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We reduce a case of the hidden subgroup problem (HSP) in SL(2; q), PSL(2; q), and
PGL(2; q), three related families of finite groups of Lie type, to efficiently solvable HSPs
in the affine group AGL(1; q). These groups act on projective space in an “almost”

3-transitive way, and we use this fact in each group to distinguish conjugates of its
Borel (upper triangular) subgroup, which is also the stabilizer subgroup of an element
of projective space. Our observation is mainly group-theoretic, and as such breaks little
new ground in quantum algorithms. Nonetheless, these appear to be the first positive

results on the HSP in finite simple groups such as PSL(2; q).
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1 Introduction: hidden subgroup problems

One of the principal quantum algorithmic paradigms is the use of the Fourier transform to

discover periodicities hidden in a black-box function f defined on a group. In the examples

relevant to quantum computing, an oracle function f defined on a group G has “hidden

periodicity” if there is a “hidden” subgroup H of G so that f is precisely invariant under

translation by H or, equivalently, f is constant on the cosets of H and takes distinct values

on distinct cosets. The hidden subgroup problem is the problem of determining the subgroup

H (or, more generally, a short description of it, such as a generating set) from such a function.

The standard approach is to use the oracle function f to create coset states

ρH =
1

|G|
∑

c∈G

|cH〉 〈cH|
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where

|cH〉 =
1

√

|H|
∑

h∈H

|ch〉 .

Different subgroups yield different coset states, which must then be distinguished by some

series of quantum measurements.

For abelian subgroups, sampling these states in the Fourier basis of the group G is sufficient

to completely determine a hidden subgroup in an efficient manner. For nonabelian subgroups,

the Fourier basis takes the form {|ρ, i, j〉} where ρ is the name of an irreducible representation

and i and j index a row and column in a chosen basis. Although a number of interesting

results have been obtained on the nonabelian HSP, the groups for which efficient solutions

are known remain woefully few. Friedl, Ivanyos, Magniez, Santha, and Sen solve a problem

they call the Hidden Translation Problem, and thus generalize this further to what they call

“smoothly solvable” groups: these are solvable groups whose derived series is of constant

length and whose abelian factors are each the direct product of an abelian group of bounded

exponent and one of polynomial size [4]. Moore, Rockmore, Russell, and Schulman give an

efficient algorithm for the affine groups AGL(1; p) = Zp⋊Z
∗
p, and more generally Zp⋊Zq where

q = (p − 1)/polylog(p). Bacon, Childs, and van Dam derive algorithms for the Heisenberg

group and other “nearly abelian” groups of the form A ⋊ Zp, where A is abelian, by showing

that the “Pretty Good Measurement” is the optimal measurement for distinguishing the

corresponding coset states [1]. Recently, Ivanyos, Sanselme, and Santha [7, 8] give an efficient

algorithm for the HSP in nilpotent groups of class 2.

However, for groups of the greatest algorithmic interest, such as the symmetric group Sn

for which solving the HSP would solve Graph Isomorphism, the hidden subgroup problem

appears to be quite hard. Moore, Russell, and Schulman showed that the standard approach

of Fourier sampling individual coset states fails [14]. Hallgren et al. showed under very general

assumptions that highly-entangled measurements over many coset states are necessary in any

sufficiently nonabelian group [6]. For Sn in particular, Moore, Russell and Śniady showed

that the main proposal for an algorithm of this kind, a sieve approach due to Kuperberg [9],

cannot succeed [15].

It is tempting to think that the difficulty of the HSP on the symmetric group is partly

due to the appearance of the alternating group An as a subgroup. For n ≥ 5, An forms one

of the families of nonabelian finite simple groups. All known algorithmic techniques for the

HSP work by breaking the group down into abelian pieces, as a semidirect product or through

its derived series. Since simple groups cannot be broken down this way, it seems that any

positive results on the HSP for simple groups is potentially valuable.

We offer a small advance in this direction. We show how to efficiently solve a restricted

case of HSP for the family of finite simple groups PSL(2; q), and for two related finite groups

of Lie type. No new quantum techniques are introduced; instead, we point out a group-

theoretic reduction to a mild extension of a previously solved case of the HSP. Unfortunately,

this reduction only applies to one set of subgroups, and there is no obvious generalization

that covers the other subgroups. On the other hand, we show that a similar reduction works

in any group which acts on some set in a sufficiently transitive way, though this is unhelpful

in many obvious cases.
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2 Reduction

We start with a trivial observation: suppose we have a restricted case of the hidden subgroup

problem where we need to distinguish among a family of subgroups H1, ...,Ht ⊂ G. If there

is a subgroup F whose intersections Ki = Hi∩F are distinct, then we can reduce the original

hidden subgroup problem to the corresponding one on F , consisting of distinguishing among

the Ki, by restricting the oracle to F , rather than the original domain G.

