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We present an efficient general method for realizing a quantum walk operator corre-
sponding to an arbitrary sparse classical random walk. Our approach is based on Grover

and Rudolph’s method for preparing coherent versions of efficiently integrable probabil-
ity distributions [1]. This method is intended for use in quantum walk algorithms with
polynomial speedups, whose complexity is usually measured in terms of how many times

we have to apply a step of a quantum walk [2], compared to the number of necessary clas-
sical Markov chain steps. We consider a finer notion of complexity including the number
of elementary gates it takes to implement each step of the quantum walk with some
desired accuracy. The difference in complexity for various implementation approaches is

that our method scales linearly in the sparsity parameter and poly-logarithmically with
the inverse of the desired precision. The best previously known general methods either
scale quadratically in the sparsity parameter, or polynomially in the inverse precision.

Our approach is especially relevant for implementing quantum walks corresponding to
classical random walks like those used in the classical algorithms for approximating per-
manents [3, 4] and sampling from binary contingency tables [5]. In those algorithms,
the sparsity parameter grows with the problem size, while maintaining high precision is

required.
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1 Introduction

For many tasks, such as simulated annealing [6, 7], computing the volume of convex bodies

[8] and approximating the permanent of a matrix [3, 4] (see references in [9] for more), the

best approaches known today are randomized algorithms based on Markov chains (random

walks) and sampling. A Markov chain on a state space E is described by a stochastic matrix
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P = (pxy)x,y∈E . Its entry pxy is equal to the probability of making a transition from state x

to state y in the next step. If the Markov chain P is ergodic (see e.g. [10]), then there is a

unique probability distribution π = (πx)x∈E such that πP = π. This probability distribution

is referred to as the stationary distribution. Moreover, we always approach π from any

initial probability distribution, after applying P infinitely many times. For simplicity, we

assume that the Markov chain is reversible, meaning that the condition πxpxy = πypyx is

fulfilled for all distinct x and y. The largest eigenvalue of the matrix P is λ0 = 1. The

corresponding eigenvector is equal to the stationary distribution π. How fast a given Markov

chain approaches π is governed by the second eigenvalue λ1 of P (which is strictly less than

1), or viewed alternatively, by the eigenvalue gap δ = 1−λ1 of the matrix P . This determines

the performance of random walk based algorithms whose goal is to sample from the stationary

distribution π.

In [2], Szegedy defined a quantum walk as a quantum analogue of a classical Markov chain.

Each step of the quantum walk needs to be unitary, and it is convenient to define it on a

quantum system with two registers H = HL ⊗HR. The quantum update rule, defined in [11],

is any unitary that acts as

U |x〉L |0〉R = |x〉L
∑

y

√
pxy |y〉R (1)

on inputs of the form |x〉L |0〉R for all x ∈ E . (Its action on inputs |x〉L |y 6= 0〉R can be chosen

arbitrarily.) Using such U , we define two subspaces of H. First,

A = span{U |x〉L |0〉R} (2)

is the span of all vectors we get from acting with U on |x〉L |0〉R for all x ∈ E , and second,

the subspace B = SA is the subspace we get by swapping the two registers of A. Using the

quantum update, we can implement a reflection about the subspace A as

RefA = U (2 |0〉 〈0|R − I)U†. (3)

Szegedy defined a step of the quantum walk as

W = RefB · RefA, (4)

a composition of the two reflections about A and B. This operation is unitary, and the state

|ψπ〉 =
∑

x

∑

y

√
πxy |x〉1 |y〉2 , (5)

where π is the stationary distribution of P , is an eigenvector of W with eigenvalue 1. Szegedy

[2] proveddthat when we parametrize the eigenvalues of W as eiπθi , the second smallest phase

θ1 (after θ0 = 0) is related to the second largest eigenvalue λ1 of P as |θ1| >
√

1 − λ1. This

can be viewed as a square-root relationship ∆ >
√
δ between the phase gap ∆ = |θ1 − θ0|

of the unitary operator W and the spectral gap δ = |λ0 − λ1| of P . This relationship is at

the heart of the quantum speedups of quantum walk based algorithms over their classical

counterparts.

