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(Applied Mathematics Letters 22(10):1609-1615, 2009) and construct new integral cir-
culants and regular graphs with perfect state transfer. More specifically, we show that
the integral circulant ICGn({2, n/2b} ∪ Q) has perfect state transfer, where b ∈ {1, 2},
n is a multiple of 16 and Q is a subset of the odd divisors of n. Using the standard
join of graphs, we also show a family of double-cone graphs which are non-periodic but
exhibit perfect state transfer. This class of graphs is constructed by simply taking the
join of the empty two-vertex graph with a specific class of regular graphs. This answers
a question posed by Godsil (arxiv.org math/08062074).

Keywords: Quantum walks, perfect state transfer, integral circulants, join of graphs

Communicated by : R Cleve & J Watrous

aContact author: tino@clarkson.edu

325



326 Perfect state transfer, integral circulants, and join of graphs

1 Introduction

In quantum information systems, the transfer of quantum states from one location to another

is an important feature. The problem is to find an arrangement of n interacting qubits in

a network which allows perfect transfer of any quantum state over various distances. The

network is typically described by a graph where the vertices represent the location of the

qubits and the edges represent the pairwise coupling of the qubits. The graph has two

special vertices labeled a and b which represent the input (source) and output (target) qubits,

respectively. In most cases of interest, it is required that perfect state transfer be achieved

without dynamic control over the interactions between the qubits. These are the so-called

permanently coupled (unmodulated) spin networks.

We may view the perfect state transfer problem in the context of quantum walks on graphs

[1, 2]. Here the initial state of the quantum system is described by the unit vector on vertex a.

To achieve perfect transfer to vertex b at time t, the quantum walk amplitude of the system

at time t on vertex b must be of unit magnitude. That is, to obtain perfect transfer or unit

fidelity, we require

|〈b|e−itAG |a〉| = 1, (1)

where AG is the adjacency matrix of the underlying graph G. The main goal here is to

characterize graph structures which allow such perfect state transfer.

Christandl et al. [3] showed that the Cartesian products of paths of length two or three

possess perfect state transfer between antipodal vertices – vertices at maximum distance

from each other. They also noted that paths of length four or larger do not possess perfect

state transfer if the edges are weighted equally. But, Christandl et al. [4] showed that a

layered path-like graph of diameter n has perfect state transfer, for any n. More recently,

Bernasconi et al. [5] gave a complete characterization for graphs from the hypercube family.

They proved that perfect state transfer on the generalized n-cube is possible at time t = π/2

between “antipodal” vertices. Here, “antipodal” depends on the particular sequence that

defines the generalized n-cube.

Saxena et al. [6], Tsomokos et al. [7], and Bašić et al. [8] studied perfect state transfer

in integral circulant graphs. Tsomokos et al. [7] showed perfect state transfer in the class of

cross polytope or cocktail party graphs. Bašić et al. [8] completely characterized perfect state

transfer on unitary Cayley graphs which are equivalent to the integral circulants ICGn({1})
whose arc lengths must be relatively prime to n. They proved that K2 and C4 are the only

unitary Cayley graphs with perfect state transfer. Recently, Bašić and Petković [9] proved

that the integral circulants ICGn({1, n/4}) and ICGn({1, n/2}), for n divisible by 8, have

perfect state transfer. In the latter family of integral circulants, we have an example of

graphs with perfect state transfer between non-antipodal vertices – vertices which are not at

maximum distance from each other. This answers a question posed by Godsil [10]. In this

paper, we construct new integral circulants with perfect state transfer by utilizing the join

and Cartesian product of graphs.

First, we generalize the graph join to an operation we call the circulant join G+CG between

a circulant graph G and a Boolean circulant matrix C. This operation allows us to interpolate

between the standard join G+G and the bunkbed (hypercube) operator K2 ⊕G and, under

certain conditions, will produce new circulant graphs. We recover the Cartesian product

K2⊕G by taking C = I, and the standard joinG+G (where all edges between vertices from the
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Fig. 1. Small perfect state transfer graphs. From left to right: (a) K2; (b) P3; (c) C4.

distinct copies of G are present) by taking C = J (the all-one matrix). If G has perfect state

transfer at time t⋆, then so does G+C G at time t⋆ provided cos(t⋆
√
CTC) = ±I. Moreover,

G+CG is a circulant graph whenever C is a palindrome circulant; that is, the sequence which

defines C is a palindrome. This allows us to construct new families of circulants with perfect

state transfer, namely, ICGn({2, n/2b} ∪ Q), b ∈ {1, 2}, where n is divisible by 16 and Q is

a subset of the odd divisors of n. This expands the class of known integral circulants which

exhibit perfect state transfer.

Next, we study graph operators that preserve perfect state transfer. A known example is

the Cartesian product of graphs as observed by Christandl et al. [3] in the n-fold Cartesian

products of paths of length two and three, namely, K⊕n
2 and P⊕n

3 . First, we note that this

observation can be generalized to Cartesian products of different perfect state transfer graphs
⊕

k Gk assuming these graphs have the same perfect state transfer times. We also prove

closure properties of the m-fold self-join
∑m

k=1G of a graph G with itself. In part, this is one

generalization of the standard join G + G we consider in this work. Using these results, we

construct new graphs with perfect state transfer, such as G⊕m and G+m, where G is one of

ICGn({1, n/2b}) or ICG2n({2, n/2b−1} ∪Q), where n is a multiple of 8, b ∈ {1, 2}, and Q is

any subset of the odd divisors of n. These new graphs, however, are not necessarily circulants.

