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In topological quantum computation the geometric details of a particle trajectory are

irrelevant; only the topology matters. Taking this one step further, we consider a model of
computation that disregards even the topology of the particle trajectory, and computes
by permuting particles. Whereas topological quantum computation requires anyons,
permutational quantum computation can be performed with ordinary spin-1/2 particles,

using a variant of the spin-network scheme of Marzuoli and Rasetti. We do not know
whether permutational computation is universal. It may represent a new complexity
class within BQP. Nevertheless, permutational quantum computers can in polynomial
time approximate matrix elements of certain irreducible representations of the symmetric

group and approximate certain transition amplitudes from the Ponzano-Regge spin foam
model of quantum gravity. No polynomial time classical algorithms for these problems
are known.
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1 Introduction

There are now several models of quantum computation. These include quantum circuits,

topological quantum computation, adiabatic quantum computation, quantum Turing ma-

chines, quantum walks, measurement-based quantum computing, and the one clean qubit

model. (See [1] for an overview.) With the exception of the one clean qubit model, the

set of problems solvable in polynomial time in each of these models is the same: BQP.

This is proven by showing that each model can simulate the others with only polynomial

overhead[2, 3, 4, 5, 6, 7]. Given these equivalences, one might ask why one should introduce

new models of quantum computation. There are at least three reasons to do so. First, some

models might be easier to physically implement than others. For example, the adiabatic

model seems particularly promising for implementation in superconducting systems[8], and

the measurement based model seems particularly promising for optical implementation[9].

Second, new models provide new conceptual frameworks for devising quantum algorithms.

For example, the topological model led directly to the discovery of quantum algorithms for

approximating Jones polynomials[10], and the quantum walk model led to quantum algo-

rithms for evaluating NAND trees[11]. Third, in rare instances, new models can lead to new

quantum complexity classes. The set of problems solvable in polynomial time using the one

clean qubit model is called DQC1. It is believed that DQC1 contains some problems outside
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BQP

PQPP

Fig. 1. This diagram shows the conjectured relationships between classical polynomial time (P),

quantum polynomial time (BQP), and permutational quantum polynomial time (PQP). Section
3 proves that PQP is contained in BQP. Sections 7 and 9 give arguments for the conjecture that
the containment is strict.

of P but does not contain all of BQP [12].

This paper considers the computational power obtained, not by braiding and fusing any-

onic particles in two dimensions, as is done in topological quantum computation, but by

permuting ordinary spins and recoupling their angular momentum. The idea of formulating

a computational model based on spin recoupling was first proposed by Marzuoli and Rasetti

in [13]. Marzuoli and Rasetti also suggested that their modela could be used to devise quan-

tum algorithms for several problems including the estimation of Ponzano-Regge partition

functions. Here we prove that permutational quantum computers can in polynomial time ap-

proximate matrix elements of irreducible representations of the symmetric group in Young’s

orthogonal form, and we identify a class of spin foams whose associated Ponzano-Regge am-

plitudes are efficiently approximable on permutational quantum computers. We also analyze

fault tolerance of the permutational model, which seems promising, as the computations are

fully discrete, unaffected by perturbations to particle trajectory, and impervious to stray mag-

netic fields provided they are uniform. Lastly, we prove that permutational computers are

efficiently simulatable by quantum circuits and present evidence that the class of problems

solvable with polynomial resources on a permutational quantum computer, which I call PQP,

constitutes a new complexity class smaller than BQP but still containing problems outside of

P. Figure 1 illustrates the conjectured relations between PQP, P, and BQP.

2 The Model

As is standard in quantum computing, we start by considering the Hilbert space of n two-level

systems, such as spin-1/2 particles. It is conventional in quantum computing to use a basis for

this Hilbert space specified by the σz Pauli operators on each of the spins. These n operators

form a complete set of commuting observables. That is, each operator has eigenvalues +1

and −1, and by specifying the simultaneous eigenvalues of all n operators we uniquely specify

a state from an orthonormal basis of the 2n-dimensional Hilbert space. In the context of

quantum computation this is called the computational basis. In the quantum circuit model,

one assumes the ability to construct pure basis states, and to make projective measurements

in the computational basis.

Identifying the σz basis as the computational basis is not a matter of pure convention.

This basis consists of product states. Preparation and measurement of such states can be done

aTheir model differs slightly from the permutational model in that they allow continuous rotations in addition
to the discrete operations of permutation and recoupling.
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in principle using physically realistic operations that do not require many-body interactions.

In contrast, there exist globally entangled states of n spins that require exponentially many

local operations (e.g. quantum gates) to construct, and entangled measurements that require

exponentially many local operations to perform. Nevertheless, there exist other choices for a

complete set of commuting observables such that state preparation and measurement remain

physically plausible. In particular, there exist exponentially many complete sets of commuting

observables constructable from total spin angular momentum operators.

For any i ∈ {1, 2, . . . , n}, let

~Si =
1

2







σ
(i)
x

σ
(i)
y

σ
(i)
z






(1)

be the spin angular momentum operator for the ith spin-1/2 particle. Similarly for any

a ⊆ {1, 2, . . . , n}, let

S2
a =

(

∑

i∈a

~Si

)

·
(

∑

i∈a

~Si

)

be the total spin angular momentum operator for the set a of spins. (Here · indicates the

three-dimensional dot product.) If a and b are disjoint sets or if one is a subset of the other

then S2
a commutes with S2

b .

The total angular momentum operators corresponding to certain sets of subsets of spins,

together with a total azimuthal angular momentum operator form a complete set of commut-

ing observables. For example, consider the case of three spin-1/2 particles. The following is

one complete set of commuting observables.

S2
{123} =

(

~S1 + ~S2 + ~S3

)2

S2
{12} =

(

~S1 + ~S2

)2

(2)

Z{123} =
1

2

(

σ(1)
z + σ(2)

z + σ(3)
z

)

Here is another complete set of commuting observables.

S2
{123} =

(

~S1 + ~S2 + ~S3

)2

S2
{23} =

(

~S2 + ~S3

)2

(3)

Z{123} =
1

2

(

σ(1)
z + σ(2)

z + σ(3)
z

)

Diagramatically, we can represent these two choices by binary trees
2 3 1 2 3

{12}

{123}

1

{23}

{123}

At each trivalent node of the tree we have two incoming edges corresponding to operators S2
a

and S2
b for two sets of spins a and b, and one outgoing edge corresponding to the operator

S2
a∪b. The possible eigenvalues of these operators are given by the following standard rules for
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angular momentum addition in quantum mechanics[14]. For any set of spins a, the allowed

eigenvalues of S2
a are of the form ja(ja + 1) where ja is a nonnegative integer or half-integer.

The number ja is referred to as the total angular momentum of the set of spins a. A single spin

with total angular momentum j is referred to as a spin-j particle. The possible eigenvalues

of S2
a∪b are subject to the constraints

ja∪b + ja + jb ∈ Z

and

|ja − jb| ≤ ja∪b ≤ ja + jb.

For a given complete set of commuting angular momentum observables, we can diagram-

matically denote the corresponding basis states by labeling each edge of the tree with the

total angular momentum j for the corresponding subset of spins. For example, choice (2)

yields the following basis for the eight-dimensional Hilbert space of three spin-1/2 particles.
1/2 1/21/2

1/2, +1/2

1/2 1/21/2

1/2, −1/2

1/2 1/21/2

1/2, +1/2

1/2 1/21/2

1/2, +1/2

1/2 1/21/2

3/2, +3/2

1/2 1/21/2

3/2, +1/2

1/21/2

3/2, −1/2

0 0

1 1

1 1 1

1/2 1/2 1/21/2

3/2, −3/2

1

The extra label on the root of the tree indicates the eigenvalue of azimuthal angular momen-

tum operator Z{123}.
This idea generalizes straightforwardly to any number of spins. For example, the binary

trees for four spins are shown below.