dNagaj et al. give a simpler way to prove this relationship using Jordan’s lemma in [21].
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Many of the recent quantum walk algorithms for searching [11, 12, 13, 14], evaluating for-

mulas and span programs [15, 16, 17], quantum simulated annealing [18], quantum sampling

[19, 20] and approximating partition functions based on classical Markov chains [9] can be

viewed in Szegedy’s generalized quantum walk model. For all these algorithms, an essential

step in implementing the quantum walk W is the ability to implement the quantum update

rule (1). For the basic search-like and combinatorial algorithms with low-degree underlying

graphs, an efficient implementation of the corresponding quantum walks is straightforward.

However, for complicated transition schemes coming from Markov chains like those for simu-

lated annealing or for approximating partition functions of the Potts model, the situation is

not so clear-cut. The standard polynomial speed-ups of these quantum algorithms are viewed

in terms of how many times we have to apply the quantum walk operator versus the number

of times we have to apply one step of the classical random walk (Markov chain). However,

a finer notion of complexity including the number of elementary gates it takes to implement

each step of the quantum walk is needed here. Our work addresses the question whether it is

possible to apply the steps of these quantum walk-based algorithms efficiently enough so as

not to destroy the polynomial speedups.

In Section 2, we review the recent alternative approaches to the implementation of U ,

such as those relying on efficient simulation of sparse Hamiltonians [22]. We find that they

either scale quadratically in the sparsity parameter d, or polynomially in 1
ǫ
, where ǫ is the

allowed error in the implementation of U . When there is only a small number of neighbors

connected to each state x, or we do not need to use many steps of the quantum walk so that

we can tolerate more implementation error, one could use these methods. However, the subtle

algorithms like [9] require many precise uses of U which couple many (a number growing with

the system size) neighboring states. In Appendix 1 we show a particular example (a first step

towards a possible future quantum version of the classical algorithm for approximating the

permanent [3, 4]), where the alternative approaches to U destroy the polynomial speedup of

the quantum algorithm. This is why we developed our new method, scaling linearly in the

sparsity parameter d and polynomially in log 1
ǫ
.

Our general approach to the implementation of quantum walks based on sparse classical

Markov chains is based on Grover and Rudolph’s method of preparing states corresponding

to efficiently integrable probability distributions [1]. In our case, the quantum samples we

need to prepare correspond to probability distributions that are supported on at most d states

of E , which implies that they are efficiently integrable. Thus, we can use the method [1] to

obtain an efficient circuit for the quantum update. The basic trick underlying Grover and

Rudolph’s method, preparing superpositions by subsequent rotations, was first proposed by

Zalka [23]. Note that Childs [24], investigating the relationship between continuous-time [25]

and discrete-time [26] quantum walks, also proposed to use [1], also for some quantum walks

with non-sparse underlying graphs.

This is our main result about the quantum update rule U , the essential ingredient in the

implementation of the quantum walk defined as the quantum analogue of the original Markov

chain:

Theorem 1: (An Efficient Quantum Update Rule) Consider a reversible Markov chain on

the state space E , with |E| = 2m, with a transition matrix P = (pxy)x,y∈E . Assume that
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• there are at most d possible transitions from each state (P is sparse),

• the transition probabilities pxy are given with t-bit precision, with t = Ω
(

log 1
ǫ

+ log d
)

,

• we have access to a reversible circuit returning the list of (at most d) neighbors of the

state x (according to P ), which can be turned into an efficient quantum circuit N :

N |x〉 |0〉 · · · |0〉 = |x〉 |yx
0 〉 · · ·

∣

∣yx
d−1

〉

, (6)

• we have access to a reversible circuit which can be turned into an efficient quantum

circuit T acting as

T |x〉 |0〉 · · · |0〉 = |x〉|pxyx

0
〉 · · · |pxyx

d−1
〉. (7)

Then there exists an efficient quantum circuit Ũ simulating the quantum update rule

U |x〉 |0〉 = |x〉
∑

y

√
pxy |y〉 , (8)

where the sum over y is over the neighbors of x, and pxy are the elements of P , with precision

∥

∥

∥

(

U − Ũ
)

|x〉 ⊗ |0〉
∥

∥

∥
≤ ǫ (9)

for all x ∈ E , with required resources scaling linearly in m, polynomially in log 1
ǫ

and linearly

in d (with an additional poly(log d) factor).