Finally, we consider the join of two arbitrary regular graphs. Bose et al. [11] studied

perfect state transfer on the complete graphs Km in the so-called XYZ interaction model.

Here, the quantum walk evolves according to the Laplacian of the underlying graph instead

of the adjacency matrix (the XY model). They show that, although Km does not have perfect

state transfer, the double-cone K2 +Km−2 does. The latter graph is obtained from Km by

removing an edge, say (a, b), and perfect state transfer occurs between a and b. We study a

generalization of their construction by considering the join G + H of two arbitrary regular

graphs. We show that the existence of perfect state transfer on G+H can be reduced to its

existence in G along with some additional conditions on the sizes and regularities of G and

H . These conditions are independent of the internal structures of the graphs.

Using this result, we construct a family of double-cone non-periodic graphs with perfect

state transfer which answers a question posed by Godsil [10]. We also study the double-

cone graphs K2 + G, K2 + G, for any n-vertex k-regular graph G. We derive sufficient

conditions on n and k which allow perfect state transfer between the two special vertices.

This complements results found in [11] for the Laplacian model. Our constructions involving

K2 +G also showed that perfect state transfer between non-antipodal vertices is possible. As

in the case of ICGn({1, n/2}), this answers Godsil’s other question [10].

Our work heavily exploits the spectral properties of the underlying graphs and their ma-

trices. It is also based on the number-theoretic tools used to characterize integral circulants.
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Fig. 2. Integral circulants with perfect state transfer. From left to right: (a) ICG8({1, 2}); (b)
ICG8({1, 4}). Perfect state transfer occurs from x to x + 4 at time π/2 in both graphs (see [9]).

A more complete treatment of this beautiful connection between circulants, number theory

and graph theory can be found in earlier works by So [13], Saxena et al. [6], and Bašić et al.

[8, 9].

2 Preliminaries

For a logical statement S, the Iversonian [[S]] is 1 if S is true and 0 otherwise (see [12]). Let

Zn denote the additive group of integers {0, . . . , n− 1} modulo n. We use I and J to denote

the identity and all-one matrices, respectively; we use X to denote the Pauli-σX matrix.

The graphs G = (V,E) we study are finite, simple, undirected, and connected. The

adjacency matrix AG of a graph G is defined as AG[u, v] = [[(u, v) ∈ E]]. A graph is called

integral if its adjacency matrix has only integer eigenvalues. A graph G is circulant if its

adjacency matrix AG is circulant. A circulant matrix A is completely specified by its first

row, say [a0, a1, . . . , an−1], and is defined as A[j, k] = ak−j (mod n), where j, k ∈ Zn:

A =











a0 a1 . . . an−1

an−1 a0 . . . an−2

...
... . . .

...
a1 a2 . . . a0











(2)

Note that a0 = 0, since our graphs are simple, and aj = an−j, since our graphs are undirected.

The best known families of circulant graphs include the complete graphs Kn and cycles Cn.

Alternatively, a circulant graph G = (V,E) can be specified by a subset S ⊆ Zn, where

(j, k) ∈ E if k − j ∈ S. Thus, S defines the set of edge distances between adjacent vertices.

In this case, we write G = G(n, S). We will assume that S is closed under taking inverses,

namely, if d ∈ S, then −d ∈ S. For a divisor d of n, let Gn(d) = {k : gcd(n, k) = d, 1 ≤ k < n}.
It was proved by So [13] that a circulant G(n, S) is integral if and only if S =

⋃

d∈D Gn(d),

for some subset D of Dn, where Dn = {d : d|n, 1 ≤ d < n} is the set of divisors of n. That

is, a circulant is integral if its edge distances are elements of Gn(d), d ∈ D, for some subset

D ⊆ Dn. We denote this family of integral circulants as ICGn(D) (following the notation

used in [8]).

All circulant graphs G are diagonalizable by the Fourier matrix F whose columns |Fk〉
are defined as 〈j|Fk〉 = ωjk

n /
√
n, where ωn = exp(2πi/n). In fact, we have FAF † =√

n · diag(FA0), for any circulant A, where A0 = A|0〉 is the first column of A. This shows
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that the eigenvalues of A are given by

λj =

n−1
∑

k=0

an−k ω
jk
n . (3)

The Cartesian product G ⊕H of graphs G and H is a graph whose adjacency matrix is

I ⊗AH +AG ⊗ I. The join G+H of graphs G and H is defined as G+H = G ∪H ; that is,

we connect all vertices of G with all vertices of H . The adjacency matrix of G +H is given

by

[

AG J
J AH

]

, with the appropriate dimensions on the two all-one J matrices. For more

background on algebraic graph theory, we refer the reader to the monographs by Biggs and

by Godsil and Royle [14, 15] as well as to the survey article by Schwenk and Wilson [16].

For a graph G = (V,E), let |ψ(t)〉 ∈ C|V | be a time-dependent amplitude vector over V .

Then the continuous-time quantum walk on G is defined using Schrödinger’s equation as

|ψ(t)〉 = e−itAG |ψ(0)〉, (4)

where |ψ(0)〉 is the initial amplitude vector (see [1]). Further background on quantum walks

on graphs can be found in the excellent surveys by Ambainis [17], Kempe [18], and Kendon

[2]. We say G has perfect state transfer from vertex a to vertex b at time t⋆ if

|〈b|e−it⋆AG |a〉| = 1, (5)

where |a〉, |b〉 denote the unit vectors corresponding to the vertices a and b, respectively. The

graph G has perfect state transfer if there exist vertices a and b in G and a time t⋆ so that

(5) is true. Also, we call a graph G periodic if for any state |ψ〉, there is a time t⋆ so that

|〈ψ|e−itAG |ψ〉| = 1.

