) = f(s;D, sin2 t) = sin2s t cos2(D−s) t

(

D

s

)

, (C.1)

where f is the binomial distribution function and D is the propagation length (i.e. there are

D + 1 possible anyon sites in the path). Here time has been normalized such that perfect

transfer occurs at t = π
2 . Correspondingly, if P is the perfect transfer Hamiltonian for vertex

anyons and Π0 is the projector onto the subspace with a unique anyon at the transfer start

site, then
e−itPΠ0 =

∑

s αs(t)Z
⊗sΠ0

where |αs(t)| =
√

ps(t)
(C.2)

and Z⊗s is the tensor product of s consecutive Z operators along the anyon propagation path.

We are now in condition to compare an the actual evolution imposed by two non com-

muting anyon propagations |ψ(t)〉 and an ordered idealization of it |ψb;a(t)〉

|ψ(t)〉 = Ue−it(Pa+Pb)U†|ψ0〉
|ψb;a(t)〉 = Ue−itPae−itPbU†|ψ0〉.

(C.3)

We will assume that the physical qubit corresponding to the crossing of both paths is between

anyon sites sa − 1 and sa of the anyon path associated to Pa and between anyon sites sb − 1

and sb of the anyon path associated to Pb. Furthermore, we will assume sa ≫ sb, where what

is meant by (≫) will soon be made clear. Under these conditions, we will see that |ψ(t)〉

and |ψb;a(t)〉 are almost equal (at least during the time period corresponding to perfect state

transfer).
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By definition, we have that 〈ψ(0)|ψb;a(0)〉 = 1. Let us now bound how fast this overlap

can actually decay

d 〈ψ(t)|ψb;a(t)〉

d t
= i〈ψ(t)|[Pb, e

−itPa ]e−itPbU†|ψ0〉. (C.4)

This allows bounding
∣

∣

∣

∣

d 〈ψ(t)|ψb;a(t)〉

d t

∣

∣

∣

∣

≤
∥

∥[Pb, e
−itPa ]e−itPbU†|ψ0〉

∥

∥ . (C.5)

Now let Π
(a)
∅ and Π

(a)
0 be projectors onto the subspace with no anyons in the path of Pa

and the subspace where a single anyon is located at the initial site and define Π
(b)
∅ and Π

(b)
0

analogously. Recalling that |ψ0〉 is a code state and our choice of rotation U , we have

(Π
(a)
∅ + Π

(a)
0 )U†|ψ0〉 = U†|ψ0〉

(Π
(b)
∅ + Π

(b)
0 )U†|ψ0〉 = U†|ψ0〉.

(C.6)

Commuting these projectors and using the expansion (C.2) of the perfect transfer we may

express the RHS of equation (C.5) by

∥

∥

∥

∥

∥

[Pb,
∑

s

αs(t)Z
⊗sΠ

(a)
0 ]
∑

r

αr(t)X
⊗rΠ

(b)
0 U†|ψ0〉

∥

∥

∥

∥

∥

(C.7)

There is only one possible non commuting term in Pb and this only for s ≥ sa. Furthermore,

this term cancels for all but two terms in the sum over s′. We may then rewrite (C.7) as

∥

∥

∥

∥

∥

2Jsb

∑

s≥sa
αs(t)Z

⊗sΠ
(a)
0 ×

×
(

αsb
(t)X⊗sb−1 + αsb−1(t)X

⊗sb
)

Π
(b)
0 U†|ψ0〉

∥

∥

∥

∥

∥

(C.8)

Where Jsb
is the strength of the term performing an anyon swap between sites sb and sb − 1.

Since each coefficient accompanies an orthogonal component of the state, we may recall the

definition in (C.2) and rewrite (C.8) as

2Jsb

√

[psb−1(t) + psb
(t)]

∑

s≥sa

ps(t) sin2 ε, (C.9)

where sin2 ε is the amplitude of Π
(a)
0 Π

(b)
0 U†|ψ0〉. An exponentially small upper bound will

now be given for the expression inside the square root .

[psb−1(t) + psb
(t)]

∑

s≥sa
ps(t)

≤
∑

r≤sb
f(r,D, sin2 t)

∑

s≥sa
f(s,D, sin2 t)

= F (sb,D, sin
2 t)F (D − sa,D, cos2 t),

(C.10)

where F (k,N, p) =
∑k
i=0 f(i,N, p) is the cumulative binomial distribution function. Assum-

ing sb

D ≤ sin2 t ≤ sa

D we may use Hoeffding’s inequality [47] to bound (C.10) as

e−2
(D sin2 t−sb)2

D e−2
(D sin2 t−sa)2

D ≤ e−
(sa−sb)2

D , (C.11)
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with equality holding for sin2 t = sa+sb

2D . In turn, a tighter bound can be obtained by using

Hoeffding’s inequality on a single factor of (C.10) when sin2 t ≥ sa

D or sb

D ≥ sin2 t.

Taking D = N/2 − 1 as in Sec. 4.2 and s− r ≥ sa − sb ≥ D/6 for instance, the obtained

upper bound becomes exponentially small in N . In turn, the derivative (C.5) is exponentially

small, meaning that the actual evolution is approximated by the ordered evolution with

exponentially good precision in N .

Fig. C.1. In an N ×N lattice, there are two sets of N/k rows (k ∼ O(1)) and two sets of columns

and rows, each of which corresponds to the construction of (Sec. 4.2) for a different error type
(X̄1, Z̄2 are introduced by columns starting at horizontal stripes and Z̄1 and X̄2 are introduced
by rows starting from vertical stripes).

We have formally proven that for two non commuting anyon propagation paths which

intersect with a sufficiently large offset (i.e. ≥ D/6) the evolution can be accurately approxi-

mated by ordered anyon propagation. There is no obstacle in generalizing this result to many

such anyon paths, as required to introduce logical errors with high probability. Some leading

factors of order N2 appear but crucial factors remain exponentially decreasing in N .

In Fig. C.1, we illustrate a configuration allowing the simultaneous introduction of all pos-

sible logical errors by anyon propagation within the lattice. The marked stripes of width N/k

indicate locations where perpendicular anyon propagations begin or end. The perturbation

to be introduced is chosen randomly as in Sec. 4.2, such that each propagation row/column

starts with equal probability in either of each pair of opposing stripes. Taking k fixed allows

sufficiently many repetitions of the single row/column construction that the probability of

introducing each type of logical error approaches 1
2 exponentially fast with N . Thus, after a

perturbed evolution for time tf = O(N), and a final application of an arbitrary error correct-

ing protocol based on unperturbed syndrome measurement, the resulting state is exponentially

close to the maximally mixed state 11/4 of the code-space.