The paper is organized as follows. In Section 2, we describe the alternative approaches

one could take to implement the quantum update and discuss their efficiency. In Section 3 we

present our algorithm based on Grover & Rudolph’s state preparation method. We conclude

our discussion in Section 4. In Appendix 1, we give an example where our approach is better

than the alternative methods, and finally, we present the remaining details for the quantum

update circuit, its required resources, and its implementation in Appendix B.

2 Alternative Ways of Implementing the Quantum Update

Before we give our efficient method, we review the alternative approaches in more detail. We

know of three other ways how one could think of implementing the quantum update. The

first two are based on techniques for simulating Hamiltonian time evolutions, while the third

uses a novel technique for implementing combinatorially block-diagonal unitaries.

The first method is to directly realize the reflection RefA as exp(−iΠAτ) for time τ = π
2 ,

where the projector ΠA onto the subspace A turns out to be a sparse Hamiltonian. Observe

that the projector

ΠA =
∑

x∈E

|x〉〈x| ⊗
∑

y,y′∈E

√
pxy

√
pxy′ |y〉〈y′|

is a sparse Hamiltonian provided that P is sparse. Thus, we can approximately implement

the reflection RefA by simulating the time evolution according to H = ΠA for the time

τ = π
2 . The same methods apply to the reflection RefB, so we can approximately implement

the quantum walk W (P ), which is a product of these two reflections. The requirements of

this method scale polynomially in 1
ǫ
, where ǫ is the desired accuracy of the unitary quantum

update. Moreover, the number of gates used in each U scales at least linearly with d and m.
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The second approach is to apply novel general techniques for implementing arbitrary row-

and-column-sparse unitaries, due to Childs [27] and Jordan and Wocjan [28]. Similarly to the

first method, it relies on simulating a sparse Hamiltonian for a particular time. However, the

complexity of this method again scales polynomially in 1
ǫ

(and linearly in d and m).

The third alternative is to utilize techniques for implementing combinatorially block-

diagonal unitary matrices. A (unitary) matrix M is called combinatorially block-diagonal

if there exists a permutation matrix P (i.e., a unitary matrix with entries 0 and 1) such that

PMP−1 =

B
⊕

b=1

Mb

and the sizes of the blocks Mb are bounded from above by some small d. The method works

as follows: each x ∈ E can be represented by the pair {b(x), p(x)}, where b(x) denotes the

block number of x and p(x) denotes the position of x inside the block b(x). The unitary M

can then be realized by

(i) the basis change |x〉 7→ |b(x)〉 ⊗ |p(x)〉,
(ii) the controlled operation

∑B

b=1 |b〉〈b| ⊗Mb , and

(iii) the basis change |b(x)〉 ⊗ |p(x)〉 7→ |x〉.

The transformations Mb can be implemented using O(d2) elementary gates based on the

decomposition of unitaries into a product of two-level matrices [29]. The special case d = 2

is worked out in the paper by Aharonov and Ta-Shma [30]. The reflection RefA = 2ΠA − I

then has the form

RefA =
∑

x∈E

|x〉〈x| ⊗





∑

y,y′∈E

√
pxy

√
pxy′ |y〉〈y′| − δy,y′



 ,

where δy,y′ = 1 for y = y′ and 0 otherwise. Viewed in this form, we see that RefA is a

combinatorially block-diagonal unitary matrix, with a block decomposition with respect to

the ‘macro’ coordinate x. Inside each ‘macro’ block labeled by x, we obtain a ‘micro’ block

of size d corresponding to all y with pxy > 0 and many ‘micro’ blocks of size 1 corresponding

to all y with pxy = 0 after a simple permutation of the rows and columns. The disadvantage

of this way of implementing quantum walks is that its complexity scales quadratically with d

(and linearly in m and log 1
ǫ
), the maximum number of neighbors for each state x.