The subgroups in question will be the stabilizers of one or more elements under a suitably

transitive group action. Recall the following definitions:

Definition A group action of a group G on a set Ω is a homomorphism φ from G to the

group of permutations on Ω. In other words,

φ(g1g2)(x) = φ(g1)(φ(g2)(x)) .

When the group action is understood, we will often write just g1(x) for φ(g1)(x).

Definition A transitive group action on a set Ω is one such that for any α, β ∈ Ω there

is at least one g ∈ G such that g(α) = β. A k-transitive group action is one such that any

k-tuple of distinct elements (α1, . . . , αk) can be mapped to any k-tuple of distinct elements

(β1, . . . , βk). That is, given that αi = αj and βi = βj only when i = j, there is at least one g

such that g(αi) = βi for all i = 1, . . . , k A group is called k-transitive if it has a k-transitive

group action on some set.

Definition Given an element α ∈ Ω, the stabilizer of α with respect to a given action by

a group G is the subgroup Gα = {g ∈ G | g(α) = α}. Given a subset S ⊆ Ω, the pointwise

stabilizer is

GS = {g ∈ G | ∀α ∈ S : g(α) = α} =
⋂

α∈S

Gα .

When S is small we will abuse notation by writing, for instance, Gα or Gα,β .

Let’s consider the case of the HSP where we wish to distinguish the one-point stabilizers

Gα from each other. If G is transitive, these are conjugates of each other, since Gβ = gGαg−1

for any g such that g(α) = β. Conversely, gGαg−1 = Gg(α), so any conjugate of a stabilizer

is a stabilizer. Similarly, for each α, the two-point stabilizers Gα,β labeled by β are conjugate

subgroups in Gα.

Now suppose we restrict our queries to the oracle to Gα. We then get a coset state

corresponding to Gα ∩ Gβ = Gα,β :

ρGαβ
=

1

|Gα|
∑

c∈Gα

|cGα,β〉 〈cGα,β | .

This reduces the problem of distinguishing the one-point stabilizers Gβ , as subgroups of G, to

that of distinguishing the two-point stabilizers Gα,β as subgroups of Gα—a potentially easier

problem. Note that we can test for the possibility that α = β with a polynomial number of

classical queries, since we just need to check that f(1) = f(g) for a set of O(log |G|) generators

of Gα.

Of course, this whole procedure is only useful if Gα,β are distinct when Gβ are distinct,

or if there are only a (polynomially) small number of one-point stabilizers corresponding to

each two-point stabilizer. Below we give sufficient conditions for this to be true, and use this
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reduction to give an explicit algorithm for distinguishing conjugates of the Borel subgroups

in some finite groups of Lie type, including the finite simple groups PSL(2; q). Using the

transitivity of the group action we can bound the size of these stabilizers relative to each

other and to the original group, and hence show that they are distinct.

Lemma Suppose G has a k-transitive group action on a set Ω where |Ω| = s. Then for any

j ≤ k, if S ⊆ Ω and |S| = j, we have

|G|
|GS |

=
s!

(s − j)!
.

In particular,

|Gα| =
|G|
s

, |Gα,β | =
|G|

s(s − 1)
, |Gα,β,γ | =

|G|
s(s − 1)(s − 2)

.

Proof. The index of GS in G is the number of cosets. There is one coset for each j-tuple to

which we can map S, and since G is j-transitive this includes all s!/(s− j)! ordered j-tuples.

�

For groups that are at least 3-transitive, the following then holds: the intersection of two

subgroups that are single-point stabilizers of Ω has size 1/(s − 1) of both of the subgroups.

The intersection with a third stabilizer subgroup is 1/(s−2) this size again. In particular, this

means that when subgroups Gβ and Gγ are distinct, then their intersections Gα ∩Gβ = Gα,β

and Gα ∩ Gγ = Gα,γ are distinct, because their intersection Gα,β ∩ Gα,γ = Gα,β,γ is smaller

than either.