3 Circulant Joins

In this section, we describe a new graph operator which preserves perfect state transfer. For

a n-vertex graph G and a n× n Boolean matrix C, define the circulant join G = G+C G as a

graph whose adjacency matrix is

AG =

[

AG C
CT AG

]

. (6)

That is, we take two copies of G and connect vertices from the corresponding copies using

the matrix C. Here, we do not require that C be the adjacency matrix of a graph. This

generalizes the join G+G = G+J G and the bunkbed K2 ⊕G = G+I G. For these self-join

constructions of a graph G with itself, where there are two copies of G, if u is a vertex of G,

then we denote (u, s), s ∈ {0, 1}, as the vertex u in the s-th copy of G.

Theorem 1 Let C be a n × n circulant matrix. If G is a n-vertex circulant graph with

perfect state transfer from a to b at time t⋆, then the circulant join G+C G has perfect state

transfer from vertex (a, 0) to vertex (b, s), s ∈ {0, 1}, at time t⋆ provided that
[

cos(t⋆
√
B)
]1−s [

sin(t⋆
√
B)B−1/2CT

]s

= ±I (7)

where B = CTC, and B−1 exists whenever s = 1. Moreover, G +C G is a circulant graph if

C is a palindrome circulant matrix, where cj = cn−1−j, for j = 0, . . . , n− 1.



330 Perfect state transfer, integral circulants, and join of graphs

Proof Note that the adjacency matrix of G = G+C G can be rearranged as

CA =
(

C ⊗ |0〉〈1| + CT ⊗ |1〉〈0|
)

+AG ⊗ I2. (8)

It is clear that C and CT commute since they are both circulants. Next, observe that

[

C ⊗ |0〉〈1| + CT ⊗ |1〉〈0|
]ℓ

=

{

Bk ⊗ I2 if ℓ = 2k
BkC ⊗ |0〉〈1| +BkCT ⊗ |1〉〈0| if ℓ = 2k + 1

(9)

In the above equation, notice that the even or odd powers vanish depending on s:

〈b|〈0|
[

BkC ⊗ |0〉〈1| +BkCT ⊗ |1〉〈0|
]

|a〉|0〉 = 0. (10)

and

〈b|〈1|Bk ⊗ I2|a〉|0〉 = 0. (11)

Thus, perfect state transfer in G can be reduced to perfect state transfer in G as follows:

〈b, s|e−it⋆CA |a, 0〉 = 〈b|〈s|e−it⋆(C⊗|0〉〈1|+CT⊗|1〉〈0|)e−it⋆(AG⊗I2)|a〉|0〉 (12)

= 〈b|〈s|e−it⋆(C⊗|0〉〈1|+CT⊗|1〉〈0|)(e−it⋆AG ⊗ I2)|a〉|0〉 (13)

=

{

〈b| cos(t⋆
√
B)e−it⋆AG |a〉 if s = 0

−i〈b| sin(t⋆
√
B)B−1/2CT e−it⋆AG |a〉 if s = 1

(14)

This proves the first claim.

To see that G is a circulant graph if C is a palindrome circulant matrix, we view the

adjacency matrix CA as an “interweaving” of AG with C and CT as follows:

CA =























a0 (c0) a1 (c1) a2 (c2) . . . an−1 (cn−1)
[c0] a0 [cn−1] a1 [cn−2] a2 . . . [c1] an−1

an−1 (cn−1) a0 (c0) a1 (c1) . . . an−2 (cn−2)
[c1] an−1 [c0] a0 [cn−1] a1 . . . [c2] an−2

...
...

...
...

...
... . . .

...
...

a1 (c1) a2 (c2) a3 (c3) . . . a0 (c0)
[cn−1] a1 [cn−2] a2 [cn−3] a3 . . . [c0] a0























(15)

where AG = (aj), C = ((cj)), and CT = ([cj ]). We have distinguished the elements of C and

CT by using (c) and [c], respectively. Now, applying cj = cn−1−j , for j = 0, . . . , n− 1, it is

clear that the above is a circulant matrix; hence, G is a circulant graph.

As corollaries to the above theorem, we show the conditions for which the hypercube

Cartesian product and the join of a perfect state transfer graph with itself preserves the

perfect state transfer property.

Corollary 1 If G is an n-vertex circulant that has perfect state transfer from a to b at time

t⋆ ∈ (2Z + 1)π
2 , then the bunkbed K2 ⊕G has perfect state transfer from (a, 0) to (b, 1), where

(a, 0) denotes vertex a in the first copy of G and (b, 1) denotes vertex b in the second copy of

G.
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Proof Since K2 ⊕ G = G +I G, the eigenvalues of the connection matrix are µk = 1 for all

k. By Theorem 1, we require sin(t⋆In) = ±In for perfect state transfer. This is equivalent to

sin(t⋆) = ±1 which is satisfied whenever t⋆ ∈ (2Z + 1)π
2 .

Corollary 2 If G is an n-vertex circulant graph that has perfect state transfer from a to b at

time t⋆, then so does the circulant graph G+G provided nt⋆ ∈ 2πZ.

Proof Since G + G = G +J G, by Theorem 1 we require cos(t⋆Λ) = In, where Λ =

diag(n, 0, . . . , 0). This is equivalent to requiring cos(nt⋆) = 1 which is satisfied when nt⋆ ∈
2πZ.

