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We study classical simulation of quantum computation, taking the Gottesman-Knill
theorem as a starting point. We show how each Clifford circuit can be reduced to an

equivalent, manifestly simulatable circuit (normal form). This provides a simple proof

of the Gottesman-Knill theorem without resorting to stabilizer techniques. The normal
form highlights why Clifford circuits have such limited computational power in spite

of their high entangling power. At the same time, the normal form shows how the
classical simulation of Clifford circuits fits into the standard way of embedding classical

computation into the quantum circuit model. This leads to simple extensions of Clifford

circuits which are classically simulatable. These circuits can be efficiently simulated by
classical sampling (“weak simulation”) even though the problem of exactly computing

the outcomes of measurements for these circuits (“strong simulation”) is proved to be

#P-complete—thus showing that there is a separation between weak and strong classical
simulation of quantum computation.
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1. Introduction

The Gottesman-Knill theorem [1] is a well-known result in quantum information theory which
states that a certain class of non-trivial quantum circuits, called “Clifford circuits”, can be
simulated efficiently on a classical computer, and can hence not provide any (exponential)
speed-up w.r.t. classical computation. A Clifford circuit is any quantum circuit which is
composed of Hadamard, PHASE and CNOT gates. The Gottesman-Knill theorem asserts
that each (uniform family of) Clifford circuit(s), when acting on the computational basis
state |0〉 ≡ |0〉N , and when followed by a computational basis measurement, can be simulated
efficiently on a classical computer.

While in fact not so hard to prove, this result exhibits some rather remarkable and some-
times puzzling features, not all of which are fully understood. For example, even though they
are efficiently classically simulatable, Clifford circuits can generate a high degree of entangle-
ment [2]; the highly entangled cluster states [3] can e.g. be generated by Clifford circuits. This
very feature raises doubts about the often-recited mantra that “entanglement is responsible
for the quantum computational speed-up”. In particular, it highlights that, while the presence
of (certain types of) entanglement in a quantum computation (QC) is provably necessary to
disallow efficient classical simulation (see e.g. [4, 5, 6, 7, 8, 9, 10]), it is certainly not sufficient.
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Further, it is known that Clifford circuits can efficiently be simulated classically by a
rather restricted classical computer, namely a circuit model computer which only uses NOT
and CNOT gates [11]. In other words, it is not necessary to invoke the full power of classical
computers to efficiently simulate arbitrary Clifford circuits. Hence, Clifford circuits are most
likely not even universal for classical computation. In complexity theoretic terms, the power of
classical computation with NOT and CNOT gates—and hence of Clifford circuits—is captured
by the complexity class ⊕L (“parity-L”) [12, 13]. This class is known to be contained in P
but not expected to be equal to it (although this is an unproven conjecture). Nevertheless,
supplementing Clifford operations with essentially any non-Clifford gate immediately yields
the full QC model [14, 15]. This yields an immediate “jump” in computational power from
⊕L to BQP rather than a “smooth” transition ⊕L → BPP → BQP. In particular, this
property makes it hard to extend Clifford circuits to a class of efficiently simulatable quantum
circuits which has the same computational power as full classical computation.

It is the aim of this note to obtain some insight in the above list of features. First we
will show that each Clifford circuit C can be (efficiently) reduced to an equivalent circuit
C′ which yields the same output. The “normal form” C′ is also a Clifford circuit but has a
very simple structure, as displayed in Fig. 2; this normal form is based on an earlier result
[16], for which we also provide a simple proof. We will see that C′ is manifestly efficiently
classically simulatable. We argue that the normal form also sheds some light on why the high
degree of entanglement and interference generated by Clifford operations does not result in
any (exponential) quantum computational speed-up. Finally, the normal form shows how the
simulation of Clifford operations fits within the standard embedding of probabilistic classical
computation into the quantum circuit model. The latter is related to the notion of HT circuits,
as discussed in section 4.

Along the way, we will make some general remarks regarding classical simulation of QC.
One of them regards the different possible definitions of the notion of “classical simulation”.
When a QC is to be simulated classically, the aim may be to either (i) compute the probabilities
of the output measurement efficiently classically with high accuracy (“strong simulation”) or
(ii) sample from this distribution efficiently using a classical computer (“weak simulation”).
Both variants constitute valid classical simulation techniques; however, a priori it is not clear
whether there is a clear separation between these two notions. The vast majority of all works
(see e.g. [1, 6, 7, 9, 10, 18, 19, 20, 21, 22, 23, 24, 25]) regarding classical simulation of QC
considers quantum circuits which can be simulated efficiently classically in the strong sense,
whereas not much is known about weak simulation.

