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The diamond norm is a norm defined over the space of quantusfaramations. This norm has a nat-
ural operational interpretation: it measures how well omediatinguish between two transformations
by applying them to a state of arbitrarily large dimensionisThterpretation makes this norm useful
in the study of quantum interactive proof systems.

In this note we exhibit an efficient algorithm for computingsthorm using convex programming.
Independently of us, Watrous [1] recently showed a diffeadgorithm to compute this norm. An im-
mediate corollary of this algorithm is a slight simplificatiofthe argument of Kitaev and Watrous [2]
that QIPC EXP.
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1 Introduction

How well can one distinguish two quantum transformationsiadine we have access to some un-
known admissible super-operatbrand we want to distinguish the case ifisfrom the case it iF5

(77 andTy are known). Suppose thdi andT; take as input a state from a Hilbert spaé¢e One
possible test to distinguish, from 75 is preparing an input stajec D(V) (whereD()) denotes the
set of density matrices ovéf), applyingZ’ on p and measuring the result. This corresponds to:

sup {||T1p — Tplly, = p € D(V)}-

However, somewhat surprisingly, it turns out that often oae distinguisii}; and7 better, by
taking an auxiliary Hilbert spacd, preparing arentanglednput statep € D(V®.A), applying7’ on
theV register ofp and then measuring the global result. Therefore, we define:

dist(p1,p2) = sup{H(T1®IL(A))p— (T2®IL(A))thr : dim(A) < o0, p € D(VRA)}.

Kitaev [3] proved that this phenomena is restricted by disi@m and the maximum is attained
already with an auxiliary Hilbert spacé of dimensiondim(.A) < dim()). Define the following
functions on general (not necessarily admissible) superaiorsl” : L(V) — L(W):

1T, = sup{|T(X)|,:X € LV),|X||, =1}, and,
[ealN [T&ILon ., -

77
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Kitaev showed that botf ||, and||-||, are norms. Furthermore, Rosgen and Watrous [4, Lemma 2.4]
showeddist (74, T>) = ||T1 — T>||, for T} andT; that are completely positive.

The diamond norm naturally appears when studying the cléBsofQlanguages having a single-
prover, multi-round interactive proof protocol betweeradirpowerful prover and an efficient quantum
verifier. Kitaev and Watrous [2] showed that, without losgiefherality, perfect completeness can be
achieved and three rounds suffice (starting with the veyifiehey also showed that the value of a
three round quantum interactive protocol can be expressgfi|g , for some super-operat@t that is
naturally defined given the protocol of the verifier. Theyduig@s characterization, and the fact that
T @Ts||, = [|T1]l, - |T2]|, to show perfect parallel amplification for QIP protocolsndlly, they
showed that QIRC EXP by reducing the problem to an exponential size semi-iefimogramming
problem. Thus QIP is somewhere between PSPACE and EXP (titeicment PSPACE: IP C QIP
isimmediate). Very recently, Jain et. al. [5] showed tha® & PSPACE, by showing a space efficient
solution to a semi-definite program that captures the caxitplef the class QIP.

Another connection between QIP and the diamond norm wa# d¢iyeRosgen and Watrous [4].
They defined the promise proble@CD, ; (quantum circuit distinguishability) whose input is two
admissible super-operatdfs andT5, the “yes” instances are paif$;, 7») for which |7} — 3|, >
a and the “no” instances are the pairs for whighy — 7||, < b. Rosgen and Watrous [4] proved that
for everya < b the problemQCD,, ; is QIP-complete (see also [6]).

The work of Kitaev and Watrous, as well as the work of Rosgeth\&atrous do not imply that
approximating the diamond norm itself can be done in P. Inrbte we prove that the diamond norm
can be computed by solving a convex optimization problerd,tharefore it is in P. More precisely,
if we are given as input a description ®f: L(V) — L(V), e.g., written as a matrix of dimensions
N? x N? (whereN = dim())), and we are givem > 0, then we can approximatgl’||,, to within
¢ additive accuracy in timgoly(V,loge~!). Independently of us, Watrous [1] recently showed a
similar result using a semi-definite program.

This claim can also be used to simplify the (somewhat morepticated) proof given in [2] that
QIP C EXP. To see this, notice that Kitaev and Watrous alreadyqadlrat the value of a three round
guantum interactive proof system can be captured as theodidmorm of a natural super-operator
T. Thus, given such a proof system, all we need to do is to aHpligrite down the description
of 7" (which can be done in PSPACE and therefore in time exponéntigoly(n), wheren is the
input length of the QIP protocol) and then approximate i@nthnd norm, in time polynomial in
exp(poly(n)).

Our proof is surprisingly simple. We use an equivalent fdatian of the diamond norm, proved
by Kitaev, and we notice that it gives a convex program ushmjbint concavity of the fidelity
function. We use a representation for density matricesestggd by Liu [7] in a different context for
a similar purpose.