Remark: It can be shown that for n = 2u, where u ≥ 3, the only Boolean circulant matrices

C that yield a circulant graph G +C G, for an n-vertex G, are the trivial matrices, namely,

C ∈ {In, Jn, On}, where On is the n×n all-zero matrix. In the next theorem, we show that for

n that is a multiple of 8, if n has a non-trivial odd divisor, then there exist integral circulant

graphs ICG2n(D), for |D| ≥ 3, with perfect state transfer which are obtained from non-trivial

circulant joins.

Notation: For an integer m, let Dm = {d : d|m, 1 ≤ d ≤ m} be the set of all divisors of m.

Also, for an integer k and a set A ⊆ Z, we use kA to denote {ka : a ∈ A}.

Theorem 2 Let n = 2um, where u ≥ 3 and m ≥ 3 is an odd number. Suppose that

G = ICGn(D), for D = {1, n/4} or D = {1, n/2}. For any subset Q ⊂ Dm, there is a

Boolean circulant matrix C 6∈ {In, Jn, On} so that

G+C G = ICG2n(2D ∪Q) (16)

has perfect state transfer from 0 to n/2 in G at time t⋆ = π/2,

Proof For q ∈ Q, let N(q) = {r ∈ Dm : r/q is an odd prime }. Define, for j = 0, . . . , n− 1,

cj(q) = [[2j + 1 ≡ 0(mod q) ∧ ∀r ∈ N(q) : 2j + 1 6≡ 0(mod r)]]. (17)

Now let cj(Q) =
∑

q∈Q cj(q). Note that cj(q)’s are disjoint, since at most one index j will

satisfy cj(q) = 1 for q ∈ Q. The Boolean circulant C is defined by the following first row

C = [c0(Q) . . . cn−1(Q)]. (18)

To see that C is a palindrome, note that 2(n−1−j)+1 ≡ 0 (mod q) is equivalent to 2j+1 ≡ 0

(mod q), for any q ∈ Dm.

Since the integral circulants ICGn({1, n/2b}), b ∈ {1, 2}, have t⋆ = π/2 as the perfect state

transfer time, we will show that cos(|λk|π/2) = 1, for all eigenvalues λk of C, k = 0, . . . , n−1.
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The eigenvalues of C are given by

λk =
n−1
∑

j=0

cj(Q)ω−jk
n =

n−1
∑

j=0

∑

q∈Q

cj(q)ω
−jk
n =

∑

q∈Q

n−1
∑

j=0

cj(q)ω
−jk
n (19)

=
∑

q∈Q







n
q
−1
∑

ℓ=0

ω−(⌊q/2⌋+ℓq)k
n −

∑

r∈N(q)

n
r
−1
∑

ℓ=0

ω−(⌊r/2⌋+ℓr)k
n







(20)

=
∑

q∈Q







n

q
ω−⌊q/2⌋k

n [[k ≡ 0(mod n/q)]] −
∑

r∈N(q)

n

r
ω−⌊r/2⌋k

n [[k ≡ 0(mod n/r)]]







(21)

Now, we consider the exponent in the term ω
−⌊q/2⌋k
n , where k satisfies k ≡ 0 (mod n/q).

Thus, there is an integer κ so that qk = κn or (2⌊q/2⌋ + 1)k = κn. Note that κ depends on

k. After rearranging, we get −⌊q/2⌋k = k
2 − κn

2 . Thus,

ω−⌊q/2⌋k
n = ωk/2

n (ω−n/2
n )κ = ωk/2

n (−1)κ. (22)

Thus, we have

λk ∈ ωk/2
n (−1)κ2uZ. (23)

It is clear now that cos(|λk|π/2) = cos(2πZ) = 1, for all k = 0, . . . , n− 1. So, by Theorem 1,

G+C G has perfect state transfer at time π/2.

Now, we show that if G = ICGn(D), then G+CG = ICG2n(2D∪Q), where 2D = {2d : d ∈
D}. Let B be the circulant adjacency matrix ofG+CG defined by the sequence [b0, . . . , b2n−1].

From the “interweaving” property of B in (15), we know that for k ∈ {0, . . . , 2n− 1}

bk =

{

ak/2 if k is even
c⌊k/2⌋ if k is odd

(24)

We consider two cases based on whether k is even or odd. For k odd, we have

bk = c⌊k/2⌋ (25)

= [[∃q ∈ Q : 2⌊k/2⌋+ 1 ≡ 0(mod q) ∧ ∀r ∈ N(q) : 2⌊k/2⌋+ 1 6≡ 0(mod r)]] (26)

= [[∃q ∈ Q : k ≡ 0(mod q) ∧ ∀r ∈ N(q) : k 6≡ 0(mod r)]] (27)

= [[∃q ∈ Q : gcd(k, 2n) = q]], (28)

whereas for k even, we have

bk = ak/2 = [[gcd(k/2, n) ∈ D]] = [[gcd(k, 2n) ∈ 2D]]. (29)

This proves the claim by taking D = {1, n/4} or D = {1, n/2}.

Corollary 3 For n = 2u, for u ≥ 3, the integral circulant graphs ICG2n({1, 2, n/2}) and

ICG2n({1, 2, n}) have perfect state transfer from 0 to n at time t⋆ = π/2.
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Fig. 3. Standard circulant joins on C4. From left to right: (a) Cartesian bunkbed C4 +I C4; (b)
Self-join C4 +J C4

Proof Take the self-joins of ICGn({1, n/4}) and ICGn({1, n/2}) which have perfect state

transfer as shown by Bašić and Petković [9].