We will find that the simulatable quantum circuits considered in the present paper are
not amenable to strong simulation—in fact, it is easy to show that strong simulation of these
circuits constitutes a #P-complete problem. Nevertheless, weak classical simulation of the
same circuits is efficiently possible by means of a very simple sampling technique. This shows
that strong and weak simulation of QC are fundamentally different notions. Moreover, these
examples highlight that any serious attempt to understand the relationship between classical
and quantum computation should not rely on the notion of strong simulation.

2. Classical simulation of quantum computation

Here we state more precisely what we mean by “efficient classical simulation of quantum
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computation”. We essentially follow the definitions from [4, 21].
Consider a uniform family of quantum circuits∗U ≡ UN acting on the N -qubit input state

|0〉 ≡ |0〉⊗N , and followed by a measurement of, say, the first qubit in the computational
basis. Then this quantum computation yields as an outcome a bit α ∈ {0, 1}. The probability
that the outcome α occurs is given by π(α) = 〈0|U†[|α〉〈α| ⊗ I]U|0〉. We say that the above
quantum computation can be efficiently simulated classically in the strong sense if it is possible
to evaluate π(0) up to M digits in poly(N,M) time on a classical computer. Furthermore, we
say that the quantum computation can be efficiently simulated classically in the weak sense
if it is possible to sample once from the probability distribution {π(α)} in poly(N) time on a
classical computer†.

We further point out that to date the vast majority of results on simulation of quantum
computation regard strong classical simulation. This regards e.g. the Gottesman-Knill theo-
rem, the simulation of “matchgates” [18, 19, 20, 21], the simulation of the quantum Fourier
transform [22, 23, 24], simulation results involving tensor contracting techniques [6, 7, 9, 10],
etc. However, in order to study the difference between classical and quantum computation,
the notion of weak classical simulation is much more appropriate. In fact, the strong simula-
tion of general quantum circuits can easily be shown to be a #P-hard problem (this can e.g.
been showed by considering the the family of circuits Uf as in section 4). As BQP is believed
to be much smaller than #P, this indicates that strong classical simulation inevitably seems
too strong a requirement to study the relation between classical and quantum computation.
However, not much is known about the difference between strong and weak simulation of
quantum computation. In section 4 we will give an example of a class of quantum circuits
which is efficiently simulatable in the weak sense but for which simulation in the strong sense
is intractable (unless P is equal to #P).

3. The Gottesman-Knill theorem

In this section we recall the Gottesman-Knill theorem and the relation between Clifford op-
erations and the complexity class ⊕L. A Clifford circuit is any quantum circuit composed of
Hadamard (H), controlled-NOT (CNOT) and PHASE (P ) gates, where H and CNOT are
defined as usual and P = diag(1, i). (A variant of) the Gottesman-Knill theorem can be
formulated as follows [1]:

Theorem 1 (Gottesman-Knill) Every (uniform family of) Clifford circuit(s), when
applied to the input state |0〉 ≡ |0〉⊗N and when followed by a Z measurement of the first
qubit, can be efficiently simulated classically in the strong sense.

The standard technique to prove this result involves a connection between Clifford operations
and groups of commuting Pauli operations called “stabilizer groups”. We omit this proof here
and refer to e.g. [1, 26]. Below we will provide an alternative proof of the Gottesman-Knill
theorem which does not use stabilizer techniques.

∗In the following, when we refer to a “quantum circuit” we will always mean a uniform family of quantum
circuits.
†More precisely, one should require to sample from a probability distribution which is not necessarily exactly
equal to {π(α)}, but sufficiently close to it (see e.g. [4]). In the examples in this paper, however, it will always
be possibly to perform an exact sampling, such that we omit such accuracy issues for simplicity.
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It turns out that a rather restricted classical computer suffices to efficiently simulate
arbitrary Clifford circuits. Indeed, every Clifford circuit can be efficiently simulated by a
classical circuit model computer which uses NOT and CNOT gates only, applied to the input
string 0 = (0, . . . , 0) [11]. More precisely, in [11] the problem Gottesman-Knill was defined
as follows: the input is an n-qubit Clifford circuit C; the problem is to decide whether the
first qubit will be in the state |1〉 with certainty after C has been applied to the input |0〉n.
It was showed in [11] that this problem can be mapped, under a logarithmic-space reduction,
to a problem of simulating a classical poly-size CNOT-NOT circuit acting on the all-zeroes
input state. The complexity class of problems that are log-space reducible to the simulation
of CNOT-NOT circuits, is called ⊕L (“Parity-L”) ‡[12, 13]. Hence, it was showed in [11] that
Gottesman-Knill is in ⊕L. As CNOT and NOT gates are Clifford operations, it is clear
that every ⊕L problem can be reduced to an instance of Gottesman-Knill. In conclusion,
the problem Gottesman-Knill is ⊕L-complete [11].