In the next Section, we show how to implement the quantum update rule by a circuit

with the number of operations scaling linearly with the sparsity parameter d (with additional

poly(log d) factors), linearly in m = log |E| and polynomially in log 1
ǫ
.

3 Overview of the Quantum Algorithm

Our efficient circuit for the Quantum Update Rule

U |x〉L |0〉R = |x〉L
d−1
∑

i=0

√
pxyx

i
|yx

i 〉R (10)

works in the following way:
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Fig. 1. The scheme for preparing the superposition
∑d−1

i=0

√

q
(log d)
i |i〉 in log d rounds.

(i) Looking at x in the ‘left’ register, put a list of its (at most d) neighbors yx
i into an extra

register and the corresponding transition probabilities pxyx

i
into another extra register.

(ii) Using the list of probabilities, prepare the superposition

d−1
∑

i=0

√
pxyx

i
|i〉S (11)

in an extra ‘superposition’ register S.

(iii) Using the list of neighbors, put
∑d−1

i=0
√
pxyx

i
|yx

i 〉R |i〉S in the registers R and S.

(iv) Clean up the S register using the list of neighbors of x and uncompute the transition

probability list and the neighbor list.

We already assumed we can implement Step 1 of this algorithm efficiently. The second,

crucial step is described in Section 3.1. Additional details for steps 3 and 4 are spelled out in

Appendix B. Finally, the cleanup step 4 is possible because of the unitarity of step 1.

3.1 Preparing superpositions à la Grover and Rudolph

The main difficulty is the efficient preparation of (11). We start with a list of transition

probabilities {pxyx

i
, 0 ≤ i ≤ d− 1} with the normalization property

∑d−1
i=0 pxyx

i
= 1. Our

approach is an application of the powerful general procedure of [1]. The idea is to build the

superposition up in log d rounds of doubling the number of terms in the superposition (see

Figure 1). Each round involves one of the qubits in the register S, to which we apply a

rotation depending on the state of qubits which we have already touched.

For simplicity, let us first assume all points x have exactly d neighbors and that all transi-

tion probabilities pxyx

i
are nonzero, and deal with the general case in Section 3.2. To clean up

the notation, denote qi = pxyx

i
. Working up from the last row in Figure 1 where q

(log d)
i = qi,

we first compute the d− 1 numbers q
(k)
i for i = 0, . . . , 2k − 1 and k = 0, . . . , (log d) − 1 from

q
(k−1)
i = q

(k)
2i + q

(k)
2i+1. (12)

The transition probabilities sum to 1, so we end with q
(0)
0 = 1 at the top.

Our goal is to prepare |ψlog d〉 =
∑d−1

i=0

√
qi |i〉. We start with log d qubits in the state

|ψ0〉 = |0〉1 |0〉2 · · · |0〉log d . (13)
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In the first round we prepare

|ψ1〉 =

(
√

q
(1)
0 |0〉1 +

√

q
(1)
1 |1〉1

)

|0〉2 · · · |0〉log d (14)

by applying a rotation to the first qubit. A rotation

R(θ) =

[

cos θ − sin θ
sin θ cos θ

]

, (15)

by θ
(1)
0 = cos−1

√

q
(1)
0 does this job. In the second round, we apply a rotation to the second

qubit. However, the amount of rotation now has to depend on the state of the first qubit.