These trees correspond to five different orthonormal bases for the 16-dimensional Hilbert

space for four spin-1/2 particles. It is not hard to see that the number of binary trees on n

spins scales exponentially with n.

In the most basic permutational model of quantum computation we have n spins, and

can prepare any state corresponding to a labeled binary tree of n leaves. After preparing a

state we apply an arbitrary permutation to the n particles. Lastly, we measure any complete

commuting set of total angular momentum operators, thereby performing a projective mea-

surement in an orthonormal basis corresponding to one of the unlabeled binary trees of n

leaves. By repeating this process, we can sample from the probability distribution defined by

this measurement. Thus we can estimate the probability corresponding to a particular final

state (labeled binary tree) to within ±ǫ using O(1/ǫ2) trials.

It seems mathematically natural to define a stronger version of the permutational model

using the amplitudes rather than the probabilities. That is, let π ∈ Sn, and let λ, λ′ be any
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pair of labeled binary trees of n leaves. We call the corresponding states of n spin-1/2 particles

|λ〉 and |λ′〉. Let Uπ be the transformation induced by permuting these n spins according to

π:

Uπ |z1〉 ⊗ |z2〉 ⊗ . . .⊗ |zn〉 =
∣

∣zπ(1)

〉

⊗
∣

∣zπ(2)

〉

⊗ . . .⊗
∣

∣zπ(n)

〉

.

In the strong permutational model we assume that we can perform an experiment to determine

the real and imaginary parts of the amplitude 〈λ|Uπ |λ′〉 to precision ±ǫ in poly(1/ǫ) time.

Physically, such an experiment may be harder to perform than that of the basic permutational

model, although it could be done in principle using coherently controlled state preparations

and interferometric measurements such as the Hadamard test. (cf. [10], section 2.2) On

the other hand, the strong permutational model seems to be more convenient for defining a

new complexity class and formulating new quantum algorithms. In this paper, we analyze

the strong permutational model. Performing the analogous analysis in the weak model is a

straightforward exercise.

For a set a of n spins, the operator Za commutes with all permutation operators {Uπ|π ∈
Sn} and all total angular momentum operators {Sb|b ⊆ a}. Thus, the permutational model

amplitudes can be factored as 〈λ|Uπ |λ′〉 = δm,m′f(π, S2
a, S

2
b , . . .), where m and m′ are the

eigenvalues Za |λ〉 = m |λ〉 and Za |λ′〉 = m′ |λ′〉, and f is a function only of the permutation

π and the total angular momenta of the various subsets a, b, . . .. Therefore, we henceforth

describe all permutational computations in terms of amplitudes 〈λ|Uπ |λ′〉, where λ and λ′

are binary trees labeled only with j values. It is implicit that m = m′. Beyond that we do

not care about the actual values of m and m′.

In the quantum circuit model, we measure the length of a computation by the number of

elementary quantum gates. At first glance it seems natural to seek some analogous measure of

length for permutational computations. One choice would be to imagine the n spins arranged

along a line, and consider the transposition of a pair of neighbors as an elementary operation.

Such transpositions generate the symmetric group, thus any permutational computation could

be built up from these steps. However, given any permutation in Sn it is easy to find a

sequence of at most O(n2) transpositions to implement it. In fact, the well-known bubblesort

algorithm can be viewed as a method for finding such a sequence. Thus, all of the possible

permutational computations on n spins can be achieved in poly(n) time. Hence we can ignore

computation length and simply define PQP to be, roughly speaking, the set of problems

solvable by estimating amplitudes of the form 〈λ|Uπ |λ′〉 on polynomially many spins, to

polynomial precision.

To make a completely precise definition of PQP we must specify what sort of computer we

use to control the experiment. That is, the computer is given a problem instance, and based

on that it decides which amplitudes of the form 〈λ|Uπ |λ′〉 to estimate. It then transmits

instructions to the experimental apparatus, and receives the measurement outcomes, which

it postprocesses in order to answer the problem. If we choose a P machine then PQP trivially

contains P. To allow a more meaningful comparison between the permutational model and

classical polynomial time computation we therefore use a logspace machine. We can abstractly

define PQP to be the set of problems solvable by a logspace machine with access to an oracle

that provides amplitudes 〈λ|Uπ |λ′〉 for polynomially many spins, to polynomial precision.

Thus PQP trivially contains the complexity class L, but whether PQP contains P remains an



S. P. Jordan 475

interesting open questionb.

3 PQP is contained in BQP

Permutational quantum computation can be analyzed either using the computational basis

or using a basis of j-labeled trees arising from total angular momentum operators. Either

method of analysis yields fairly directly a proof that PQP ⊆ BQP. Throughout this paper we

exclusively use the basis of j-labeled trees. This basis makes the connection to anyonic compu-

tation clearer, as the bases used to analyze anyonic quantum computation are q-deformations

of these (see [17]).

Let λ and λ′ be a pair of j-labeled binary trees with n leaves, and let π be some permutation

in Sn. Any amplitude of the form 〈λ|Uπ |λ′〉 can be calculated using the following two

diagrammatic rules.

e

cba

d

∑

f

[

a b f
c e d

]

=
e

cba

f
(4)

c

a b

(−1)a+b−c=
c

ba

(5)

Rule 4 is a change of basis between the simultaneous eigenbasis of S12 and S123 and the

simultaneous eigenbasis of S23 and S123. Furthermore, if instead of three spins 1, 2, 3 we have

three sets of spins a1, a2, a3, then the same formula rule converts between the simultaneous

eigenbasis of Sa1∪a2
and Sa1∪a2∪a3

and the simultaneous eigenbasis of Sa2∪a3
and Sa1∪a2∪a3

.

In other words, we can apply this diagrammatic rule to any internal node of a j-labeled binary

tree, as illustrated in figure 2. As discussed in [13], the recoupling tensor is
[

a b f
c e d

]

= (−1)a+b+c+e
√

(2d+ 1)(2f + 1)

{

a b f
c e d

}

, (6)

where

{

a b f
c e d

}

is the 6j symbol for SU(2). The 6j symbol can be calculated using the

Racah formula[18]
{

a b f
c e d

}

=
√

∆(a, b, f)∆(a, e, d)∆(c, b, d)∆(c, e, f)
∑

t

(−1)t(t+ 1)!

f(t)
, (7)

where

∆(a, b, c) =
(a+ b− c)!(a− b+ c)!(−a+ b+ c)!

(a+ b+ c+ 1)!

and

f(t) = (t− a− b− f)!(t− a− e− d)!(t− c− b− d)!(t− c− e− f)!

(a+ b+ c+ e− t)!(b+ f + e+ d− t)!(f + a+ d+ c− t)!.

bChoosing an NC1 machine rather than a logspace machine is also reasonable[15]. The results obtained in
this paper all hold for either choice. See [16] for definitions of L and NC1.
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=
∑

l

[

g h l
i k j

]

=

a b c d e f

k

ihg

j

a b c d e f

g

k

h i

l

Fig. 2. Here we apply the recoupling rule 4 to an internal node of a tree. Rules 4 and 5 apply
whether the j labels refer to the angular momenta of individual particles or sets of particles.

The sum in equation 7 is over all t such that the factorials in f(t) all have nonnegative

arguments. The main thing to notice about these formulas is that the recoupling tensor
[

a b f
c e d

]

can be computed in polynomial time provided that a, b, c, d, e, f are all at most

polynomially large.