The class of problems in ⊕L are centered around linear algebra over the finite field Z2. It
has been shown that the problems of solving linear equations over Z2, finding the inverse of
a nonsingular Z2-matrix, multiplying matrices over Z2 etc., are ⊕L problems [13].

4. Embedding classical in quantum computation

Here we briefly review how classical (probabilistic) computation can be regarded as being
a “part” of quantum computation. All material in this section is standard (see e.g. [26]),
except for an observation about the difference between strong and weak simulation of quantum
computation, which will be made at the end of this section.

Probabilistic classical computation is classical computation (e.g. considered in the cir-
cuit model) supplemented with the possibility of deciding, in each step of the computation,
which gate to apply based on the random outcome of a coin toss. It is well understood how
probabilistic classical computation can be embedded in the full pure-state circuit model of
quantum computation. The subclass of quantum circuits that corresponds to probabilistic
classical computation is the following: (ROUND 1) apply Hadamard gates to an arbitrary
subset of qubits; (ROUND 2) apply a (uniform family of) circuit(s) consisting of classical§

gates only (e.g. NOT, CNOT, Toffoli gates). A quantum circuit with the above structure
will be called an HT circuit (short for Hadamard-Toffoli); see also Fig 1. It can easily be
shown that every probabilistic classical computation can be accounted for by a suitable HT
circuit acting on the all-zeroes input state and followed by a single-qubit Z measurement
(say, on the first qubit). Conversely, it is also straightforward to see that each HT circuit
(with input and measurement as above) can be simulated efficiently—in the weak sense—by
a probabilistic classical computer: if the quantum register has N qubits, if m denotes the
number of Hadamard gates applied in ROUND 1, and if the classical gates in ROUND 2
compute an efficiently computable (invertible) function f : {0, 1}N → {0, 1}N , then the state
of the system after the first two rounds has the form

∑
x∈{0,1}m |f(x, 0, . . . , 0)〉, where there

are N −m zeroes in the argument of f . We will use the abbreviation F (x) ≡ f(x, 0, . . . , 0).

‡Obviously, ⊕L ⊆ P; the inclusion is believed to be strict, but a proof of this conjecture has not yet been
found.
§We call any unitary gate U a “classical gate” if it maps computational basis states to computational basis
states.
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Fig. 1. The class of quantum circuits with the above structure are here called HT circuits (first a

round of Hadamard gates is applied to a subset of the qubits, followed by a round of “classical
gates”, i.e. Toffoli, not, etc.). HT circuits followed by a computational basis measurement have

the same computational power as probabilistic classical computation: each probabilistic classical

computation can be simulated efficiently by an HT circuit, and each HT circuit can be weakly
simulated efficiently on a classical computer. However, strong classical simulation of HT circuits

is a #P-complete problem.

Performing a {|0〉, |1〉} measurement on the first qubit yields as an outcome a bit α ∈ {0, 1}.
The probability that α occurs is equal to

π(α) =
|{x ∈ {0, 1}m : F (x)1 = α}|

2m
, (1)

where F (x)1 denotes the first bit of F (x). Sampling from this probability distribution can
easily be done classically: simply generate an m-bit string x uniformly at random, then
compute F (x) and finally set α := F (x)1; then α is generated with probability π(α) as desired.
This shows that weak classical simulation of HT quantum circuits is efficiently possible. We
can therefore conclude that the computational power of HT quantum circuits is equivalent to
probabilistic classical computation.

We remark that strong classical simulation of HT circuits is much harder—in fact, we
point out that such strong simulation is a #P-complete problem. The complexity class #P is
concerned with counting problems: given an efficiently computable Boolean function f ∈ P,
the problem of determining the integer #f := |{x : f(x) = 0}| defines the complexity class
#P [17]. It is easy to see that the problem of computing the probabilities (1) is at least as hard
as computing #f for arbitrary functions f ∈ P. To show this, consider an arbitrary Boolean
function f : {0, 1}m → {0, 1} which is in P. Then there exists a poly-size HT quantum circuit
U such that U|0〉 ∝

∑
x |x〉|f(x)〉. Performing a measurement in the computational basis

on the last qubit yields a single bit with probability distribution π(0) = #f/2m = 1 − π(1).
Computing these probabilities with perfect accuracy is thus equivalent to computing #f . This
shows that strong simulation of HT circuits is at least as hard as any problem in #P an is thus
#P-hard. Moreover, it can easily be shown that, for arbitrary HT circuits and for arbitrary
computational basis measurements, the problem of computing the probabilities (1) is always
in #P. This shows that the strong simulation of HT circuits is a #P-complete problem. In
conclusion, efficient strong classical simulation of HT quantum circuits is intractable (unless
P is equal to #P), while weak simulation of these circuits is efficiently possible (even trivially
so).