When the first qubit is |0〉, we apply a rotation by

θ
(2)
0 = cos−1

√

√

√

√

q
(2)
0

q
(1)
0

, (16)

Analogously, when the first qubit is |1〉, we choose

θ
(2)
1 = cos−1

√

√

√

√

q
(2)
2

q
(1)
1

. (17)

Observe that the second round turns (14) into

|ψ2〉 =

(
√

q
(2)
0 |00〉1,2 +

√

q
(2)
1 |01〉1,2 +

√

q
(2)
2 |10〉1,2 +

√

q
(2)
3 |11〉1,2

)

|0〉3 · · · |0〉log d . (18)

Let us generalize this procedure. Before the j-th round, the qubits j and higher are still in

the state |0〉, while the first j − 1 qubits tell us where in the tree (see Figure 1) we are. In

round j, we thus need to rotate the j-th qubit by

θ
(j)
i = cos−1

√

√

√

√

q
(j)
2i

q
(j−1)
i

, (19)

depending on the state |i〉 which is encoded in binary in the first j − 1 qubits of the ‘super-

position’ register S.

Applying log d rounds of this procedure results in preparing the desired superposition (11),

with the states |i〉 encoded in binary in the log d qubits.

3.2 A nonuniform case

In Section 3.1, we assumed each x had exactly d neighbors it could transition to. To deal

with having fewer neighbors (and zero transition probabilities), we only need to add an extra

‘flag’ register Fi for each of the d neighbors yx
i in the neighbor list. This ‘flag’ will be 0 if the

transition probability pxyx

i
is zero. Conditioning the operations in steps 2-4 of our algorithm

(see Section 3) on these ‘flag’ registers will deal with the nonuniform case as well.
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3.3 Precision requirements

We assumed that each of the probabilities pxyx

i
was given with t-bit precision. Our goal was

to produce a quantum sample (11) whose amplitudes would be precise to t bits as well. Let

us investigate how much precision we need in our circuit to achieve this.

For any x, the imperfections in qlog d
i = pxyx

i
(see Section 3.1) come from the log d rotations

by imperfectly calculated angles θ. The argument of the inverse cosine in (19)

a
(j)
i =

√

√

√

√

q
(j)
2i

q
(j−1)
i

(20)

obeys 0 ≤ a
(j)
i ≤ 1. The errors in the rotations are the largest for a

(j)
i close to 0 or 1 (i.e.

when the θ’s are close to π
2 or 0). To get a better handle on these errors, we introduce extra

flag qubits signaling a
(j)
i = 0 or a

(j)
i = 1 (see Appendix B for details). In these two special

cases, the rotation by θ becomes an identity or a simple bit flip. On the other hand, because

the q’s are given with t bits, for a’s bounded away from 0 and 1, we have

√

2−t

1
≤ a ≤

√

1 − 2−t

1
. (21)

We choose to use an n-bit precision circuit for computing the a’s, guaranteeing that |ã− a| ≤
2−n. Using the Taylor expansion, we bound the errors on the angles θ:

|θ̃ − θ| = | cos−1 ã− cos−1 a| =

∣

∣

∣

∣

(ã− a)
d cos−1 a

da
+ . . .

∣

∣

∣

∣

≤ c1
2−n

√
1 − a2

≤ c12
−n+ t

2 , (22)

because a is bounded away from 1 as (21).

Each amplitude in (11) comes from multiplying out log d terms of the form cos θj
i or sin θj

i .

For our range of θ’s, the error in each sine or cosine is upper bounded by

| sin θ̃ − sin θ| ≤ |θ̃ − θ|, | cos θ̃ − cos θ| ≤ |θ̃ − θ|. (23)

Therefore, the final error in each final amplitude is upper bounded by

∆i =
∣

∣

∣

√

q̃i −
√
qi

∣

∣

∣
≤ c1(log d)2−n+ t

2 . (24)

Note that the factor log d is small. Therefore, to ensure t-bit precision for the final amplitudes,

it is enough to work with n = 3
2 t+ Ω(1) bits of precision during the computation of the θ’s.

We conclude that our circuit can be implemented efficiently and keep the required precision.