To illustrate these rules we first work out an example by hand. Suppose we have three

spin-1/2 particles and we wish to compute the amplitude

1/2 1/2 1/2 1/2 1/2

σU
1/2

1/2

1

1/2
0

,

where σ is the permutation that swaps the leftmost pair of spins. We can rewrite this as

1/2 1/2

1/2
0

1/21/2 1/21/2

1/2

1

. (8)

Because the crossed sub-branches do not come from the same branch we cannot at this point

apply rule 5. Instead, we must first apply rule 4, obtaining

1/2 1/2 1/2

1/2
j

∑

j

[

1/2 1/2 j
1/2 1/2 0

]

1/2 1/21/2

1/2

1

. (9)

Applying rule 5 then yields

1/2 1/2 1/2

1/2
j

∑

j

[

1/2 1/2 j
1/2 1/2 0

]

(−1)1−j

1/2 1/21/2

1/2

1

.

Then we can apply rule 4 again to bring the two trees into the same form.

1/2 1/2 1/2

1/2

k

∑

j

[

1/2 1/2 j
1/2 1/2 0

]

(−1)1−j
∑

k

[

1/2 1/2 k
1/2 1/2 j

]

1/2 1/21/2

1/2

1

(10)

The total angular momentum operators are Hermitian. Thus, their eigenstates form an or-

thonormal basis. In other words, distinct labelings of a given binary tree correspond to

orthonormal states. Thus,
1/2 1/2 1/2

1/2
k

1/2 1/21/2

1/2

1 = δ1,k
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so the expression 10 evaluates to

∑

j

[

1/2 1/2 j
1/2 1/2 0

]

(−1)1−j

[

1/2 1/2 1
1/2 1/2 j

]

.

The sum over j is in principle over all integers and half-integers. However, the recoupling

tensors are only nonzero in a finite set of cases. Specifically, in any nonzero term, the j-labels

on a tree must obey the laws of angular momentum addition:

a b

c

a+ b+ c ∈ Z

|a− b| ≤ c ≤ a+ b (11)

Thus, recalling expression 9, we see that the sum is over j = 0 and j = 1, and evaluates to

=

[

1/2 1/2 1

1/2 1/2 0

] [

1/2 1/2 1

1/2 1/2 1

]

−
[

1/2 1/2 0

1/2 1/2 0

] [

1/2 1/2 1

1/2 1/2 0

]

=

√
3

2

1/2 1/2 1/2 1/2 1/2

σU
1/2

1/2

1

1/2
0

.

This example illustrates all of the principles needed for the general case. Given π ∈ Sn and

two j-labeled binary trees λ and λ′ of n leaves, we can compute the amplitude 〈λ′|Uπ |λ〉
by first applying π to the leaves of λ, obtaining a twisted tree λ̃, as in expression 8. Then,

we apply a sequence of recoupling (4) and twist (5) moves to untangle the tree, leaving a

superposition over labelings of an ordinary tree. Then, we use some sequence of recoupling

moves to bring this tree into the same form as λ′. Then we apply the orthonormality of

different labelings of the tree.

The quantum circuit algorithm for approximating 〈λ′|Uπ |λ〉 essentially mirrors this pro-

cess. Given λ and λ′ with n leaves and π ∈ Sn, it is clear that in poly(n) time on a classical

computer we can compute a sequence of polynomially many twists and recouplings that un-

tangles λ̃ and then brings it into the same form as λ′. Thus, the task to perform on the

quantum computer is to track the resulting superposition over labelings. Generically, the

number of terms in this superposition grows exponentially in the number of recoupling moves

performed. On a quantum computer we build such superpositions by constructing quantum

circuits to implement the unitary transformations of rules 5 and 4.

In a j-labeled tree with n spin-1/2 leaves, every j-label must come from the set

{0, 1/2, 1, . . . , n/2}. This is a consequence of the condition c ≤ a + b from 11. We can

therefore use ⌈log2(n+ 1)⌉ qubits to store each label. We need not use a quantum register to

track the shape of the tree, only its labeling. This is because, by starting with a given tree

λ and applying a sequence of recoupling and twist moves we only obtain superpositions over

different labelings of a given tree, never superpositions over different trees. Furthermore, we

need not track the labels on the leaves or the root, as these are left invariant by all twist and

recoupling moves.

Let’s return to the example evaluated by hand above. Discarding the root and leaves as

fixed, we need only track one j-value. By the general argument above, this j value must lie in

the set {0, 1/2, 1, 3/2}. We correspondingly use a register of two qubits to encode the value

of j. (In fact, in this particular case, j can only take on values 0 and 1, but we shall ignore

this extra information.) To represent the initial state λ we initialize a register of two qubits
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to the state |0〉. Then we apply the recoupling and twist moves in sequence, which in this

context are unitary transformations on the two-qubit register.

|0〉 →
∑

j

[

1/2 1/2 j
1/2 1/2 0

]

|j〉

→
∑

j

[

1/2 1/2 j
1/2 1/2 0

]

(−1)1−j |j〉

→
∑

j

[

1/2 1/2 j
1/2 1/2 0

]

(−1)1−j
∑

k

[

1/2 1/2 k
1/2 1/2 j

]

|k〉

We then use the Hadamard test to approximate the real and imaginary parts of the amplitude

associated with k = 1.

The general case is a straightforward extension of this example. All that remains is to show

that quantum circuits can efficiently implement the unitary transformations corresponding to

the twist and recoupling moves. The unitary transformation of the twist (eq. 5) is simply a

diagonal unitary with +1 and −1 entries along the diagonal. Furthermore, for a given set of

j labels it is easy to classically compute whether the corresponding sign should be +1 or −1.

Therefore, it can be implemented using polynomially many quantum gates via a a standard

technique called phase kickback[19]. The recoupling transformation acts on only six registers

of ⌈log2(n + 1)⌉ qubits each. Furthermore, by the Racah formula, the matrix elements of

the transformation induced on these qubits can all be efficiently computed classically. As

discussed in section 4.5 of [20], any unitary transformation on logarithmically many qubits

with efficiently computable matrix elements can be implemented using polynomially many

quantum gatesc.

4 Approximating Irreps of the Symmetric Group

In this section, we show that a permutational quantum computer can, in polynomial time, ap-

proximate matrix elements of certain irreducible representations of the symmetric group. The

problem of computing explicit irreducible representations of the symmetric group has been

studied classically[22, 23, 24, 25, 26, 27, 28], and no polynomial time algorithm is known.

Thus, this result provides some evidence that PQP is not contained in P. Furthermore, it

provides a potentially useful application for permutational quantum computers should one

ever be built. Lastly, as shown in the preceding section, PQP is contained in BQP, thus

any quantum algorithm for permutational quantum computers is also automatically a quan-

tum algorithm for standard quantum computers. An efficient algorithm for approximating

matrix elements of irreducible representations of the symmetric group on standard quantum

computers was derived from a somewhat different point of view in [29].

Let a be a set of n spin-1/2 particles, and let Ha be the corresponding 2n-dimensional

Hilbert space. The symmetric group Sn acts on Ha in a straightforward way. For any π ∈ Sn,

we have the action

Uπ |z1〉 ⊗ |z2〉 ⊗ . . .⊗ |zn〉 =
∣

∣zπ(1)

〉

⊗
∣

∣zπ(2)

〉

⊗ . . .⊗
∣

∣zπ(n)

〉

.

cAlternatively, we need only observe that the twist and recoupling tensors are sparse and have efficiently
computable matrix elements. They are therefore implementable using the general construction of [21].
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j=1j=0 j=2

Fig. 3. Here we list all the Young diagrams of four boxes. These correspond to all of the irreducible
representations of S4. Let a be a set of four spin-1/2 particles. The Young diagrams with two rows

correspond to irreducible representations arising from the action of S4 on the angular momentum
eigenspace {|ψ〉 : S2

a |ψ〉 = j(j + 1) |ψ〉 and Za |ψ〉 = m |ψ〉} for any allowable m.