5. Clifford circuits as HT circuits
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In this section we show that, modulo some “redundancies” (to be explained below), each
Clifford circuit can be reduced to an HT circuit, which is manifestly classically simulatable.
To this aim, we provide an alternative proof of the Gottesman-Knill theorem which will allow
to make the connection to HT circuits. The proof will not be centered around stabilizer
groups (and hence does not require any knowledge of the stabilizer formalism) but will simply
consist of tracking the coefficients ψx of the state |ψ〉 =

∑
x ψx|x〉 of the quantum register

throughout the application of an arbitrary Clifford circuit. To achieve this, it will be useful to
know what the most general form is which the coefficients ψx may assume. The latter issue
has in fact already been fully investigated and understood in [16], where the following result
was proved: every N -qubit state |ψ〉 = C|0〉N , where C represents a Clifford circuit, is given
by an expression of the form

|ψ〉 ∝
∑
x∈A

il(x)(−1)q(x)|x〉, (2)

where we have the following notations. First, A ⊆ ZN
2 is an affine subspace, i.e. a subset of

the form A = {Ru + t|u ∈ Zm
2 }, for some fixed (nonsingular) N × m matrix R and vector

t ∈ ZN
2 . Second, l(x) is a linear function on ZN

2 , i.e., l maps x to l(x) = dTx for some d ∈ ZN
2 .

The exponent l(x) of i is computed modulo two. Finally, q(x) is a quadratic function on ZN
2 .

That is, q maps N -bit strings x = (x1, . . . , xN ) to q(x) =
∑
cijxixj + cixi, for some (fixed)

cij , ci ∈ {0, 1}. Moreover, q, l and A can be efficiently computed. Conversely, every state of
the form (2) can be prepared by applying a suitable (poly-size) Clifford circuit to the input
|0〉 (such states are called stabilizer states).

The proof that an arbitrary Clifford circuit always maps |0〉 to a state of the form (2)
was first derived in [16] and is based on mappings between Clifford operations, the stabilizer
formalism and arithmetic over Z2. Here we will give a simple alternative proof of this theorem.

Proof of Eq. (2): The proof can be obtained by induction on the number of gates in
the circuit C. Evidently, (2) is true when C is the identity. Now suppose that the result is
true for every Clifford circuit consisting of K gates. We then have to prove that the result
still holds for circuits with one additional gate. Consider an arbitrary circuit C of size K + 1,
and write C as a product of a single Clifford gate U ∈ {H, P, CNOT} and a circuit C′ of size
K: C = UC′. By the induction step, we may assume that there exist A, l and q such that
C′|0〉 is given by (2). It is then simply a matter of verifying that the general form (2) is kept
when a gate from the set {H, P, CNOT} is applied. This can be shown using straightforward
arithmetic, and for completeness these calculations are given in the appendix.

The above proof of expression (2) leads to a simple algorithm to compute A, l and q if a
circuit C is given: first, one initializes A, l and q to their trivial values, corresponding to the
state |0〉. Then one sequentially updates A, l and q corresponding to the first, second, etc.
gate in C; it can easily be seen that each of these updates is efficient. The final values for A,
l and q then correspond to the state C|0〉.

It is now easy to see that each Clifford computation can be simulated efficiently. If a
circuit C is given, the first step is to compute the triple (A, l, q) parameterizing C|0〉. The
goal is then to efficiently simulate {|0〉, |1〉} measurements on this state. To do so, one argues
at follows. First, the outcome probabilities of a measurement in the computational basis are
independent of the phases il(x)(−1)q(x). That is, the specific values of l and q are in this
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context completely redundant, such that we may set these quantities to their trivial values
l ≡ 0, q ≡ 0. This leaves us with the state

∑
x∈A |x〉. Let the affine space A be given by

A = {Ru + t : u ∈ Zm
2 }, for some invertible N ×m matrix R and t ∈ ZN

2 . Further, suppose
that the first qubit is measured, yielding as an outcome a bit α which occurs with probability

π(α) =
|{x ∈ A : x1 = α}|

|A|
. (3)

It is trivial to sample from this probability distribution: simply generate a uniformly random
m-bit string u, compute Ru+ t and set α to be the first coefficient of Ru+ t. This shows that
each Clifford circuit can efficiently be simulated in the weak sense.

However, one can do more than this, as the probabilities π(α) can be computed efficiently
as well. Indeed, each of these probabilities has the form 2−γ for some integer γ which can be
obtained by solving a system of linear equations over Z2. Hence, strong simulation is possible
as well, thus recovering the Gottesman-Knill theorem.