4 Conclusion

The problem of constructing explicit efficient quantum circuits for implementing arbitrary

sparse quantum walks has not been considered in detail in the literature so far. We were

interested in an efficient implementation of a step of a quantum walk and finding one with a

favorable scaling of the number of required operations with d (the sparsity parameter) and

the accuracy parameter 1
ǫ
. Its intended use are algorithms based on quantum walks with

polynomial speedups over their classical Markov Chain counterparts.
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We showed how to efficiently implement a generalequantum walk W (P ) derived from an

arbitrary sparse classical random walk P = (pxy)x,y∈E . We constructed a quantum circuit Ũ

that approximately implements the quantum update rule (8) with circuit complexity scaling

only linearly (with additional logarithmic factors) in d, the degree of sparseness of P , linearly

in m = log |E| and polynomially in log 1
ǫ
, where ǫ denotes the desired approximation accuracy

(9).

It has been known that quantum walks could be implemented using techniques for simu-

lating Hamiltonian time evolutions. However, the complexity would grow polynomially in 1
ǫ

if we were to rely on simulating Hamiltonian dynamics (see Section 2). This would be fatal

for quantum algorithms such as the one for estimating partition functions in [9] or future

algorithms for approximating the permanent, losing the polynomial quantum speed-ups over

their classical counterparts. An alternative for implementing quantum walks whose running

complexity scales logarithmically in 1
ǫ

exists. It relies on the implementation of combinatori-

ally block-diagonal unitaries. However, its running time grows quadratically in d (see Section

2). When the sparsity of the walk d grows with the system size n, this brings an extra factor of

n to the complexity of the algorithms, destroying or decreasing its polynomial speedup. This

is true e.g. for the example given in Appendix 1. Therefore, our approach to the quantum

update is again more suitable for this task.
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Appendix A: Applications

A.1 Approximating the Permanent: Where Sparsity and Accuracy Matter

In this Appendix we present a particular example of a quantum algorithm with a polyno-
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mial speedup over its classical counterpart, requiring our efficient approach to implementing

quantum walks. The example is a rather näıve quantization of the classical algorithm for

approximating the permanent of a matrix

per(A) =
∑

σ

n
∏

i=1

ai,σ(i), (A.1)

where σ runs all over the permutations of [1, . . . , n]. For a 0/1 matrix A, the permanent of A is

exactly the number of perfect matchings in the bipartite graph with bipartite adjacency matrix

A. A classical FPRAS (fully polynomial randomized approximation scheme) [4] for this task

involves taking O∗
(

n7
)

steps of a Markov chain (here O∗ means up to logarithmic factors). It

produces an approximation to the permanent within [(1 − η) per(A), (1 + η) per(A)] by using

1. ℓ = O∗(n) stages of simulated annealing,

2. at each stage, generating S = O∗
(

n2
)

samples from a particular Markov chain,

3. T = O∗
(

n4
)

Markov chain invocations to generate a sample from its approximate steady

state.

The failure probability of each stage is set to η̂ = o
(

1/m4
)

so that η = ℓη̂ is small. Hence,

the total complexity (number of Markov chain steps used) is ℓST = O∗
(

n7
)

.

The sparsity parameter d of the Markov chains involved scales with the problem size m.

Therefore, the dependence of the implementation of the corresponding quantum walk on d

becomes significant. Furthermore, because of the many stages of simulated annealing and

sampling, the error ǫ in implementation of each quantum walk operator needs to smaller than

one over the number of quantum walk steps involved.

The simplest quantized algorithm uses a quantum walk instead of the Markov Chain, and

requires O∗
(

n5
)

steps of a quantum walk, as the mixing of the quantum walk requires only√
T = O∗

(

n2
)

steps. However, it is important to choose an efficient circuit to implement

each step of the quantum walk. A bad choice could destroy the speedup.

Let us compare what happens when this algorithms utilizes the different methods for

quantum walk implementation as subroutines, counting the number of required elementary

gates. Note that in this counting, all of the methods (classical and quantum) we will mention

share a common factor m (the log of the state space size). However, the scaling in d (the

sparsity parameter) and 1
ǫ

(precision) is what distinguishes them.

Let us look at the alternative approaches given in Section 2, and show that the small

n2 polynomial speedup is lost. The first two of these approaches scale with 1
ǫ
. This brings

an extra 1
ǫ
∝

√
T ∝ n2 factor to the complexity of the algorithm, destroying the speedup.