The map π → Uπ is a homomorphism from Sn to the unitary group U(2n). In other words, it is

a unitary representation of Sn. This representation is reducible. For all π ∈ Sn, Uπ commutes

with the total angular momentum operator S2
a and the total Z-angular-momentum operator

Za. Thus, the simultaneous eigenspaces of S2
a and Za are each invariant under the action of

Sn. The action of Sn on any of these eigenspaces is therefore a representation of Sn. These

representations are all irreducible[30].

The irreducible representations of Sn are usually specified by Young diagrams. A Young

diagram for Sn is a partition of n boxes into rows, such that no row is longer than the row

above it, as illustrated in figure 3. Let Vj be the eigenspace of S2
a with eigenvalue j(j + 1).

Within any fixed eigenspace of Za, the action of Sn on Vj is the irreducible representation

whose Young diagram has two rows, where the overhang of the top row over the bottom is 2j

[30].

To obtain an explicit matrix representation of Sn we must choose a basis. We can choose

a basis for the eigenspaces of S2
a and Za by finding subsets b, c, . . . of a such that S2

a and Za

together with S2
b , S

2
c , . . . form a complete a set of commuting observables. As described in

section 2, the possible choices for subsets b, c, . . . correspond bijectively to the rooted binary

trees of n leaves. The different trees give us different bases. Within a given basis, the different

basis states correspond to different j-labelings of the chosen tree.

The binary tree bases have the special property of being subgroup adapted. Let G be a

group and let H be a subgroup of G. Any representation ρG of G (homomorphism from G

to a group of linear transformations) yields a representation ρH of H if we simply restrict

its domain to H. However, an irreducible representation of G does not necessarily remain

irreducible when restricted to H. In this case ρH is isomorphic to a direct sum of irreducible

representations of H. Suppose we choose a basis for the representation. Now ρG becomes a

map from group elements to matrices. The basis is adapted for the subgroup H if ρG maps

the elements of H to matrix direct sums of irreducible representations of H. As discussed

elsewhere[29, 31], subgroup adapted bases are very useful in mathematics, physics, and both

quantum and classical computing.

Recalling that the representation of Sn corresponding to any fixed label on the root is

irreducible, and examining the diagrammatic rules 5 and 4 we see that the binary tree basis

is subgroup adapted for each of the subgroups of Sn that fix all of the leaves other than those

on a given subtree. In this example,

the left and right subtrees shown indicate that the basis is adapted to two subgroups of S4,
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each isomorphic to S2. Whereas, in this example,

the subtrees shown indicate that the basis is adapted to two subgroups of S4, one isomorphic

to S2 and one isomorphic to S3.

The most standard and widely used basis for unitary representations of the symmetric

group is the Young-Yamanouchi basis. The resulting maps from permutations to matrices

is often called Young’s orthogonal form (introduced in 1927 by Alfred Young[32]). Suppose

that the elements of Sn act by permuting a set of objects arranged along a line. The set of

permutations in Sn that leaves all but the rightmost m objects untouched is a subgroup of Sn

isomorphic to Sm. Young’s orthogonal form is adapted to this chain of subgroups isomorphic

to Sn ⊃ Sn−1 ⊃ . . . ⊃ S3 ⊃ S2.

Using angular momentum operators we can construct a basis adapted to this same chain

of subgroups. The corresponding binary trees are those of the following form.

...

n=5n=4n=3 (12)

This might lead one to guess that the matrix representation of Sn arising from this type of

binary tree is identical to Young’s orthogonal form. Indeed, this is correct, as is shown, for

example, in [30].

By the above discussion, permutational quantum computers can efficiently approximate

matrix elements from Young’s orthogonal form. To state this result more precisely, we must

describe how the problem instance is input to the computer. Let λ be a Young diagram of n

boxes. By labeling these boxes from 1 to n such that the numbers in any column are increasing

downward, and the numbers in any row are increasing rightward, we obtain a standard Young

tableau of shape λ. For example, the standard Young tableaux of shape

are
1
3
4

2 1 3
2
4

1
2
3

4

.

For a Young diagram λ, the corresponding irreducible representation ρλ in Young’s orthogonal

form can be formulated as a linear transformation on the formal span of all standard Young

tableaux of shape λ. Thus standard Young tableaux of shape λ index the rows and columns

of the matrices of representation ρλ.

If λ has two rows, then the standard Young tableaux of shape λ correspond bijectively

to the j-labelings of a binary tree as follows. We can think of the numbering of boxes in a

standard Young tableau as an instruction for building the final Young diagram by adding one
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0

1

2

1

0

1

2

overhang:

Sequence of
Young Diagrams

653
1 2 4

Young Tableau

1/2
1

1/2
1

1/2

0

j−labeled Binary Tree

Fig. 4. Each Young tableau corresponds to a sequence of Young diagrams. If the Young tableau

has only two rows, then these diagrams can be characterized by the overhang of the top row over
the bottom row. Dividing by two, this sequence of overhangs then corresponds a j-labeling of a
binary tree, as shown. We have omitted the labels from the leaves, as they are all spin-1/2.

box at a time. For example, the Young tableau

653
1 2 4

corresponds to the sequence

0

. (13)

The condition that numbers increase downward in each column and rightward in each row is

equivalent to the condition that the configuration of boxes after each step is a valid Young

diagram. To each Young diagram in the sequence we can associate an “overhang”, the number

of boxes in the top row minus the number of boxes in the second row. The labeled tree

corresponding to a given Young tableau is of the type shown in diagram 12, and the sequence

of overhangs, each divided by two, labels the edges from top to bottom down the right hand

side. Figure 4 gives an example.

A permutational quantum computer can solve the following problem in time poly(n, 1/ǫ).

Problem 1: Approximate a matrix element in the Young-Yamanouchi basis of an irreducible
representation of the symmetric group Sn.
Input: A Young diagram γ of two rows specifying the irreducible representation, a permu-
tation from Sn, a pair of standard Young tableaux of shape γ indicating the desired matrix
element, and a positive parameter ǫ.
Output: The specified matrix element to within ±ǫ.

To do this we simply translate the pair of Young tableaux into a pair of j-labeled binary trees

λ and λ′, as described in figure 4. Then we build the tree states |λ〉, permute the particles



482 Permutational quantum computing

according to π, and obtain the approximate |λ′〉-amplitude of the resulting state using the

Hadamard test.

No polynomial time classical algorithm is known for problem 1. There is a small body of

literature on optimized classical algorithms for computing matrices from Young’s orthogonal

form[22, 23, 24, 25, 26, 27, 28], mainly for applications to computational chemistry. All of

these algorithms have worst-case runtime that scales exponentially in n. To be fair, it should

be noted that these classical algorithms are numerically exact, and compute all of the matrix

elements at once. It is not clear how much effort has gone into fast classical algorithms for

approximating individual matrix elements from Young’s orthogonal form. Nevertheless, it

seems likely that a polynomial time algorithm for problem 1 presents a genuine exponential

speedup over classical computation. A thorough discussion of this point is given in [29].

Lastly, we note that problem 1 is a complete problem for the subclass of permutational

quantum computations in which the state preparation and measurement are both fixed to be

trees of the type shown in (12). In the next two sections we describe a different problem,

which is complete for the reverse situation: the permutation is fixed to be the identity, and

the initial and final trees are free to be chosen arbitrarily.

5 The Ponzano-Regge Model

The Ponzano-Regge model[33] is a 3-dimensional topological quantum field theory (TQFT)

for a class of triangulated manifolds. It is often studied in the context of quantum gravity (see

appendix B), but it is a mathematical object of intrinsic interest, and in particular it gives

rise to a nontrivial three-manifold invariant. In this section we describe the Ponzano-Regge

model, and to do so we first give a brief overview of topological quantum field theories in

general.