In the next corollary, we consider the class of circulant permutation matrices C. These

matrices are defined by specifying a unit vector (with a one in a single entry and zeros

elsewhere) as their first row, and they satisfy CTC = I. We show that if G has perfect state

transfer from a to b at time t⋆, then so does G+CG from a in the first copy of G to Cb (image

of vertex b under the permutation C) in the second copy of G at time t⋆.

Corollary 4 Let G be a n-vertex graph and let C be a n × n circulant permutation matrix.

If G has perfect state transfer from vertex a to b at time t⋆, then G +C G has perfect state

transfer from vertex (a, 0) to (Cb, 1) at time t⋆, where Cb is the image of vertex b under the

permutation C.

Proof Let G = G+C G. Since C is a permutation matrix, we have CTC = I. Applying (14)

in the proof of Theorem 1, we get

〈b|〈1|e−itAG |a〉|0〉 = −i〈b|CT e−itAG |a〉. (30)

which can be rearranged as 〈Cb|〈1|e−itAG |a〉|0〉 = −i〈b|e−itAG |a〉.

Remark: The above corollary shows that if there is perfect state transfer in G from vertex a

to vertex b then there is perfect state transfer from (a, 0) to any vertex (c, 1) in G+CG. This

is achieved by choosing a permutation matrix C so that Cb = c.

4 Cartesian Products and Self-Joins

We show that a heterogeneous Cartesian product of perfect state transfer graphs has perfect

state transfer. This generalizes the observations on the hypercube K⊕n
2 and the Cartesian

product P⊕n
3 of paths of length three (see [3]).

Theorem 3 For j = 1, . . . ,m, the graph Gj has perfect state transfer from aj to bj at

time t⋆ if and only if G =
⊕m

j=1Gj has perfect state transfer from (a1, . . . , am) to (b1, . . . , bm)
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at time t⋆.

Proof We prove the claim for m = 2. Then,

〈b1, b2|e−itAG1⊕G2 |a1, a2〉 = 〈b1, b2|e−it(I⊗AG2
+AG1

⊗I)|a1, a2〉 (31)

= 〈b1|〈b2|e−it(I⊗AG2
)e−it(AG1

⊗I)|a1〉|a2〉 (32)

= 〈b1|〈b2|(I ⊗ e−itAG2 )(e−itAG1 ⊗ I)|a1〉|a2〉 (33)

= 〈b1|e−itAG1 |a1〉〈b2|e−itAG2 |a2〉. (34)

This shows that G1 ⊕G2 has perfect state transfer from (a1, a2) to (b1, b2) at time t⋆ if and

only if G1 has perfect state transfer from a1 to b1 at time t⋆ and G2 has perfect state transfer

from a2 to b2 at time t⋆. The general claim follows easily by induction.

Corollary 5 For any m and n so that n ≡ 0 (mod 8), the family of graphs
⊕m

k=1Gk, where

Gk ∈ {ICGn({1, n/2b}), ICG2n({2, n/2b−1} ∪Q)}, b ∈ {1, 2} and Q is a subset of the set of

odd divisors of n, has perfect state transfer from vertex 0 to n/2 at time t⋆ = π/2.

Proof Follows from Theorem 3, the results of Bašić et al. [9], and Theorem 1.

We also show that the m-fold join of a perfect state transfer graph preserves perfect state

transfer under certain conditions. Denote G+m as the m-fold self-join
∑m

j=1G.

Theorem 4 Let G be an n-vertex regular graph. For m ≥ 1, the existence of perfect

state transfer in G+m between vertices a and b (in the same copy of G) can be reduced to its

existence in G as follows:

〈0, b|e−itA
G+m |0, a〉 = 〈b|e−itAG |a〉 +

[

(m− 1)(eitn − 1) + e−it(m−1)n − 1

mn

]

〈1n|e−itAG |a〉,
(35)

where AG is the adjacency matrix of G and |1n〉 is the all-one column vector of length n.

Proof The adjacency matrix of G+m is given by Im ⊗ AG + Km ⊗ Jn, where Km is the

adjacency matrix of the complete graph on m vertices. First note that Jℓ
n = nℓ−1Jn, if ℓ ≥ 1,

and J0
n = In. Also, notice that AG commutes with Jn since G is a regular graph. Moreover,

Km = Jm − Im. Thus, using the binomial theorem, we get

Kℓ
m =

1

m

{

(−1)ℓ(mIm − Jm) + (m− 1)ℓJm

}

. (36)
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Therefore,

e−it(Km⊗Jn) =
∞
∑

ℓ=0

(−it)ℓ

ℓ!
Kℓ

m ⊗ Jℓ
n (37)

= Im ⊗ In +

∞
∑

ℓ=1

(−it)ℓ

ℓ!
Kℓ

m ⊗ Jℓ
n (38)

= Im ⊗ In +
1

n

∞
∑

ℓ=1

(−it)ℓ

ℓ!
Kℓ

m ⊗ (nℓJn) (39)

= Im ⊗ In +
(eitn − 1)

mn
(mIm − Jm) ⊗ Jn +

(e−it(m−1)n − 1)

mn
Jm ⊗ Jn(40)

We can now analyze the quantum walk amplitude from vertex a to b (in the same copy of G).

We get

〈0, b|e−itA
G+m |0, a〉 = 〈0|〈b|e−it(Km⊗Jn)e−it(Im⊗AG)|0〉|a〉 (41)

= 〈0|〈b|e−it(Km⊗Jn)(Im ⊗ e−itAG)|0〉|a〉 (42)

= 〈0|〈b|e−it(Km⊗Jn)(|0〉 ⊗ e−itAG |a〉) (43)

Expanding the second term using (40) and multiplying the two terms on the left, we get

(

〈0|〈b| + (eitn − 1)

mn
(m〈0| − 〈1m|) ⊗ 〈1n| +

(e−it(m−1)n − 1)

mn
〈1m| ⊗ 〈1n|

)

(|0〉 ⊗ e−itAG |a〉).
(44)

Finally, combining this with the last term, we arrive at

〈b|e−itAG |a〉 +
1

mn

[

(eitn − 1)(m− 1) + e−it(m−1)n − 1
]

〈1n|e−itAG |a〉, (45)

which proves the claim.