In fact, we don’t need full 3-transitivity for this argument to hold. The crucial fact we

used was that the number of cosets of Gα,β,γ was greater than Gα,β or Gα,γ . Consider the

following definition:

Definition A group is almost k-transitive if there is a constant b such that G has an action

on a set Ω which is (k − 1)-transitive, and such that we can map any k-tuple of distinct

elements (α1, . . . , αk) to at least a fraction b of all ordered k-tuples (β1, . . . , βk) of distinct

elements.

Strictly speaking, there is a different notion of “almost” for different values of b. Obviously,

for any group there is some value of b low enough that this definition applies. However, by

fixing b and considering a family of groups we still have a useful concept.

As an example, a group action is k-homogeneous if any set of points of size k can be

mapped (setwise) to any other set of the same size. Since this means that any ordered k-tuple

can be mapped to at least 1/k! of the ordered k-tuples, and since all k-homogeneous group

actions are (k − 1)-transitive [3], a group with such an action is almost k-transitive with

b = 1/k! (in fact, with b = 1/k).

Applying the above argument to almost 3-transitive groups shows that the stabilizer of 3

distinct elements is smaller than the stabilizer of 2 distinct elements by a factor of (s − 2)b.

So long as b ≥ 1/(s − 2), two-point stabilizers of distinct elements will be distinct. In the

group families we cover, b = 1/2, and s grows.

3 Families of transitive groups

Which families of groups and subgroups have the kind of transitivity that let us take advantage

of this idea?
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Unfortunately, not many do. We can categorize based on faithful group actions, i.e., those

that do not map any group element other than the identity to the trivial action. Any non-

faithful group action corresponds to a faithful action of a quotient of the group. Even the

requirement of 2-transitivity in faithful group actions restricts the choices to a few sporadic

groups, or one of eight infinite families [3]: The symmetric group Sn, the alternating group

An, and six different families of groups of Lie type.

Obviously the symmetric group Sn is n-transitive, and the alternating group An is almost

n-transitive. However, the size n of the set these groups act on is only polynomially large

(i.e., polylogarithmic in the size of the groups) so we can distinguish the one-point stabilizers

with a polynomial number of classical queries.

The other infinite families are finite groups of Lie type which are defined in terms of

matrices over finite fields Fq subject to some conditions. These groups have natural actions

by matrix multiplication on column vectors, or on equivalence classes of column vectors. The

actions of most of these groups are rather complicated to describe; for more details, see [3,

§7.7]. Of these, two are 3-transitive: PSL(2; q), and AGL(d; 2).

There are also a number of sporadic finite groups that are up to 5-transitive, such as

the Matthieu groups M11, M12, M22, M23, M24, built on finite geometries. However, an

interesting fact is that if a group action has a threshold of transitivity, then it contains all

permutations, or at least all even ones: for k > 5, all finite groups with a k-transitive action

on a set of size n must contain An [3].

4 PSL(2; q) and some relatives

The most interesting family of simple groups with a faithful almost 3-transitive group action

is PSL(2; q). To discuss it, consider instead GL(2; q), the group of invertible 2 × 2 matrices

with entries in the finite field Fq, where q = pn is the power of some prime p. Its elements

are of the form
(

α β
γ δ

)

where α, β, γ, δ ∈ Fq, and αδ − βγ 6= 0. We will assume that q is odd; some details change

when it is a power of 2, but the basic results still hold.

A little thought reveals that |GL(2; q)| = (q2−1)(q2−q) = (q+1)q(q−1)2. The subgroup

SL(2; q) consists of the matrices with determinant 1, so |SL(2; q)| = (q + 1)q(q − 1). If we

take the quotient of these groups by the normal subgroup consisting of the scalar matrices,

we obtain PGL(2; q) and PSL(2; q) respectively. For SL(2; q) the only scalar matrices are ±1,

so |PSL(2; q)| = (q + 1)q(q − 1)/2.

GL(2; q) and SL(2; q) act naturally on nonzero 2-dimensional vectors. For PGL(2; q) and

PSL(2; q), we must identify vectors which are scalar multiples. This identification turns

F
2
q − {0, 0} into the projective line PFq. Each element of PFq corresponds to a “slope” of a

vector: the vector

(

x
y

)

has slope x/y, i.e., xy−1 if y 6= 0 and ∞ if y = 0. Thus we can think

of PFq as Fq ∪ {∞}, and it has q + 1 elements.