The term “topological quantum field theory” is used in the literature to refer to two related

but distinct concepts. It is first of all used to refer, somewhat loosely, to any quantum field

theory in which the action is diffeomorphism invariant. Perhaps the best known example is

Chern-Simons theory. A second, more mathematical definition of the term is any structure

satisfying the Atiyah axioms, proposed in[34]. We use the second definition throughout this

paper. The two concepts are not unrelated. The matrix elements of the linear transformation

corresponding to a cobordism (described below) are analogous to the transition amplitudes

that one would compute using a path integral in more conventional formulations of quantum

field theory. For a complete and mathematically precise description of axiomatic TQFT see

[34].

Essentially, an n-dimensional axiomatic topological quantum field theory (TQFT) is a map

that associates a Hilbert space to any (n − 1)-manifold, and to any n-dimensional manifold

“interpolating” between a pair of (n− 1)-dimensional manifolds, it associates a linear trans-

formation between the corresponding Hilbert spaces. More precisely, a cobordism is defined

to be a triple (M,A,B) where M is an n-manifold whose boundary is the disjoint union of

(n−1)-manifolds A and B. This provides a well-defined notion of an “interpolation” between

A and B. For example, the circle S1 is a 1-manifold, and a tube S1 × [0, 1] is a cobordism

between two circles. A 2-dimensional TQFT associates a Hilbert space HS1 to S1 and a linear



S. P. Jordan 483

transformation M0 : HS1 → HS1 to the tube.

HS1 M0 HS1

A different cobordism between the same pair of boundaries may be mapped to a different

linear transformation between the same pair of Hilbert spaces.

M1 HS1HS1

If we compose together two cobordisms, we compose the corresponding linear transformations.

HS1 HS1M1 ◦M1

(14)

Mathematicians express this property by saying that a TQFT is a “functor”. The linear

transformation associated to a cobordism by a TQFT depends only on the topology of the

cobordism, not the geometric details. Therefore we can see, for example, that M0 ◦M0 = M0.

To the empty boundary ∅ we associate the Hilbert space C. We can think of a closed manifold

as a cobordism between ∅ and ∅. Therefore an n-dimensional TQFT associates to any closed

n-manifold a map from C to C, that is, a complex number. This map is a C-valued topological

invariant of closed n-manifolds.

More precisely, let f be a function from the set of n-manifolds Mn to some other set S.

If f has the property that f(A) = f(B) whenever A,B ∈Mn are equivalent (homeomorphic)

then f is a n-manifold invariant. Note that the definition does not require f(A) 6= f(B)

whenever A is nonhomeomorphic to B. An n-manifold invariant with this latter property is

said to be complete.

The Ponzano-Regge model associates linear transformations to 3-manifolds, which can be

thought of as cobordisms between 2-manifolds. There are several ways of describing three

manifoldsd, but perhaps the most intuitive is by triangulation. A triangulated 3-manifold is

a list of tetrahedra and a list of which face is “glued” to which. For example, we could take

dThe interested reader should look up Heegaard splittings and surgery presentations.
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1−4

2−3

Fig. 5. The 1-4 move takes a tetrahedron and subdivides it into four tetrahedra by introducing a
new vertex in the center. The 2-3 move take two tetrahedra sharing a face, removes the shared

face, and slices the resulting octahedron longitudinally into three tetrahedra.

two tetrahedra and glue their faces as follows.

The term triangulation arises from 2-manifolds, which can be specified by a list of triangles and

a list of which edge is glued to which edge. It is common to use “triangulation” to describe the

analogous concept in any dimension even though, for example, triangulated three-manifolds

are made from tetrahedra rather than triangles.

A given 3-manifold can be triangulated in many different ways. Because we only care

about the topology of the manifold, finer triangulations are in no way preferable to coarser

ones. The question of which triangulations specify the same (homeomorphic) manifolds is

completely answered by Pachner’s theorem.

Theorem 1 (Pachner’s theorem[35]) Two triangulations specify the same 3-manifold

if and only if they are connected by a finite sequence of the 2-3 and 1-4 moves and their

inverses, as illustrated in figure 5.

Although conceptually and mathematically useful, Pachner’s theorem does not directly

yield an algorithm for the problem of deciding equivalence of triangulated manifolds. One

can search for a sequence of Pachner moves connecting a pair of triangulations, but one does

not know when to give up the search, because no upper bound is known on the number of

necessary moves. Eventually it was provene that the equivalence problem for 3-manifolds is

algorithmically decidable (see [36]), but the problem is not known to be in P. The equivalence

problem for n-manifolds for any n ≥ 4 is undecidable[37]. The equivalence problem for

eAccording to [36], the proof is highly nontrivial and makes use of tools developed by Perelman in his proof
of the Poincaré conjecture.
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orientable 2-manifolds is in P (see appendix 1). Lacking an efficient way to decide equivalence

of three-manifolds it is natural to look for partial solutions such as those provided by 3-

manifold invariants.

In the Ponzano-Regge model, we are given a triangulated 3-manifold. We then associate

one j-variable to each edge of each tetrahedron. These j-variables represent spins and take

integer and half-integer values. To a closed manifold the Ponzano-Regge model associates the

following amplitude[38].

Zclosed =
∑

j−labelings

∏

edges

(−1)2j(2j + 1)
∏

faces

(−1)j1+j2+j3
∏

tetrahedra

{

j1 j2 j3
j4 j5 j6

}

(15)

The value of the 6j-symbol is not invariant under the 6! permutations of the indices. To get

the correct Ponzano-Regge amplitude we must associate the indices in the 6j symbol to the

edges of a tetrahedron as follows.

{

j1 j2 j3
j4 j5 j6

}

j

j
jj

1

2 3
6j j

5

4

(16)

The 6j symbol is invariant under the 24 symmetries of a tetrahedron, which shows that this

procedure is consistent. The diagram above just indicates that each pair of indices sharing a

column in the 6j symbol must correspond to a pair of nonadjacent (i.e. opposite) edges in

the tetrahedron.

In principle, there are infinitely many j-labelings to sum over in equation 15. However,

the 6j-symbol is only nonzero if the triple of j-values associated to each face is admissible by

the rules of quantum angular momentum addition, described in equation 11. Thus, in some

cases, the Ponzano-Regge amplitude contains only finitely many nonzero terms. In the case

of infinitely many admissible labelings, the sum often diverges. We return to the question of

which triangulations yield finite amplitudes below, but first we describe the Ponzano-Regge

amplitude associated to a 3-manifold with boundary.

Let M be a 3-manifold whose boundary is the union of the 2-manifolds A and B. That

is, M is a generalizedf cobordism between A and B. The triangulation (by tetrahedra) of

M induces triangulations (by triangles) of A and B. Each edge of a triangulation of M is

either internal, on the boundary A, on the boundary B, or on both A and B. The same

applies to the faces. To any labeling of the boundaries, the Ponzano-Regge model associates

the following amplitude, where the sum is over j-labelings of internal edges.

Z =
∑

j−labelings





∏

e∈edges

[

(−1)2je(2je + 1)
](2−b(e))/2 ×

∏

f∈faces

[

(−1)jf(1)+jf(2)+jf(3)
](2−b(f))/2 ∏

t∈tetrahedra

{

jt(1) jt(2) jt(3)
jt(4) jt(5) jt(6)

}





fIn a true cobordism, the boundary of M is the disjoint union of A and B.
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Here b(e) is the number of boundaries on which the edge e lies, 0, 1, or 2. Similarly, b(f) ∈
{0, 1, 2} is the number of boundaries on which the face f lies. {f(1), f(2), f(3)} are the three

edges of face f , and {t(1), t(2), t(3), t(4), t(5), t(6)} are the six edges of tetrahedron t. We

recover equation 15 as the special case when all edges and faces are internal (b(e) = 0 ∀e and

b(f) = 0 ∀f).