The third alternative uses O∗
(

d2
)

elementary gates, adding an extra factor of d2 = n2,

again destroying the speedup. On the other hand, our method uses only O∗ (d) = n gates

(the scaling coming from precision requirements only adds logarithmic factors), and we thus

retain some of the quantum advantage.

This example was just an illustration of a scenario, where our efficient implementation

of a quantum walk (see Section 3) is necessary. However, we see its use in a future much

better quantum algorithm for approximating the permanent, using not only quantum walks,

but also quantizing the sampling/counting subroutine as in [9].
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|00〉flg

SC

• |φ〉flg

|c〉

θ

|c〉

|b〉 |b〉

|0〉 |θ〉

Fig. B.1. The Determine Angle Circuit DAC.

Appendix B: Additional Details for the Efficient Quantum Update Circuit

In this Appendix, we spell out additional details for our Quantum Update circuit as well as

draw the circuit out for a d = 4.

The state space of the classical Markov chain P is E , with |E| = 2m. The entries of P

are pxy, the transition probabilities from state x to state y. We assume that P is sparse, i.e.

that for each x ∈ E there are at most d neighbors yx
i such that pxyx

i
> 0, and their number

is small, i.e. d ≪ 2m. Since d is a constant, we can assume without loss of generality that

d = 2r. We want to implement the quantum (8), where |x〉 ∈ C
2m.

B.1 Preparation

Classically, our knowledge of P can be encoded into efficient reversible circuits outputting the

neighbors and transition probabilities for the point x. We will use quantum versions N and

T of these circuits, with the following properties. The neighbor circuit N acts on d copies of

C
|E| and produces a list of neighbors of x as

N |x〉L |0〉⊗d
= |x〉L ⊗ |yx

0 〉 · · ·
∣

∣yx
d−1

〉

. (B.1)

All the transition probabilities pxyx

i
are given with t-bit precision. The transition probability

circuit T acts on a register holding a state |x〉 and d copies of
(

C
2
)⊗t

, producing a list of

transition probabilities for neighbors of |x〉 as

T |x〉L |0〉⊗d
= |x〉L ⊗ |pxyx

0
〉 · · · |pxyx

d−1
〉. (B.2)

To simplify the notation, let us label qi = pxyx

i
. We now prepare all the terms q

(k)
i , filling

the tree in Figure (1). Starting from q
(log d)
i = qi, we use an adding circuit (ADD) doing the

operation q
(k−1)
i = q

(k)
2i + q

(k)
2i+1. The probability distribution {qi} is efficiently integrable, so

filling the tree of q
(k)
i is easy, and we can use Grover and Rudolph’s method [1] of preparing

quantum samples for such probability distributions.

B.2 Determining the rotation angles

After the preparation described in the previous Section, we need to compute the appropriate

rotation angles θ̃
(k)
i for Grover and Rudolph’s method. For this, we use the Determine Angle

Circuit (DAC). This circuit produces

θ
(k)
i = cos−1

√

√

√

√

q
(k)
2i

q
(k−1)
i

, (B.3)
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|0〉

EQ
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|0〉flg1
|φ1〉flg1

|c〉

EQ

|c〉

|0〉flg2
|φ2〉flg2

|b〉 |b〉

Fig. B.2. The circuit SC handling special cases.

while also handling the special cases q
(k)
2i = q

(k−1)
i and q

(k−1)
i = 0. For simplicity, let us label

b = q
(k−1)
i , c = q

(k)
2i . The DAC circuit first checks the special cases, and then, conditioned

on the state of the two two flag qubits, computes (B.3). We draw it in Figure B.1, with the

special case-analysing circuit SC given in Figure B.2. Here EQ is a subroutine testing whether

two qubits (in computational basis states) are the same. The first EQ tests the states |0〉 and

|c〉, while the second EQ runs the test on |c〉 and |b〉. We have the following four scenarios

depending on the flag qubits

00 the circuit θ computes normally ,
01, 11 the circuit θ does nothing (keeps angle = 0, as b = c) ,
10 the circuit θ outputs θ = π/2, as c = 0.