The action of PGL(2; q) and PSL(2; q) on PFq is given by

(

α β
γ δ

)(

x
y

)

=

(

αx + βy
γx + δy

)

.
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This fractional linear transformation is analogous to the Möbius transformation defined by

PGL2(C):
(

α β
γ δ

)(

x

y

)

=
αx + βy

γx + δy
,

which can map any 3 points in the complex projective line PC (i.e., the complex plane

augmented by the point at infinity, or the Riemann sphere) to any other 3 points. When we

replace C with the finite field Fq, the action of PGL(2; q) remains 3-transitive. The action of

PSL(2; q) is 2-transitive, but cannot be 3-transitive, since there are half as many elements as

there are 3-tuples. However, PSL(2; q) is almost 3-transitive in the sense defined above with

b = 1/2, since 1/2 of all 3-tuples can be reached. SL(2; q) is also almost 3-transitive: from a

given tuple, it reaches the same set of tuples as PSL(2; q), with each tuple being hit twice.

As a result, this action is obviously not faithful, for the kernel is ±1.

Let G = PGL(2; q), and consider the one-point stabilizer subgroups of its action on PFq.

A natural one is the Borel subgroup B of upper-triangular matrices. Such matrices preserve

the set of vectors of the form

(

x
0

)

, so we can write B = G∞. There are q + 1 conjugates of

B, including itself, one for each element of PFq. For instance, if we conjugate by the Weyl

element w =

(

0 −1
1 0

)

, we get wBw−1 = G0, the subgroup of lower-triangular matrices,

which preserves the set of vectors of the form

(

0
y

)

.

5 An efficient algorithm for distinguishing the conjugates of the Borel subgroup

Now consider the case of the HSP on these groups where the hidden subgroup is one of

B’s conjugates, or equivalently, one of the one-point stabilizers Gs. As discussed above, we

solve this by restricting the oracle to B, and distinguishing the two-point stabilizer subgroups

B ∩ Gs = Gs,∞ as subgroups of B. To do this, we need to describe the structure of B

explicitly. For all three families of matrix groups we discuss, namely SL(2; q), PSL(2; q), and

PGL(2; q), B is closely related to the affine group.

In PGL(2; q) a generic representative of B can be written

(

α β
0 1

)

, α 6= 0, so |B| = q(q−1).

This is exactly the affine group AGL(1; q) ∼= Fq⋊F
∗
q . To see this, recall that AGL(1; q) consists

of the set of affine functions on Fq of the form x 7→ αx + β under composition. Now consider

B’s action on PFq − {∞}, which we (re)identify with Fq. For PGL(2; q), we have

(

α β
0 1

) (

x
1

)

=

(

αx + β
1

)

.

Obviously these elements compose as AGL(1; q), so B ∼= AGL(1; q).

The cases of SL(2; q) and PSL(2; q) are more complicated. The unit determinant require-

ment limits B to elements of the form

(

α β
0 α−1

)

. Thus |B| = q(q− 1) again in SL(2; q). For

PSL(2; q) we identify α with −α, so |B| = q(q − 1)/2.

For SL(2; q), we can enumerate the elements as:

(

α α−1β
0 α−1

)

.
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Composing two such elements gives us:

(

α α−1β
0 α−1

) (

γ γ−1δ
0 γ−1

)

=

(

αγ α−1γ−1β + γ−1αδ
0 α−1γ−1

)

=

(

αγ (α−1γ−1)(β + α2δ)
0 α−1γ−1

)

.

Here, we still have a semidirect product of the groups Fq and F
∗
q . Unlike the affine group,

where the multiplicative group acts directly as an automorphism on the additive group by

multiplication, it instead acts “doubly” by multiplying twice, analogous to the “q-hedral”

groups in [13] (with q = p/2, in their notation). Finally, PSL(2; q) merely forgets the difference

between ±α. This quotient group of SL(2; q) can also be seen as a subgroup of the affine group

that can only multiply by the square elements.

In all three cases the HSP on B can be solved efficiently using small generalizations of the

algorithms of [13]. We need to generalize slightly as [13] deals only with the case of Zn ⋉ Fp

with p prime — not a prime power q = pn, as here. The basic methods remain effective,

though we construct and analyze a slightly different final measurement. The number and size

of the representations remains the same (with q replacing p), and the methods for constructing

Gelf’and-Tsetlin adapted bases are similar. As this has not been published in the literature,

we describe the details more fully in the next section, though only what is necessary for our

purposes.