2 Preliminaries

Let V, W be two Hilbert spacesHom(V, W) denotes the set of all linear transformations from
to W and is a vector space of dimensidim(V) - dim(W) equipped with the Hilbert-Schmidt inner
product(T}, Ty) = Tr(T}Ty). L(V) denotesHom(V, V). Let{|i)} denote the standard basis f#ér
The set

{13 (4] 1 <i,5 <dim(V)}
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is an orthonormal basis df(V). Whendim()) = 2", tensor products of Pauli operators form another
natural basis fof.(V). The Pauli operators are

(10 (01 (0 =i (1 0
9={p 1)~ \10)%2 (i o) {0 1)

The se{o;,®...®0;, : 0<1iy,...,i, < 3}isan orthogonal basis df()’), and all basis elements
have eigenvalues1.
For a linear operatad € Hom(V, W), the spectral norm ofl is

| Al def sup z'ATAx
il|z)=1
and is equal to the largest singular valuetofFor any Pauli operataP, || P|| = 1. The/; norm of A
is [|A]|, = Tr(ATA) and is equal to thé, norm of the singular values of.

A pure state is a unit vector in some Hilbert space. A genemahtym system is in &aixed
state-a probability distribution over pure states. e, |¢;)} denote the mixed state in which the
pure statg¢;) occurs with probabilityp;. The behavior of the mixed-stafe;, |¢;)} is completely
characterized by itdensity matrixo = 3. p; |¢:)(¢;|, in the sense that two mixed states with the
same density matrix behave the same under any physicaltmpersotice that a density matrix over
a Hilbert space/ belongs toL (V). Density matrices are positive semi-definite operators feane
tracel. We denote the set of density matrices ovesy D(V).

Trace norm and fidelity. Thetrace normof a matrix A is defined by
Al = Tx(A]) = Tr (VATA),

which is the sum of the magnitudes of the singular valued .ofOne way to measure the distance
between two density matricgs andp, is by their trace distancigp, — p2||,,. Another useful alter-
native to the trace metric as a measure of closeness of yemaitices is thdidelity. For two positive
semi-definite operators, , p2 on the same finite dimensional spa¢€énot necessarily having tradg

we define )
Flpr,p2) = [T (Vo 2o 2)| = IIVaivasly,-

We remark that some authors defifé” = ||,/p1./pz]|,, as the fidelity. Our definition is consis-

tent with [8]. V/F is jointly concave, i.e., for every sétp;,&;)}~_, of pairs of density matrices and
every0 < A\q,..., \x < 1such thath:1 i =1,

k k k
\/F(Z Aipi, Z X&) = > AV (pi, &).

=1
A proof of this fact appears, e.g., in [9, Exercise 9.19Ve remark thatF’ is not jointly concave
(see [10, Section 2] for a short survey on what is known albwifitlelity function).

The diamond norm. Kitaev gave a different equivalent characterization of dieenond norm as
follows. Any T : L(V) — L(V) can be written in &tinespring representatione., as

T(X) = Tra(BXCY),

aNote that in [9] the fidelity function is defined to REF. In particular, the joint concavity of the fidelity functigmioved in [9,
Exercise 9.19] proves joint concavity §fF according to our notation.
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whereB, C' € Hom(V, V®.A) anddim(A) < (dim(V))? (see, e.g., [8, page 110] or [11, Lecture 4]).
Define two completely positive super-operat®isTs : L(V) — L(A):

Ti(X) = Try(BXB), (1)
Tr(X) = Trp(CXCOM). )

Then, the diamond norm @&f can be written as
ITll, = max {VF(Ti(p), T2(€)) : p.& € DY) }.

The proof of this characterization can be found in [8, Problel. 10] or in Watrous’ lecture notes [11,
Lecture 22, Theorem 22.2] (and notice that Watrous definegidelity function to bey/F). Further
information on the trace norm and the diamond norm of superators can be found in [8].

Convex programming. Maximizing a convex function over a convex domain is, in gaheNP-hard
(see [12] for a survey). In sharp contrast to tlusnvex programmingwhich is the problem ofini-
mizinga convex function over a convex domain, is in P. One of theoreathat convex programming
is easier to solve is due to the fact that in a convex prograyni@al optimum equals thglobal
optimum. Special cases of convex programming are semittiefirogramming and linear program-
ming. Convex programming can be solved in polynomial timeagishe ellipsoid algorithm [13] or
interior-point methods. Often, these algorithms assurseparation oraclgi.e., an efficient proce-
dure that given a point tells whether it belongs to the corsetx and if not, gives a half-space that
separates the point from the convex set. However, the probée also be solved usingreiembership
oracle[14, 15] (a randomized algorithm is given in [16]).

Fora € R™ andR > 0 we defineB,(a,R) = {x € R" : ||z —a|, < R}. For asetX C R”
we define

K. = {x€R": B,(z,¢) CK}
Ki. = {ze€R": 3Jye K suchthatz € B,(y,¢)}

Thatis,K _. is the set of points-deep inK andR™\ K, . is the set of points-deep in the complement
of K.