To each boundary we can associate a (possibly infinite-dimensional) Hilbert space cor-

responding to all admissible labelings of the triangulation. The Ponzano-Regge amplitudes

between a pair of labelings is thus a matrix element of a linear transformation between these

Hilbert spaces. This mapping from cobordisms to linear transformations obeys the functori-

ality property 14. That is, when we compose two cobordisms, we compose the corresponding

linear transformations. To see this, note that by the usual rule of matrix multiplication,

we sum over the labelings of the edges that we have glued. This is consistent with the

prescription for calculating the Ponzano-Regge amplitude for the resulting single cobordism

because these edges have now become internal. Furthermore, each edge e has one factor of
√

(−1)2je(2je + 1) from each of the two matrices we have multiplied, resulting in a factor

of (−1)2je(2je + 1), as befits an internal edge. Similarly, the faces that are glued pick up

one factor of
√

(−1)jf(1)+jf(2)+jf(3) from each of the linear transformations being composed,

giving them the correct weighting for an internal face.

For a three-dimensional quantum field theory on triangulated manifolds to be topological,

it should be independent of triangulation, that is, invariant under the Pachner moves. The

Ponzano-Regge model fails to be topological in general. It is invariant under the 2-3 Pachner

move as a consequence of the Beidenharn-Elliot identity for 6j symbols[18]:

∑

x

(−1)φ(2x+1)

{

a b x
c d g

}{

c d x
e f h

}{

e f x
b a j

}

=

{

j h j
e a d

}{

g h j
f b c

}

,

where φ = a + b + c + d + e + f + g + h + x + j. However, it is not invariant under the 1-4

move. In fact, by applying the 1-4 move one can go from a triangulation whose Ponzano-

Regge amplitude has finitely many terms to one whose amplitude has infinitely many terms. A

Ponzano-Regge amplitude with infinitely many terms could still be convergent, but generically

this seems not to be the case[38].

In a Ponzano-Regge summation for a 3-manifold with boundary, the boundary conditions

(i.e. the j-labels on the boundary edges) limit the admissible labels on the internal edges. For

some triangulations this limitation ensures that there are only finitely many possible labels

on every edge. For other triangulations there exist some internal edges whose label is not

constrained to a finite set by the boundary conditions. Barrett and Naish-Guzman call the

set of edges whose labels are not constrained to a finite set the “tardis” of the triangulation.

The tardis depends only on the manifold and its triangulation, not on the particular j-values

assigned to the boundary. The Ponzano-Regge amplitudes between boundary labellings of

a triangulation whose tardis is the empty set (called a non-tardis triangulation in [38]) are

finite. Furthermore, as proven in [38],

Theorem 2 [38] Let M be a manifold with a fixed triangulation of its boundary. Then

any two non-tardis triangulations compatible with the given boundary triangulation yield the

same Ponzano-Regge amplitudes.

For the class of non-tardis triangulations the Ponzano-Regge model thus acts as a topological
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quantum field theory. It is also worth noting that given a triangulation with n tetrahedra, a

classical computer can decide whether it is non-tardis in poly(n) time[38].

6 Approximating Ponzano-Regge Transition Amplitudes

In this section we show that for a certain subclass of non-tardis triangulations the Ponzano-

Regge transition amplitudes can be efficiently approximated to polynomial additive precision

on a permutational quantum computer.

A single tetrahedron is a triangulation of the 3-ball. Its boundary is a triangulated 2-

sphere. We can divide the 2-sphere boundary into a pair of discs, and think of the 3-ball

as a generalized cobordism between these two discs. We can do this such that each disc is

triangulated into two triangles, as shown below.

(17)

The six lines in diagram 17 are the edges of a tetrahedron. The vertical line lies in the top disc,

the horizontal line lies in the bottom disc, and the thick lines around the perimeter lie on both

discs. The Ponzano-Regge model associates an infinite-dimensional Hilbert space H to the

two-face triangulation of a disc, namely the formal span of all admissible labelings of the five

edges of the triangulation. Corresponding to the tetrahedron we have a linear transformation

Mtet : H → H . Mtet is completely specified by the matrix elements between each pair

of admissible labellings of the disc triangulations. By the definitions given in the previous

section, these matrix elements are
〈

ec

ab
d

∣

∣

∣

∣

∣

Mtet

∣

∣

∣

∣

∣

e

ab

c
f

〉

=
√

(−1)2f (2f + 1)
√

(−1)2d(2d+ 1) × (18)

×
√

(−1)c+b+d

√

(−1)d+e+a

√

(−1)c+e+f

√

(−1)b+a+f

{

a b f
c e d

}

Simplifying this expression, we recognize it as
[

a b f
c e d

]

, (19)

the recoupling tensor from equation 6. This observation generalizes as follows.

We can build up a 3-manifold by gluing on additional tetrahedra one by one. As we do

so, the triangulation of the surface gets modified. The change in triangulation depends on

how many faces of the new tetrahedron we glue to existing faces, as illustrated in figure 6.

Thus the gluing of a tetrahedron can be thought of as a cobordism or as a retriangulation

of the boundary of a three-manifold. In particular if we glue two faces of a tetrahedron we

correspondingly flip one edge of the triangulation.

The dual to a j-labeled triangulation is another j-labeled graph, as illustrated in figure 7.

If this j-labeled dual graph is a tree, then the flip move on the original graph translates to a

recoupling move on the dual tree. (See figure 7.) The linear transformation that the Ponzano-

Regge model associates to this cobordism is identical to the recoupling transformation of the

corresponding j-labeled dual tree.
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......

......

Fig. 6. On the left we glue two adjacent faces of a tetrahedron to two adjacent triangles of the

boundary of a 3-manifold. The result is a new triangulation of the boundary in which one edge
has been flipped. On the right we instead glue only one face of the tetrahedron. In the resulting
triangulation one of the triangles gets split into three.
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34
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Fig. 7. Flipping an edge of a triangulation induces a change on the corresponding dual triangu-
lation. If the dual triangulation is a tree, then this corresponds to a recoupling of spins. Here
we have chosen one edge as the root and labeled it “r”. We then draw the dual tree in more

conventional shape to illustrate the connection to recoupling moves discussed in section 2. We
have added arbitrary labels to the other leaves for clarity.
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In the permutational model we can efficiently find a polynomial additive approximation

to the matrix elements between any pair of j-labeled binary trees in time polynomial in the

number of leaves. Thus, the following problem can be solved on a permutational quantum

computer in poly(n,m, 1/ǫ) time.

Problem 2: Approximate Ponzano-Regge transition amplitude.
Input: We are given two triangulated surfaces A and B such that the dual to the triangula-
tions are both binary trees of n leaves. We are also given sequence of m pairs of neighboring
triangles on which to glue two faces of successive tetrahedra. This induces a sequence of edge
flips taking us from triangulation A to triangulation B. We are given j-labelings for A and
B. Lastly, we are given positive parameter ǫ.
Output: The real and imaginary parts of Ponzano-Regge transition amplitude corresponding
to the above cobordism, to within ±ǫ.

Note that the class of cobordisms described in problem 2 is quite restricted. In general

triangulated surfaces may not have duals that are binary trees. Furthermore, as illustrated

in figure 6, there are ways to glue tetrahedra onto a surface other than two faces at a time. It

is an open problem whether permutational quantum computers can efficiently approximate

Ponzano-Regge transition amplitudes for a more general class of cobordisms. On the other

hand, it is clear that problem 2 is a complete problem for the “pure recoupling” class of

permutational quantum computations, in which the binary trees are chosen arbitrarily, but

the permutation is fixed to be the identity.