(B.4)

The third option corresponds to c = 0, when all the probability in the next layer of the tree is

concentrated in the right branch. We then simply flip the superposition qubit, using θ = π
2 .

B.3 Creating superpositions and mapping

After the angle is determined, we apply the corresponding rotation to the appropriate qubit

in the superposition register S, as described in Section 3.1. We then uncompute the rotation

angle.

Once the final superposition is created in S, we invoke a mapping circuit M . This M acts

on the register holding the names of the d neighbors of x, the superposition register, and the

output register R. It takes yx
j , the name of the j-th neighbor of x, and puts it into the output

register as

M |0〉R ⊗ |yx
0 〉 ⊗ . . .⊗ |yx

d−1〉 ⊗ |j〉S = |yx
j 〉R ⊗ |yx

0 〉 ⊗ . . .⊗ |yx
d−1〉 ⊗ |j〉S . (B.5)

We can do this, because the names of the states in E are given as computational basis states.

The next step is to uncompute the label j in the last register with a cleaning circuit C as

C|yx
i 〉R ⊗ |yx

0 〉 ⊗ . . .⊗ |yx
d−1〉 ⊗ |j〉 =

{

|yx
i 〉R ⊗ |yx

0 〉 ⊗ . . .⊗ |yx
d−1〉 ⊗ |j〉 if i 6= j

|yx
i 〉R ⊗ |yx

0 〉 ⊗ . . .⊗ |yx
d−1〉 ⊗ |0〉 if i = j.

(B.6)

These two steps transferred the superposition from the register S (with r = log d qubits), into

the output register R (which has m qubits). The final step of our procedure is to uncompute

(clean up) the lists of neighbors and transition probabilities.

B.4 The required resources
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Table B.1. Required numbers of qubits

Register Type Required number of qubits
x (register L) m

y (register R) m

yx
i (neighbor list) d × m

qi’s (probabilities) (2d − 2) × t

flag qubits 2
θ (rotation angle) n = 3t

2
+ Ω(1)

ancillae for computing θ aθ = poly(n) = poly(t)
superposition register S r = log d

Let us count the number of qubits and operations required for our quantum update rule

U based on a d-sparse stochastic transition matrix P . The number of ancillae required is

Ω(dm + dt), where 2m is the size of the state space and t is the required precision of the

transition probabilities. Moreover, the required number of operations scales like Ω(d rmaθ),

where r = log d and aθ is the number of operations required to compute the angle θ with

n = Ω(t)-bit precision. Finally, when we have t-bit precision of the final amplitudes, the

precision of the unitary we applied is

∥

∥

∥

(

U − Ũ
)

|x〉 ⊗ |0〉
∥

∥

∥
≤ ǫ, (B.7)

for any x ∈ E when t = Ω
(

log d+ log 1
ǫ

)

. The total number of operations in our circuit thus

scales like

Ω

(

mdpoly (log d) +md (log d) poly

(

log
1

ǫ

))

. (B.8)

Besides the registers for the input |x〉L and output |0〉R, we need d registers (with m

qubits) to hold the names of the neighbors of x, and 2d− 2 registers (with t qubits) to store

the transition probabilities qi. The DAC circuit requires two extra flag qubits and a register

with n = 3t
2 +Ω(1) qubits to store the angle θ. Computing the angle θ requires a circuit with

poly(n) qubits. Finally, the superposition register S holds r qubits. These requirements are

summed in Table B.1.

To conclude, we draw out the superposition-creating part of the quantum update for d = 4

in Figure B.3. The first two lines represent the superposition register S, in which we prepare

|ϕ〉 =

√

q
(2)
0 |00〉 +

√

q
(2)
1 |01〉 +

√

q
(2)
2 |10〉 +

√

q
(2)
3 |11〉 =

3
∑

i=0

√
qi |i〉 . (B.9)



434 Efficient circuits for quantum walks

Fig. B.3. The efficient Quantum Update, creating the superposition (11) for d = 4. The bottom
two lines represent the ‘superposition’ register S.