6. Normal form

Next we note that the expression (2) provides an alternative way—different than the circuit
C—to prepare the output state C|0〉. If the affine space A is given by A = {Ru+ t : u ∈ Zm

2 },
then this state can be prepared from |0〉 as follows. First, apply m Hadamard gates such as to
yield

∑
u |u〉|0〉N−m. Second, apply appropriate CNOT gates such as to yield

∑
u |Ru〉. Third,

apply the operation Xt1⊗ . . .⊗XtN , yielding
∑

u |Ru+t〉. Fourth, apply appropriate PHASE
and CPHASE = diag(1, 1, 1,−1) gates such as to finally yield C|0〉. The overall structure of
this preparation method is illustrated in Fig. 2. We have now arrived the following result.

Theorem 2 Let C be an arbitrary poly-size Clifford circuit. Then there exists a poly-size
Clifford circuit C′ satisfying C|0〉 = C′|0〉 such that C′ can be decomposed into three “rounds”:
(ROUND 1) apply Hadamard gates to an arbitrary subset of qubits; (ROUND 2) apply a
poly-size circuit of NOTs and CNOTs; (ROUND 3) apply a poly-size circuit of PHASEs and
CPHASEs. The circuit C′ can be efficiently determined.

It is important to remark that it is generally not true that the circuits C and C′ are equal
as 2N × 2N matrices¶. These circuits merely have the same effect on the input state |0〉, i.e.,
they generate the same output state. Note that it is the output state |ψout〉 = C|0〉 of the
computation which is relevant for our purposes—i.e. a single column of the 2N × 2N matrix
C—and not the entire circuit. We further emphasize that the choice of a standard input state
|0〉 as opposed to arbitrary products of X, Y , Z eigenstates as inputs, does not entail any loss
of generality, as such alternative input states can always be rotated into the state |0〉 using a
(local) Clifford operation.

The Clifford normal form highlights the computational “weakness” of Clifford circuits.
First, the original Clifford circuit, which may contain many Hadamard gates located at dif-
ferent places in the circuit, causing subsequent rounds of constructive and destructive inter-
ference, is (efficiently) mapped to the normal form which does not display any interference

¶A counterexample is e.g. given by the single-qubit circuit C = HPH. By exhaustive enumeration of all
possibilities, it can easily be shown that no single-qubit circuit C′ of the above structure satisfies C = C′.
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at all. Indeed, up to the irrelevant last round of diagonal gates, each Clifford circuit is re-
duced to a circuit of NOT and CNOT gates applied to a superposition of computational
basis states |+〉K |0〉L—in other words, nothing but a (very simple instance of an) HT circuit,
which are trivially classically simulatable. Also the connection between Clifford circuits and
the complexity class ⊕L is in this way highlighted, given the relation between the class ⊕L
and circuits consisting of NOT and CNOT operations.

With a little extra work, theorem 2 may be used to arrive at a normal form for Clifford
circuits C which does regard the entire 2N × 2N matrix. The normal form is in fact highly
similar to theorem 2. The significance of this normal form is again that it contains only a
single round of basis-changing operations (i.e. Hadamards). In fact, we will see that every
Clifford operation can be written as a a tensor product of Hadamard operations H = HS ⊗ I
acting nontrivially on a subset S of the qubits, multiplied on the left and the right with basis-
preserving Clifford circuits M1 and M2, i.e. circuits composed of CNOT, NOT, PHASE and
CPHASE gates. Similar to (2), (a variant of) theorem 3 was proved in [16] using mappings
between the stabilizer formalism, Clifford operations and Z2-aritheoremetic; here we provide
a direct proof.

Theorem 3 Let C be an arbitrary n-qubit Clifford operation. Then there exist: (a) poly-
size circuits M1 and M2 composed of CNOT, NOT, PHASE and CPHASE gates gates and
(b) a tensor product of Hadamard gates and identities H = HS ⊗ I acting nontrivially on a
subset S of the qubits, such that C ∝ M2HM1. Moreover, M1, M2 and H can be determined
efficiently.