6 Generalizing the affine group to the prime power case

Although there can be more types of subgroups than the ones covered in [13], we are only

concerned about one particular type whose analog was covered there: H = (a, 0) and its

conjugates Hb = (1, b)H(1,−b), stabilizing the finite field element b. The representation

theory is analogous, with q − 1 one-dimensional representations (characters) depending only

on a. As in the prime case, we have q conjugacy classes: the identity, all pure translations,

and each multiplication by a different a, combined with all translations. This leaves us with

one (q − 1) dimensional representation, ρ.

In the prime case we had:

ρ((a, b))j,k =

{

ωbj
p k = aj

0 otherwise
(j, k ∈ Fq, 6= 0) .

where ωp = exp(2πi/p). The roots of unity are the non-trivial additive characters of Fp,

indexed by j, evaluated at b. We can extend this to the prime power case simply by replacing

bj, with b · j

b · j = Tr bj = TrFpn /Fp
bj =

n
∑

m=1

(bj)pm

,

which as b varies, exactly covers the full set of non-trivial linear operators from Fpn to Fp,

and ωb·j
p exactly covers the set of additive characters. Performing weak measurement on the

coset state yields ρ with probability P (ρ) = 1 − 1/q. Conditioned on that outcome, we get

the following projection operator:

πHb(ρ)j,k =
1

q − 1
ωb·(j−k)

p .
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As in [13], we then perform a Fourier transform on the rows, and ignore the columns.

There they performed the Fourier transform over Zp−1, as there were p − 1 rows. However,

the structure for general q is not Z
∗
q ≡ Zq−1, but F

∗
q . The interaction we want to capture is

the additive one, not the multiplicative one. We can still perform the abelian transform over

the additive group Fq ≡ Z
n
p — the zero component we lack is, of course, zero. The probability

of observing a frequency ℓ ∈ Z
n
p is then:

P (ℓ) =

∣

∣

∣

∣

∣

∣

1
√

q(q − 1)

∑

j 6=0

ωb·j
p ω−j·ℓ

p

∣

∣

∣

∣

∣

∣

2

=
1

q(q − 1)

∣

∣

∣

∣

∣

∣

−1 +
∑

j

ωb·j
p ω−j·ℓ

p

∣

∣

∣

∣

∣

∣

2

=
1

q(q − 1)
|−1 + qδℓb|2 =

{

1
q(q−1) ℓ 6= b

1 − 1
q ℓ = b

.

For the case of B in PSL(2; q), we can analyze the equivalent measurements via the

embedding in the full affine group, just as in the prime case. Let a be a generator of the “even”

multiplicative subgroup of F
∗
q , consisting of elements that are squares. Hb

a is then elements of

the form (at, (1− at)b) stabilizing b. For these subgroups, the trivial representation, a “sign”

representation, and the large representation occur with non-zero probability. The first two

have vanishingly small probability, O(1/q).

In the following we use the notation G(m,a) =
∑

x∈F∗

q
m(x)a(x) for the Gauss sum of

a multiplicative and an additive character, where χk(j) = ωk·j
p is the additive character of

Fq with frequency k ∈ Z
n
p . We follow the common convention that non-trivial multiplicative

characters vanish at 0. We use the quadratic character η of F
∗
q , which is 1 for squares, and

−1 for non-squares, to select rows and columns which differ by values in the “even” subgroup

mentioned above.

Weak measurement gives us the representation ρ with overwhelming probability. Condi-

tioning on this event, we get the mixed state

ρ(Hb
a)j,k =

√
2

q − 1

q−1/2
∑

t=1

ω(1−atb)·j
p δk,atj =

√
2

q − 1

q−1/2
∑

t=1

ωb·(j−k)
p δk,atj

=

√
2

q − 1
ωb·(j−k)

p (1 + η(jk))/2 .

Measuring the column k gives us, up to a phase, ρ(b)j =
√

2
q−1 ωb·j

p (1 ± η(j))/2.