7 Mixed States

In this section we consider a modified version of permutational quantum computation in which

the initial state is highly mixed. We then show that the resulting complexity class is contained

in BPP. In contrast, if we take the standard quantum circuit model and analogously apply it

to highly mixed initial states, we obtain a complexity class DQC1 which appears to extend

beyond BPP, although it is probably weaker than BQP. We start by describing DQC1.

In the standard quantum circuit model, one begins with a canonical pure state, such as

|0〉⊗n
, applies a quantum circuit, and then performs a simple measurement, such as measuring

each qubit independently in the {|0〉 , |1〉} basis. Experimentally, it is often difficult to obtain

the initial pure state |0〉⊗n
. In particular, several of the early quantum computing experiments

used liquid state NMR, in which the quantum states being manipulated are highly mixed. This

led to some debate as to whether the NMR experiments were truly quantum computation.

To address this issue, Knill and Laflamme introduced an idealized model of quantum

computation on highly mixed states, called the one clean qubit model[12]. In this model one

is given the initial state ρ in which one qubit is in a pure state and the remaining n qubits

are maximally mixed.

ρ = |0〉 〈0| ⊗ I

2n

Then one is allowed to apply polynomially many quantum gates to this state, and lastly

measure the first qubit in the {|0〉 , |1〉} basis. The complexity class of problems solvable in

polynomial time in this model is called DQC1.

Let C be a quantum circuit on n qubits and let UC be the corresponding 2n × 2n unitary

matrix. The problem of estimating Tr(UC) is DQC1-complete[12, 39]. A certain problem of
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BQP

P DQC1

Fig. 8. This diagram shows the conjectured relationships between classical polynomial time (P),

quantum polynomial time (BQP), and one clean qubit (DQC1). P and DQC1 are known rigorously
to be contained in BQP but the containments are not known rigorously to be strict.

estimating Jones polynomials is also DQC1-complete[15], and the generalization to HOMFLY

polynomials is also efficiently solvable on one clean qubit computers[40]. No polynomial time

algorithms for these problems are known. On the other hand, most evidence suggests that

one clean qubit computers are less powerful than standard quantum computers[41, 42]. Just

as with PQP, one must be careful in choosing what sort of computer controls the experiments

performed on the qubits. If this computer is a P machine then DQC1 automatically contains

P. To make a more meaningful comparison to classical computation it is better to choose a

weaker computational model such as L or NC1 to control the experiments (see [16] for the

definitions of these complexity classes). The conjectured relationships between P, BQP, and

DQC1 are illustrated in figure 8.

The one clean qubit model is not necessarily physically realistic in its details. Neverthe-

less, it provides a proof of principle that quantum computation on highly mixed states is

still probably capable of achieving exponential speedups over classical computers for certain

problems. Furthermore, it provides perhaps the only model of quantum computation other

than PQP which yields a complexity class apparently distinct from BQP but not contained

in P.

We can similarly formulate a one clean qubit version of the permutational model. By

analogy to DQC1 we define the one clean qubit version of PQP to be the set of problems effi-

ciently solvable given the ability to approximate the trace of irreducible representations of Sn

(i.e. characters) to ±ǫ precision in poly(n, 1/ǫ) time. Such a definition seems mathematically

natural. Furthermore, it is equivalent to a somewhat natural physical model, as follows. We

start with the initial state

ρJ = |ψ〉 〈ψ| ⊗ 1

dJ

dJ
∑

x=1

|J, x〉 〈J, x|

on n+1 spin-1/2 particles. Here |ψ〉 = α |0〉+β |1〉 is an arbitrary pure state on one spin, and

|J, 1〉 , |J, 2〉 , . . . , |J, dJ 〉 is a complete basis for the space of states of n spins with total angular

momentum J . Thus these n spins are in the maximally mixed state within the subspace of

total angular momentum J . We then perform a coherently controlled permutation on the n

maximally mixed spins, and measure the back-action on the first spin, as illustrated below.

α |0〉 + β |1〉 • H
FE






1
dJ

∑dJ

x=1 |J, x〉 〈J, x| / Uπ /
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This type of interferometric measurement is standard in quantum computing and is known

as the Hadamard test. The final measurement is in the {|0〉 , |1〉} basis. The probability of

outcome |0〉 is

p0 =
1

2

[

1 + 2Re

(

α∗β
∑dJ

x=1 〈J, x|Uπ |J, x〉
dJ

)]

.

As discussed in section 2, Uπ acts on the span of |J, 1〉 , |J, 2〉 , . . . , |J, dJ 〉 as an irreducible

representation of Sn. Specifically, Uπ acts as the irreducible representation corresponding to

a Young diagram of two rows where the overhang of the top row over the bottom row is 2J .

Thus,

p0 =
1

2

[

1 + 2Re

(

α∗β
χJ

dJ

)]

,

where χJ is the character of this irreducible representation.

By performing the Hadamard test O(1/ǫ2) times with α = β = 1√
2

one can estimate

Re
(

χJ

dJ

)

to within ±ǫ. Similarly, choosing α = 1√
2
, β = − i√

2
yields Im

(

χJ

dJ

)

. Thus this model

efficiently solves the problem of estimating χJ

dJ
to polynomial additive precision. Furthermore,

simulating this model reduces to the problem of estimating χJ

dJ
to polynomial additive preci-

sion. Thus this problem is complete for the one clean qubit version of permutational quantum

computation. Note that the hardness result holds for any choice of projective measurement,

not just H
FE





.

As shown in [29], the normalized character of any irreducible representation of the sym-

metric group can be approximated to ±ǫ with probability 1− δ in poly(n, 1/ǫ, log(1/δ)) time

on a classical computer using an algorithm based on random sampling. This shows that the

one clean qubit version of PQP is contained in the complexity class BPP. This contrasts with

DQC1, which is unlikely to be contained in BPP. One could interpret this as a form of indirect

evidence that PQP is weaker than BQP.

An arguably more compelling comparison can be made to topological computation. The

problem of estimating a particular matrix element of the Fibonacci representation of the braid

group Bn is BQP-complete[3, 10, 43]. Estimating the characters of the Fibonacci representa-

tion is DQC1-complete[15]. The Fibonacci representation of the braid group is closely related

to Young’s orthogonal representation of the symmetric group. More precisely, as discussed in

[17], the former is a q-deformation of the latter. The fact that estimating characters of Sn

is easier than estimating the characters of the corresponding Fibonacci representation of Bn

suggests that estimating matrix elements of Young’s orthogonal form may be easier than esti-

mating matrix elements of the Fibonacci representation. That is, it suggests that estimating

matrix elements of Young’s orthogonal form may not be BQP-complete.

8 Fault Tolerance

To implement a permutational quantum computation, one prepares spins into states of known

total angular momentum, moves the spins around, and measures total angular momentum.

For a fixed number of spins, the set of allowed operations is discrete and finite. Errors in

the trajectories of the spins do not cause computational errors unless the trajectory is so

deformed as to implement a different permutation than that intended. In this respect, the

permutational model is similar to the topological model. In the topological model, trajectory
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errors do not cause computational errors unless they are large enough to induce a braid other

than the one intended.

There is a second, more subtle way in which permutational quantum computers are re-

sistant to error; they are impervious to the effects of uniform magnetic fields. A uniform

magnetic field ~B acts on n spin-1/2 particles through the Hamiltonian

H ~B = ~B ·
n
∑

i=1

~Si,

where ~Si is the angular momentum operator on spin i, as described in equation 1. Applying

this Hamiltonian for time t induces the unitary transformation

U ~B(t) = e−iH ~B
t = u⊗n

for some u ∈ SU(2).