Proof: Let a = (a1, . . . , an) denote an arbitrary n-bit string. For every i = 1, . . . , n, define
σi := CXiC† where Xi denotes the Pauli matrix X acting on qubit i. Since C is a Clifford
operation, each σi is a Pauli operator‖, possibly with an overall minus sign. Denoting X(a) =
Xa1 ⊗ . . . ⊗Xan and σ(a) :=

∏
i σ

ai
i , we thus have σ(a) := CX(a)C†. Since |a〉 = X(a)|0〉n,

we have C|a〉 = CX(a)|0〉n = σ(a)C|0〉n. We can now apply theorem 2 to the state C|0〉n:
there exists a poly-size Clifford circuit M consisting of CNOT, NOT, PHASE and CPHASE
gates gates, and an operation H = HS ⊗ I such that C|0〉n = γMH|0〉n, where γ is some
overall phase factor. Now define τi := HM†σiMH for every i; also τi is a Pauli operator,
possibly supplemented with an overall minus sign. Denoting τ(a) :=

∏
i τ

ai
i , we thus have

τ(a) := HM†σ(a)MH. This leads to

C|a〉 = γσ(a)MH|0〉n = γMHτ(a)|0〉n. (4)

Note that γ does not depend on a.
We now study the general form of the unitary mapping |a〉 → τ(a)|0〉n. Since each τi

is an element of the Pauli group, there exist n-bit strings u = (u1, . . . , un), v = (v1, . . . , vn),
Ri = (Ri

1, . . . , R
i
n) and T i = (T i

1, . . . , T
i
n) such that τi = (−1)uiiviX(Ri)Z(T i) and hence

τ(a) =
∏

i

(−1)aiuiiaiviX(aiR
i)Z(aiT

i). (5)

‖A Pauli operator has the form P = P1 ⊗ . . . ⊗ Pn where each Pi is either the identity or one of the Pauli
matrices X, Y or Z.
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Fig. 2. For each Clifford circuit C acting on the computational basis state |0〉 (left), there exists a

normal form C′ (right) of the above structure such that C|0〉 = C′|0〉, i.e., these two circuits yield the
same output state. The last round, consisting of diagonal gates, is undetected by a computational

basis measurement and can therefore be completely disregarded. Moreover, the first two rounds

in C′ constitute a (restricted) HT circuit and hence are trivially classically simulatable.

For every two x, z ∈ Zn
2 , we have X(x)Z(z) = (−1)xT zZ(z)X(x). Hence, we may reshuffle

the factors in the product (5) at the cost of an overall phase factor of the form (−1)q(a), for
some quadratic function q : Zn

2 → Z2. In particular, we may write

τ(a) = (−1)q(a)[
∏

i

iaivi ][
∏

i

X(aiR
i)][

∏
i

Z(aiT
i)]. (6)

Letting R (T ) denote the n× n matrix with columns Ri (T i), we then have

τ(a) = (−1)q(a)[
∏

i

iaivi ]X(Ra)Z(Ta). (7)

The action of τ(a) on |0〉n then has the following form:

τ(a)|0〉n = (−1)q(a)[
∏

i

iaivi ]X(Ra)Z(Ta)|0〉n = (−1)q(a)[
∏

i

iaivi ]|Ra〉, (8)

where we have used that Z(Ta)|0〉n = |0〉n and that X(Ra)|0〉n = |Ra〉. It then easily follows
that there exists a Clifford circuit M ′ (independent of a) composed of CNOT, NOT, PHASE
and CPHASE gates such that τ(a)|0〉n = M ′|a〉. Together with (4), this completes the proof.

7. Slightly beyond Gottesman-Knill

The Clifford normal form in theorem 2 makes it easy to extend the Gottesman-Knill theorem.
Next we provide a class of quantum circuits which are efficiently simulatable classically (in the
weak sense), and which are extensions of Gottesman-Knill in the sense that these circuits can
efficiently generate any output state which can be efficiently generated by arbitrary Clifford
circuits. Moreover, contrary to Clifford circuits, the extensions encompass full probabilistic
classical computation.

We consider circuits of the following structure: first, apply an arbitrary local unitary
operation; afterwards, apply an arbitrary (uniform family) of quantum circuit(s) consisting
of Toffoli and diagonal gates only. We show that such circuits, when applied to the input
|0〉 and when followed by a computational basis measurement, can be efficiently simulated
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classically in the weak sense. After the first round, the state of the quantum register is a
complete product state |χ〉 = |χ1〉 ⊗ . . .⊗ |χN 〉. Denoting |χi〉 = ai|0〉+ bi|1〉, the coefficients
χx of |χ〉 in the computational basis (where x = (x1, . . . , xN ) is an N -bit string) are given by
χx =

∏
i a

1−xi
i bxi

i . The final state of the quantum register has the form
∑

x χxθx|f(x)〉, where
the θx are complex phases (which are efficiently computable as a function of x, but this will
not be relevant here) and where f : {0, 1}N → {0, 1}N is an invertible, efficiently computable
Boolean function. Further, suppose that a subset S of the N qubits is measured, yielding as
an outcome a bit string α = (αj : j ∈ S), where the bit αj is the measurement outcome for
qubit j. Then α occurs with probability π(α) =