We again include the zero component, with zero weight, and perform the abelian Fourier

transform over the additive group Fq ≡ Z
n
p . The probability of measuring frequency ℓ is

P (ℓ) =
1

q

∣

∣

∣

∣

∣

∣

∑

j

ωj·ℓ
p ρ(b)j

∣

∣

∣

∣

∣

∣

2

=
2

q(q − 1)

∣

∣

∣

∣

∣

∣

∑

j 6=0

ω(b−ℓ)·j
p (1 ± η(j))/2

∣

∣

∣

∣

∣

∣

2

=
2

q(q − 1)

∣

∣

∣

∣

∣

∣

∑

j 6=0

χb−ℓ(j) ±
∑

j 6=0

χb−ℓ(j)η(j)

∣

∣

∣

∣

∣

∣

2

=
1

2q(q − 1)
|G(1, χb−ℓ) ± G(η, χb−ℓ)|2

=
1

2q(q − 1)
|qδb,ℓ − 1 ± η(b − ℓ)G(η, χ1)|2 =

1

2q(q − 1)

∣

∣

∣
qδb,ℓ − 1 ± η(b − ℓ)idq1/2

∣

∣

∣

2
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where d is odd for odd n if pn ≡ 3 (mod 4), and d is even otherwise.

For ℓ = b we have P (ℓ) = (q − 1)2/2q(q − 1) = (q − 1)/2q. For ℓ 6= b we have P (ℓ) =

(q + 1)/4q(q − 1) if d is odd. If ℓ 6= b and d is even, we have P (ℓ) = (q ± 2q1/2 + 1)/4q(q − 1).

In any case, the probability of observing b is

P (b) =
q − 1

2q
=

1

2
− O(1/q) ,

so repeating this measurement will allow us to identify ℓ = b with any desired probability. As

SL(2; q) is a small extension of PSL(2; q), we can handle it similarly, by Theorem 8 in [13].

7 AGL(d; 2) and its stabilizer subgroups

An interesting question is whether it is useful to apply this approach to the other family of

3-transitive groups. This is the d-dimensional affine group AGL(d; 2), consisting of functions

on F
d
2 of the form Av + B, where A ∈ GLd(F2) and B ∈ F

d
2. It can be expressed as a block

matrix of the form

(

A B
0 1

)

. It is the semidirect product GL(d; 2) ⋉ F
d
2, and hence obviously

not simple. That it is triply transitive can be seen by realizing that the affine geometry it

acts on has no three points that are collinear.

The stabilizer subgroups are 2d conjugate subgroups of the original GL(d; 2). Obviously

this stabilizes the point 0, and is the largest subgroup that will, as GL(d; 2) has two orbits:

the zero vector, and all others. A general point P is stabilized by translating it to 0 with

the element (A,B) = (1, P ), applying any element of GL(d; 2), and then translating back. To

apply our method we need to look at the intersections.

Consider the point ~1 = (0, ..., 0, 1)T . Splitting A into two diagonal blocks of size (d− 1)×
(d − 1) and 1 × 1 and two off-diagonal blocks of size (d − 1) × 1 and 1 × (d − 1) allows us

to see that ~1 is stabilized by a (transposed) copy of AGL(d − 1; 2) living in GL(d; 2). The

last column must be ~1 = (0, ..., 0, 1)T to preserve ~1. The large (d − 1) × (d − 1) block must

be in GL(d; 2) to keep the the entire transformation invertible, and anything in GL(d; 2) will

preserve the first d − 1 0 bits of ~1. The rest of the last row can be arbitrary, resulting in a

subgroup isomorphic to AGL(d − 1; 2).

As a result, distinguishing the stabilizers of points reduces to distinguishing conjugates of

a smaller transposed copy of the affine group in the general linear group. This last reduction

does not immediately yield an efficient new quantum algorithm.

8 Conclusion

It is interesting to note that although we can Fourier sample over AGL(d; 2) efficiently [12],

we don’t know how to do so in the projective groups. The fastest known classical Fourier

transform for SL(2; q) or PSL(2; q) takes Θ(q4 log q) time [10], and the natural quantum

adaptation of this takes Θ(q log q) time [12]. If q is exponentially large, this is polynomial,

rather than polylogarithmic, in the size of the group. In the absence of new techniques for

the FFT or QFT, this suggests that we need to somehow reduce the HSP in PSL(2; q) to that

in some smaller, simpler group—which was the original motivation for our work.

We conclude by asking whether our analysis of AGL(d; 2) can be extended to give an

efficient algorithm distinguishing its stabilizer subgroups, or whether any of the other 2-

transitive groups have usable “almost” 3-transitive actions.
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