Corollary 6 For any m ≥ 1 and n ≡ 0 (mod 8), the family of graphs G+m, where G ∈
{ICGn({1, n/2b}), ICG2n({2, n/2b−1} ∪Q)}, with n ≡ 0 (mod 8), b ∈ {1, 2}, and a subset Q

of the odd divisors of n, has perfect state transfer between vertices 0 and n/2 (in the same

copy of G).

Proof By Theorem 4, to achieve perfect state transfer in G+m, it suffices to have perfect

state transfer in G at time t⋆ and have eit⋆n = 1. By the results of Bašić et al. [9] and by

Theorem 2, the integral circulant graphs stated in the claim have perfect state transfer from

vertex 0 to vertex n/2 at time t⋆ = π/2. Therefore, it suffices to have n ∈ 4Z. Since n ≡ 0

(mod 8), this holds for any m.

Corollary 7 For any m ≥ 1 and n ≥ 2, the family of graphs Q+m
n , where Qn is the binary

n-dimensional hypercube, has perfect state transfer between antipodal vertices in the same copy

of Qn.
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Proof Bernasconi et al. [5] proved that Qn has perfect state transfer between its antipodal

vertices at time t⋆ = π/2. Note that the number of vertices of Qn is N = 2n. Using Theorem

4, it suffices to set eit⋆N = 1 or N ≡ 0 (mod 4). This is always true since N = 2n, with

n ≥ 2.

5 Join of Regular Graphs

We show that the existence of perfect state transfer in a join of two arbitrary regular graphs

can be reduced to perfect state transfer in one of the graphs along with certain additional

constraints on the sizes and degrees of the graphs. These conditions are independent of the

internal structures of the graphs.

Theorem 5 Let G be an m-vertex kG-regular graph and let H be an n-vertex kH-regular

graph. Suppose that a and b are two vertices in G. Then,

〈b|e−itAG+H |a〉 = 〈b|e−itAG |a〉 +
e−itkG

m

{

eitδ/2

[

cos

(

∆t

2

)

− i

(

δ

∆

)

sin

(

∆t

2

)]

− 1

}

(46)

where δ = kG − kH and ∆ =
√
δ2 + 4mn.

Proof Let a, b be two vertices of G. Then,

〈b|e−itAG |a〉 = 〈b|
{

m−1
∑

k=0

|uk〉〈uk|e−itλk

}

|a〉 (47)

where λk and |uk〉 are the eigenvalues and eigenvectors of AG, for k = 0, . . . ,m−1. We assume

|u0〉 is the all-one eigenvector (that is orthogonal to the other eigenvectors) with eigenvalue

λ0 = kG. By the same token, let κℓ and |vℓ〉 be the eigenvalues and eigenvectors of AH , for

ℓ = 0, . . . , n − 1. Also, |v0〉 is the all-one eigenvector (with eigenvalue κ0 = kH) which is

orthogonal to the other eigenvectors |vℓ〉, ℓ 6= 0.

Let G = G+H . Note that the adjacency matrix of G is

AG =

[

AG Jm×n

Jn×m AH

]

. (48)

Let δ = kG − kH . The eigenvalues and eigenvectors of AG are given by the three sets:

• For k = 1, . . . ,m − 1, let |uk, 0n〉 be a column vector formed by concatenating the

column vector |uk〉 with the zero vector of length n. Then, |uk, 0n〉 is an eigenvector

with eigenvalue λk.

• For ℓ = 1, . . . , n− 1, let |0m, vℓ〉 be a column vector formed by concatenating the zero

vector of length m with the column vector |vℓ〉. Then, |0m, vℓ〉 is an eigenvector with

eigenvalue κℓ.



R.-J. Angeles-Canul, R.M. Norton, M.C. Opperman, C.C. Paribello, M.C. Russell, and C. Tamon 337

• Let |±〉 = 1√
L±

|α±, 1n〉 be a column vector formed by concatenating the vector α±|1m〉
with the vector |1n〉, where |1m〉, |1n〉 denote the all-one vectors of length m, n, respec-

tively. Then, |±〉 is an eigenvector with eigenvalue λ± = kH +mα±. Here,

α± =
1

2m
(δ ± ∆), L± = m(α±)2 + n. (49)

In what follows, we will abuse notation by using |a〉, |b〉 for both G andG+H ; their dimensions

differ in both cases, although it will be clear from context which version is used. The amplitude

of the quantum walk on vertex b starting at vertex a is given by

〈b|e−itAG |a〉 = 〈b|e−itAG

{

m−1
∑

k=1

〈uk, 0n|a〉|uk, 0n〉 +
∑

±

α±
√

L±

|±〉
}

(50)

= 〈b|
{

m−1
∑

k=1

〈uk|a〉e−itλk |uk, 0n〉 +
∑

±

α±
√

L±

e−itλ± |±〉
}

(51)

=
m−1
∑

k=1

〈b|uk〉〈uk|a〉e−itλk +
∑

±

α2
±

L±
e−itλ± (52)