∑
|χx|2, where the sum is over all bit strings

x such that f(x)j = αj for all j ∈ S. To state it differently, π(α) is the total probability that
an N -bit string x which is generated with probability p(x) = |χx|2, satisfies f(x)j = αj for all
j ∈ S. Now, it is possible to efficiently sample from the probability distribution {p(x)}. As a
consequence, the following procedure (i)-(ii)-(iii) allows to efficiently generate a bit string α
with probability π(α) on a classical computer: (i) generate an N -bit string x with probability
p(x) = |χx|2 (note that {p(x)} is a simple product distribution since |χ〉 is a product state);
(ii) compute f(x); (iii) set αj to be the j-th coefficient of f(x), for every j ∈ S. This shows
it is possible to efficiently sample from the probability distribution {π(α)}.

Note that the first round, consisting of a local unitary operation, can be generalized while
keeping the entire circuit classically simulatable. To do so, consider a quantum circuit U
such that the computation |0〉 → U|0〉, followed by a computational basis measurement of all
N qubits, can be efficiently simulated classically in the weak sense. That is, it is classically
possible to efficiently sample once from the probability distribution p(x) = |〈x|U|0〉|2. Then
such a circuit, followed by an arbitrary (uniform) quantum circuit consisting of classical and
diagonal gates only, and followed by a computational basis measurement of an arbitrary
subset of the qubits, can be simulated efficiently classically in the weak sense. This last
observation e.g. implies that a “matchgate circuit” [18, 19, 20, 21], a circuit of “bounded
tree-width” [6, 7, 9], a circuit which generates “bounded Schmidt-rank” [5, 10], or a quantum
Fourier transform [22, 23, 24] (which are all known to be strongly simulatable), followed by
an arbitrary poly-size Toffoli-Diagonal circuit, is still weakly simulatable.

8. Conclusion

We have studied classical simulation of quantum computation, taking the Gottesman-Knill
theorem as a starting point. We have showed that each Clifford circuit C can be reduced
to a simple equivalent circuit C′ which, when applied to the input |0〉, provides the same
output state. Using this reduction to the normal form, we have attempted to provide a better
understanding in the somewhat peculiar features of the Gottesman-Knill theorem. We have
argued that the normal form provides insight in why the large amount of entanglement which
can be generated by Clifford circuits fails to provide any quantum computational speed-up.
Furthermore, the normal form shows how the simulation of Clifford operations fits within the
standard embedding of probabilistic classical computation into the quantum circuit model,
related to the notion of HT circuits.

The class of HT circuits considered here, while indeed simple, exhibits features which
are quite different from many results regarding classical simulation of quantum computation
which have been found so far (such as the Gottesman-Knill theorem itself, matchgates, circuits
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of small tree-width, etc). For example, while such circuits are classically simulatable in the
weak sense (i.e. they can be simulated using classical sampling techniques), strong classical
simulation (i.e. the problem of computing the output probabilities of measurement outcomes
with high accuracy) is #P-complete and hence intractable. This is in contrast with previous
results, the vast majority of which consider circuits where strong simulation is efficiently
possible. Also, HT circuits can generate unbounded amounts of entanglement (as can e.g.
Clifford circuits) while several previous results use techniques which allow classical simulation
of certain quantum circuits only in cases where the entanglement generated by these circuits
is (in a well-defined sense) “bounded” (see e.g. [5, 6, 10]). Thus, the present results provide
simple examples of quantum circuits which can generate vast amounts of entanglement, which
nevertheless does not result in any quantum computational speed-up.

We further note that a very moderate extension of HT circuits immediately leads to highly
non-trivial quantum algorithms. For example, it is known that Shor’s factoring algorithm,
using the phase estimation approach [27] (see also [28]), can be implemented by an HT circuit
supplemented with a final round of Hadamard gates, and then followed by a measurement in
the computational basis. This shows that a mere final round of local basis changes allows to
go from an HT circuit, which is trivially classically simulatable, to Shor’s factoring algorithm,
which is believed to provide an exponential speed-up.
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Appendix A

Here we show the following claim: Claim: suppose that an N -qubit state |ψ〉 is given
in terms of an expression of the form (2) for some (A, l, q), and suppose that a gate U ∈
{H,P, CNOT} is applied to |ψ〉, resulting in a state |ψ′〉. Then |ψ′〉 still has the form (2) for
some updated (A, l, q), and that these updates can be performed efficiently.