The unitary transformation u⊗n commutes with the total angular momentum operator Sb

for any subset b of the n spin-1/2 particles. Thus, it does not affect the computation. Recall

from section 2 that in addition to total angular momenta of various subsets of spins, we need

the operator

Ztotal =
1

2

n
∑

i=1

σ(i)
z

to obtain a complete set of commuting observables. u⊗n affects only the degree of freedom

described by the eigenvalue of this operator. (This is an example of Schur-Weyl duality[44].)

In the language of quantum error correction, the space of j-labeled tree states is a noiseless

subsystem[45] with respect to errors of the form u⊗n.

9 Concluding Remarks

In this paper we analyze a model of quantum computation based on the permutation of spin-

1/2 particles. We call the set of problems solvable in this model in polynomial time PQP.

Permutational computers can be simulated efficiently by standard quantum computers. Thus

PQP is contained in BQP. On the other hand, we have presented two quantum algorithms for

permutational quantum computers that seem to exhibit exponential speedup over classical

computation. Thus it seems unlikely that PQP is contained in P.

The question of whether PQP is equal to BQP remains open. In other words, we do

not know whether permutational quantum computers are universal. To begin to address

this question, we first review the techniques that were used to prove the universality of the

quantum circuits and topological quantum computers.

In principle, the set of unitary transformations that one might wish to perform on n qubits

is a compact but continuous group SU(2n). In contrast, the set of quantum circuits achievable

with a finite gate set is discrete. Nevertheless, certain finite sets of gates achieve universality

in the sense that the discrete infinite set of unitaries achievable by composing these gates

into quantum circuits is dense in SU(2n) [20]. Thus any desired unitary in SU(2n) can be

approximated to any desired level of precision by a sufficiently large quantum circuit. To

approximate an arbitrary unitary on n qubits to 1/poly(n) precision requires exponentially

many gates in general. Most research on quantum computation focuses on the small subset
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of SU(2n) implementable by circuits of poly(n) gates. Using the Solovay-Kitaev theorem[20],

one can show that this subset does not depend on the choice of gate set. That is, any universal

gate set can simulate any other with only logarithmic overhead.

Similarly, the braid group Bm on m strands is a discrete infinite group for any fixed m.

As shown in [3, 4, 10, 43], the unitary representations of Bm induced by certain anyons are

dense in the corresponding unitary groups. Furthermore, these authors show that the set of

unitaries approximable by braids of polynomially many crossings coincides with the set of

unitaries approximable by quantum circuits of polynomially many gates.

The permutational model of quantum computation is very different from the quantum

circuit model and anyonic models in that the set of unitaries achievable with n spins is finite.

As discussed in [13], the number coupling schemes for n spins, which we represent as binary

trees of n leaves, is Cn−1, where Cn is the nth Catalan number

Cn =
(2n)!

(n+ 1)!n!
.

When specifying a permutational computation we choose two such couplings and one of the n!

possible permutations. Thus, the number of implementable unitary transformations is upper

bounded by n!C2
n−1. By Stirling’s approximation this is 2O(n log n). In contrast, suppose we

want to choose a finite subset S of SU(d) such that for any u ∈ SU(d) there exists v ∈ S

such that ‖v−u‖ < ǫ. As discussed in [1], for fixed ǫ the smallest set S satisfying this density

condition has exponentially many elements as a function of d. The unitary transformations

of an n-spin permutational computer act on a Hilbert space whose dimension is exponential

in n. Any dense subset of the unitaries on this Hilbert space would therefore have a doubly

exponential number of elements. Thus the set of 2O(n log n) unitaries actually implementable

on a permutational quantum computer is very far from dense.

The limited number of unitaries implementable by a permutational quantum computer

with a fixed number of spins means that the standard universality arguments based on density

cannot work. If permutational computers are universal their method of simulating quantum

circuits will have to use a number of spins that scales not only with the number of qubits on

which the quantum circuit acts, but also on the number of gates in the circuit. Arguably the

failure of standard techniques of proving universality and the fact that the one clean qubit

version of permutational quantum computation is weaker than the one clean qubit version of

standard quantum computation suggest that PQP is in fact weaker than BQP.

The problem of whether PQP even contains all of P is also an open question. It could be

that PQP and P are incomparable, that is, classical computers and permutational quantum

computers can each solve some problems in polynomial time that the other cannot. Note

that, as discussed in section 2, analysis of this question requires a careful formulation of PQP.

The physical implementation of permutational quantum computers raises many additional

questions. For one, the problem of finding a physically realistic method to implement the

interferometric measurements discussed in section 2 remains unsolved. Without these we

obtain a slightly weaker version of permutational quantum computation in which the phase

information is unrecoverable.

In addition, one could investigate potential implementations of the permutational model

other than the actual manipulation of spin-1/2 particles. One possibility is to find a material
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whose quasiparticles obey the “braiding” and recoupling rules described in 4 and 5. In other

words, one could attempt to implement permutational quantum computation as a special case

of anyonic computation. As a more exotic possibility, it has been proposed that in addition to

Fermions and Bosons, which exchange according to the two one-dimensional representations

of the symmetric group, there could also exist fundamental particles that exchange according

to higher dimensional representations of the symmetric group. Such particles are said to obey

parastatistics[46]. Fundamental particles obeying parastatistics have never been observed, but

if they were, they would provide a computational resource akin to permutational quantum

computing. Additional work related to the physical implementation of PQP-like models can

be found in [47, 48].

Finding more algorithms for permutational quantum computers provides another direction

for further research. In particular, it does not seem obvious that the class of Ponzano-Regge

transition amplitudes approximated by the algorithm of section 6 exhausts the capabilities of

permutational quantum computers. It would be interesting to attempt to fully characterize

the set of Ponzano-Regge spin foams efficiently approximable in PQP.
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68:175–186, 1988.
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Appendix A Algorithm for two-manifold Equivalence

Closed orientable two-manifolds are completely specified up to homeomorphism by a single

integer, the genus, which counts how many “handles” a surface has, as illustrated below.

0 1 2

...

Genus is thus a complete two-manifold invariant; computing it solves the 2-manifold equiva-

lence problem. Euler showed that any closed triangulated orientable 2-manifold satisfies the

formula

V − E + F = 2 − 2g,

where V is the number of vertices, E the number of edges, and F the number of faces in the

triangulation, and g is the genus. Thus, g can be computed in time polynomial in the size of

the triangulation.

Appendix B Ponzano-Regge model as Quantum Gravity

According to general relativity, spacetime is a manifold that locally looks Minkowskian.

That is, within a sufficiently small region of spacetime there exists a choice of basis such that
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the distance metric is








−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

The vector component corresponding to the −1 matrix element is time, and the three remain-

ing components are space. Such a spacetime is often referred to as (3 + 1)-dimensional to

indicate the three spatial dimensions and single time dimension.

One can formulate (n+m)-dimensional analogues of general relativity for any integers n

and m. In particular, the (3 + 0)-dimensional analogue of general relativity, which uses the

ordinary Riemannian metric




1 0 0
0 1 0
0 0 1





turns out to be topological[49]. Due to the difficulty of formulating physically realistic quan-

tum gravity, some physicists have chosen to investigate quantum versions of (3+0)-dimensional

gravity. Due to its topological nature and other mathematical conveniences, this seems to be

easier than the full (3 + 1)-dimensional case. Thus (3 + 0)-dimensional quantum gravity may

serve as a useful toy model on which to develop intuitions and techniques needed to approach

the full (3 + 1)-dimensional case.

The Ponzano-Regge model[33] is one proposed model of (3 + 0)-dimensional quantum

gravity. It is an example of a spin foam model. The spin foam models are closely inspired by,

but distinct from, loop quantum gravity theories, which are obtained by applying canonical

quantization methods to general relativity. Interestingly, a completely different motivation

for the use of spin-networks in describing gravity, not related to canonical quantization, was

earlier given by Penrose[50].