= 〈b|
{

m−1
∑

k=0

|uk〉〈uk|e−itλk

}

|a〉 − e−itkG

m
+
∑

±

α2
±

L±
e−itλ± (53)

= 〈b|e−itAG |a〉 +
∑

±

α2
±

L±
e−itλ± − e−itkG

m
. (54)

We analyze the second term next. Note that we have the following identities:

α+α− = −(n/m) (55)

α+ + α− = δ/m (56)

L+L− = (n/m)∆2 (57)

L+ + L− = ∆2/m (58)

(α±)2L∓ = (n/m)L± (59)

λ± = (δ̂ ± ∆)/2 (60)

where δ̂ = kG + kH . Therefore, the summand in (54) is given by

∑

±

α2
±

L±
e−itλ± =

1

m
e−itδ̂/2

[

cos

(

∆t

2

)

− i

(

δ

∆

)

sin

(

∆t

2

)]

. (61)

This yields

〈b|e−itAG |a〉 = 〈b|e−itAG |a〉 +
e−itkG

m

{

eitδ/2

[

cos

(

∆t

2

)

− i

(

δ

∆

)

sin

(

∆t

2

)]

− 1

}

(62)

which proves the claim.



338 Perfect state transfer, integral circulants, and join of graphs

Fig. 4. Double Cones. From left to right: (a) K2 + C8; (b) K2 + C8; (c) Cocktail Party (hyper-
octahedral).

In what follows, we describe several applications of Theorem 5 to the double-cones K2 + G

and K2 +G and also to the construction of a family of non-periodic graphs with perfect state

transfer. The existence of the latter family of graphs was one of the main questions posed by

Godsil [10]. For a prime p, we denote Sp(n) to be the largest non-negative integer j so that

pj |n.

Corollary 8 For any k-regular graph G on n vertices, K2 + G has perfect state transfer

between the two non-adjacent vertices of K2 if ∆ =
√
k2 + 8n is an integer and k,∆ ≡ 0

(mod 4) with S2(k) 6= S2(∆).

Proof Let G = K2 +G. By Theorem 5, since there is no transfer between the two vertices of

K2, we have

〈b|e−itAG |a〉 =
1

2

{

e−itk/2

[

cos

(

∆t

2

)

+ i

(

k

∆

)

sin

(

∆t

2

)]

− 1

}

. (63)

To achieve unit magnitude, it is necessary and sufficient to require cos(kt/2) cos(∆t/2) = −1.

Note that setting k = 0 (i.e. G is the empty graph on n vertices) will result in this condition

being satisfied for t = 2π/∆. This is, in a sense, a generalization of P3, which has perfect

state transfer [3].

Otherwise, assume k = 2k0k1, where k1 is odd; and ∆ = 2d0d1, where d1 is odd. Since

there is no transfer in K2, we may choose t ∈ Qπ and require that ∆ be an integer. It is clear

that kt/2 and ∆t/2 must have opposite parities as multiples of π. This implies k0 6= d0. If

k0 > d0, we have

n =
1

8
(∆2 − k2) =

1

8
(4d0d2

1 − 4k0k2
1) =

4d0

8
(d2

1 − 4k0−d0k2
1). (64)

Since (d2
1 − 4k0−d0k2

1) is odd and n is an integer, 8 divides 4d0 which implies d0 ≥ 2 and

k0 > 2. A similar argument when k0 < d0 shows that d0 > k0 ≥ 2. Thus, both k and ∆ are

multiples of 4.

Remark: Using k ≡ 0 (mod 4), n = k+2,∆ = k+4 satisfy the conditions of Corollary 8, and

thus the graph G = K2 +G has perfect state transfer. In this case, G can be represented by

a type of circulant graph called a hyperoctahedral, or cocktail-party, graph [14] (see Figure 4).
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These graphs are formed by removing n/2+1 disjoint edges from Kn+2. This class of graphs,

which is also called the class of cross polytope graphs, was also studied by Tsomokos et al. [7].

Next, we answer a question of Godsil [10] (Section 10, question (b)) by constructing an infinite

family of non-periodic graphs with the perfect state transfer property.

Corollary 9 For ℓ ≥ 2, the family of double-cone graphs K2 + (C2(2ℓ−1) ⊕ C2ℓ+1) is non-

periodic and has perfect state transfer.

Proof Let G = C2(2ℓ−1) ⊕C2ℓ+1, for ℓ ≥ 2. Note that G is a k-regular graph with k = 4 and

n = 2(4ℓ2 − 1) vertices. Using the notation of Theorem 5, we have ∆ =
√
k2 + 8n = 8ℓ. The

eigenvalues of G are given by the sum of the eigenvalues of the two cycles:

λ(G) = λ(C2(2ℓ−1)) + λ(C2ℓ+1). (65)

Recall that the eigenvalues of an n-cycle are given by 2 cos(2πk/n), for k = 0, . . . , n− 1. So,

each cycle has 2 (its degree) as its largest eigenvalue. Thus, the sums of the cycle eigenvalues

contain both integers and irrational numbers. For n = 5 and n ≥ 7, at least some of these

values are irrational. This is because the only rational values of cos((a/b)π), for a, b ∈ Z, are

{0,±1/2,±1} (see Corollary 3.12 in Niven [19]). Note that 2(2ℓ− 1) ≥ 5 and 2ℓ+ 1 ≥ 5 hold

for ℓ ≥ 2, and that both expressions cannot equal 6.

The eigenvalues of G = K2 + G will then be all of the eigenvalues of G (except for 4),

0, and λ± = 1
2 (4 ± 8ℓ) = 2 ± 4ℓ by (60). This means that G has a mixture of integral and

irrational eigenvalues. By Lemma 4.1 in [10], the graph G is non-periodic. By Corollary 8,

since ∆ = 8ℓ is an integer and S2(k) 6= S2(∆), we know that G has perfect state transfer.