Before proceeding with the proof, we note the following: in (2), the functions q and l are
defined on the space of N -bit strings ZN

2 . If the affine space A is given by A = {Ru+ t : u ∈
Zm

2 }, we might as well write

|ψ〉 ∝
∑

u

(−1)q̄(u)il̄(u)|Ru+ t〉, (A.1)

where now q̄ and l̄ are quadratic, resp. linear functions defined on the space of m-bit strings
u, such that q̄(u) = q(Ru + t) and l̄(u) = l(Ru + t). Note that it is computationally easy to
determine q̄ (l̄) from q (l) and vice versa. In the following we will be a bit sloppy and simply
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identify q(u) ≡ q(Ru+ t) and similar for l; it will be clear from the context what the notation
means.

We will also need the following lemma:
Lemma A.1 Let q(x) and l(x) be quadratic and linear functions, resp., on ZK

2 , where x =
(x1, . . . , xK). Denote x̄ = (x2, . . . , xK). Then there exist a quadratic function q′ and two
linear functions l′ and l′′ on ZK−1

2 , such that∑
x1

(−1)q(x)il(x) ∝ (−1)q′(x̄)il
′(x̄)δl′′(x̄),0, (A.2)

where ∝ denotes equality up to a multiplicative constant independent of x̄. Moreover, deter-
mining q′, l′ and l′′ from q and l can be performed efficiently.
The proof of the lemma is straightforward and is omitted. We now proceed with the proof of
the claim.

Proof of claim: First, suppose that |ψ〉 is given by (2) and that a PHASE gate is applied
to, say, the first qubit. As P maps |a〉 to ia|a〉 (a = 0, 1) the resulting state |ψ′〉 is

|ψ′〉 ∝
∑
x∈A

(−1)q(x)il(x)ix1 |x〉, (A.3)

where x1 is the first component of x. Using the identity∗∗iaib = (−1)abia+b, for every a, b ∈ Z2,
then shows that |ψ′〉 is again of the form (2).

Second, suppose that a CNOT gate is applied to, say, the first and second qubit of |ψ〉.
Note that CNOT maps |a, b〉 to |a, a + b〉, for every a, b = 0, 1. That is, CNOT performs a
linear transformation (over Z2) “within the ket”. This immediately implies that the state
(A.1) is mapped to

|ψ′〉 ∝
∑

u∈Zm
2

(−1)q(u)il(u)|R′u+ t′〉, (A.4)

for some appropriate R′ and t′ which are easily determined by performing the CNOT. Thus,
also in this case the form (2) is kept.

Finally, suppose that a Hadamard gate is applied to, say, the first qubit of |ψ〉. This is the
most nontrivial case of the three. Recall that H maps |a〉 to

∑1
b=0(−1)ab|b〉 (where a = 0, 1).

Denoting the first row of R by rT , letting R̄ be the (N − 1)×m matrix obtained by removing
the first row of R and denoting t̄ = (t2, . . . , tN ), one has

|ψ′〉 ∝
1∑

v=0

∑
u∈Zm

2

(−1)q(u)+v·(rT u)+vt1 il(u)|v, R̄u+ t̄〉. (A.5)

Note that, as R has full rank m, R̄ may have either full rank m, or rank m − 1. If R̄ has
full rank, then (A.5) is of the form (A.1) and we are done. If R̄ has rank m − 1, some
additional work is required. In this case, there is exactly one nontrivial linear combination
of the columns of R̄ which yields the identity. Without loss of generality, we may assume
that the first column of R̄ can be written as a linear combination of the other columns, and
∗∗Here, the exponent a + b is computed modulo 2.
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that the last m− 1 columns of R̄ are linearly independent. Denoting the columns of R̄ by ci

(i = 1, . . . ,m), we therefore conclude that there exists a bit string y = (y2, . . . , ym) such that
c1 =

∑m
i=2 yic

i. Note that determining y is a ⊕L problem as y is the solution to a system of
linear equations over Z2. It is then easy to verify that R̄Q = [0|c2| . . . |cm], where the m×m

invertible matrix Q is defined by

Q =


1
y2 1
...

. . .
ym 1

 . (A.6)

Making the substitution u = Qu′ in (A.5) yields an expression of the following form:

|ψ′〉 ∝
1∑

v=0

∑
u′∈Zm

2

(−1)q′(v,u′) il
′(u′)|v, R̄Qu′ + t̄〉, (A.7)

for some quadratic and linear functions q′ and l′ which can be easily determined. To lighten
notation we will drop all primes in the above expression, i.e., u′ ≡ u, q′ ≡ q, l′ ≡ l. Now note
that the vector R̄Qu does not depend on the first coefficient of u, since the first column of
R̄Q is zero. Indeed, denoting ū = (u2, . . . , um), we have R̄Qu = [c2| . . . |cm]ū (note also that
[c2| . . . |cm] has full rank). Therefore, in (A.7) the variable u1 can be fully summed out. Using
lemma A.1 then shows that |ψ′〉 is again of the desired form (2). This completes the proof.