This proves the claim.

Remark: Taking ℓ = 2 in Corollary 9, we get G = K2 + C5 ⊕ C6. Again by Lemma 4.1 in

[10], G is non-periodic since its eigenvalues contain both integers and irrational numbers. By

Corollary 9, we know it has perfect state transfer although it violates the eigenvalue ratio

condition (λk − λℓ)/(λr − λs) ∈ Q, for λr 6= λs. This is in contrast to Theorem 2.1 in [10]

and to the mirror-symmetric networks in Section III from [4]. Our double-cone construction

is mirror-symmetric with respect to the two vertices of K2.

Corollary 10 For any n-vertex k-regular graph G, let k̃ = k − 1. Then, K2 +G has perfect

state transfer between the two adjacent vertices of K2 if ∆ =
√

k̃2 + 8n is an integer and

k̃,∆ ≡ 0 (mod 8).

Proof Let G = K2 +G. By Theorem 5, since there is perfect state transfer between the two

vertices of K2 at time t⋆ = (2Z + 1)π
2 , we have

〈b|e−it⋆AG |a〉 = 〈b|e−it⋆AG |a〉 +
e−it⋆

2

{

e−it⋆k̃/2

[

cos

(

t⋆∆

2

)

+ i

(

k̃

∆

)

sin

(

t⋆∆

2

)

]

− 1

}

.

(66)
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To achieve perfect state transfer in G, it suffices to require

e−it⋆

2

{

e−it⋆k̃/2

[

cos

(

t⋆∆

2

)

+ i

(

k̃

∆

)

sin

(

t⋆∆

2

)

]

− 1

}

= 0 (67)

or equivalently, cos(t⋆k̃/2) cos(t⋆∆/2) = 1 with ∆ ∈ Z. Thus, it is sufficient to choose k̃,∆ ≡ 0

(mod 8) given t⋆ ∈ (2Z + 1)π
2 .

Remark: The above corollaries complement the results of Bose et al. [11] on K2 +Km−2 and

K2 +Km−2 in the XYZ (Laplacian) interaction model. They showed that Km has no perfect

state transfer, but if we delete the edge (a, b) then there is perfect state transfer between a

and b.

6 Conclusion

In this work, we studied perfect state transfer on quantum networks represented by graphs

in the XY (adjacency) interaction model. Prior to our work, the only unweighted graphs

known to have perfect state transfer were the cube-like networks [5], the Cartesian product

P⊕n
3 of paths of length three [3], the path-like layered graph of diameter n [4], and the

integral circulant graphs ICGn({1, n/2b}), for n ≡ 0 (mod 8) and b ∈ {1, 2} [9]. We described

constructions of new families of graphs with perfect state transfer using graph operators which

preserve this property. More specifically, we used the graph-theoretic join and its circulant

generalizations as well as the Cartesian product. Most of our results involved a reduction

argument from the larger graph structure to the individual graphs with respect to the perfect

state transfer property.

We generalized both the “hypercube” Cartesian product and the join graph operators by

defining a so-called circulant join G+CG of two copies of a circulant graph G and connecting

them using a circulant matrix C. This allowed us to interpolate between the above two

interesting constructions and produced a graph operator that preserves the circulant property.

From this construction, we derived new families of circulant graphs with perfect state transfer,

namely, ICGn({2, n/2b} ∪Q), b ∈ {1, 2}, where Q is a subset of the odd divisors of n. This

expanded the class of circulant graphs known to have perfect state transfer (see [8, 9]).

Then, we showed that the Cartesian product of different perfect state transfer graphs

has perfect state transfer provided all of these graphs share the same transfer time. This

generalized previous results for paths of length two and three [3]. For the n-fold self-join, we

showed that the existence of perfect state transfer on G+n can be reduced to its existence in

G along with other conditions. These observations allowed us to construct new families of

graphs with perfect state transfer, for example ICGn({1, n/2})+m or
⊕m

k=1Gk, where Gk is

any of the known integral circulant and hypercubic graphs with perfect state transfer, for any

integer m.

Finally, we considered the join G+H of two arbitrary regular graphs. Again, we reduced

the existence of perfect state transfer on G+H to its existence in G along with some conditions

on the sizes and degrees of the two graphs. From this reduction, we constructed an interesting

double-cone family of graphs K2 +G which are non-periodic but with perfect state transfer.

This answered one of the main questions posed in Godsil [10]. This also complemented results

in Bose et al. [11] on perfect state transfer in the complete graphs Km with a missing edge.



R.-J. Angeles-Canul, R.M. Norton, M.C. Opperman, C.C. Paribello, M.C. Russell, and C. Tamon 341

Their results were stated in the XYZ (Laplacian) model while our results hold in the XY

(adjacency) model.

It seems plausible that there is a characterization of perfect state transfer in integral

circulants G(n,
⋃

d∈D Gn(d)), for any D, using the join operator. This will complement the

characterization of unitary Cayley graphs where D = {1} [8]. It would also be interesting to

consider perfect state transfer in weighted graphs (see [3]), especially on unweighted graphs

which are known to lack the property. Finally, we find it curious that most of the graphs

known with perfect state transfer achieve this at time t⋆ = (2Z + 1)π/2. This is true for the

cube-like graphs [5] and for the integral circulants [9]. The lone exceptions are paths of length

three [3] and the double-cones K2 +G, for suitable chosen regular graphs G.
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