Definition 2.1 A functionOg : R® x RT™ — {0,1} is amembership oracle fak' C R" if for every
€>0,0k(z,e) =1foranyz € K_. andOk (z,¢) = 0foranyz ¢ K... Ok is efficient if it runs

in time polynomial in its input length.

Definition 2.2 A functionO; : K x Rt — R is anevaluation oracle computingover K, if for every

x € K and everye > 0, |f(z) — Oy(z,¢)| < e. Oy is efficient if it runs in time polynomial in its
input length.

Theorem 2.1[[14],[15, Theorem 4.3.13]There exists an algorithm that solves the following problem

Input 1. A convex body given by an efficient membership oracle.

2. Anintegem, rational numbersR, r > 0 and a vectom, € R™ such that
Bn(ag,r) € K C B,(0,R) C R".

3. Arational numbee > 0.
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4. A convex functiop : K. — R given by an efficient evaluation oracle.
Output Avaluer € K. such thatg(z) — opt| < ¢, whereopt = min,ex__ g(z).

The algorithm runs in timgoly(n, log e~ 1, log(R/7)).

Remark 2.1 The theorem is a slight variation of the one appearing in [IBjereg is required to be
defined and convex over the wholéRsf, whereas we only require that it is defined ovér .

To see why our variation is correct, notice that the proofgiin [15] works by a Turing reduction
that queries membership in the convexfat b) | « € K, g(x) < b}. If z is e-far from K it is also
e-far from {(z,b) | z € K, g(x) < b} and we can safely reject. Hence, we only need to quesg
inputs that are ink_ ..

3 Approximating the diamond norm in P

3.1 Representing density matrices

We follow [7] in the way we represent density matrices as aect This is due to that fact that we
need the set of vectors representing the density matricesritain and to be contained in balls of
appropriate radii around the origin.

We represent € D (V) by its Pauli-basis coefficients, but excluding the identibgfficient which
is alwaysl. Thus, we represepte D(V) as a vectop(p) € RN*~1 where theith coordinate of this
vector is given by, (p) = Tr(Pi+1p), whereP; is theith Pauli operator and’ = I. (Notice that
Tr(Pp) € R for Hermitian P and positive semi-definite.) We let

KD = {u(p) : pe DV)}.
The converse transformatidn: K" — D(V) is defined by

NZ-1
1

b(x) =+ | L+ > xiPiya | € D(V).
i=1

Notice that for anyp € D(V), ®(v(p)) = p and similarly, for anyr € KM, v(®(z)) = z.
Also for everyz € RV~ (not necessarily ik (1)) we have thaflr(®(z)) = 1, and for every
2,y € RV 7L | ®(x) — D(y)||, = where the first norm is ovek()) and the second

overRN" -1,
The convex set that we optimize overfis= K1) x K1), We claim:

Claim 3.1 K is convex and3; x> _(0, ﬁ) C K C Byn2_2(0,2N).

Proof. K1) is convex since the set of density matrices is convex. Héfiég also convex. Next we

show Bz 1 (0, 53=) € K@ which implies B,z (0, 57=) C K. Indeed, letr € RV"~" be
1

such that|z||, < VA and let

ﬁ [z = yll,

N2

1

P:q’(x)zﬁ I+ P
i=2

Clearly p is Hermitian and has trade We are left to verify thap is positive semi-definite. Fix a unit
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vectoru € RY. Then,

NZ-1 N%2-1

1
quu = ¥ ul T + z:l ;U PhLlu > i 1—’ Z ;U R+1U‘

—_

N%2-1

1
> 5 (10 Xl IRl > (1= VN Jal) >0

In order to showl' C By n2_5(0,2N) itis enough to showk ") C By2_;(0, N). Letz € K1),
Thenp = ®(z) € D(V) and foranyl <i < N? —1,

vi(p) = |Tr(pPi1)| < Tr(|pPiya]) < | Piga] Tr(p) <1,

and sofz|, = [v(p)]l, < N. O
Claim 3.2 There exists an efficient membership oraclefor
Proof. Clearly it is enough to give an efficient membership oractg6"). Given an input: € RN*-1
and ane > 0 we construct the Hermitian matrix = ®(x) and approximate its eigenvalues with
accuracy = oxasz in thels, norm. We then look at its smallest eigenvalue and we retufit is
positive and) otherwise.

Givenz, let )", \; [v;) (vs| with Ay > ... > Ay be the spectral decomposition o= ®(x). The
correctness of the membership oracle follows from the ¥alhg two claims:

o If z € K(,le) then\y >

10\6/ﬁ > €
o Ifz ¢ K\ thenhy < — 5357 < —C.

For the first item, assume ¢ K(,lﬁ) but \y <
2)\1\]

VAR Definec = (1 + a)p — a|un)(vn| for
. Thenw(o) ¢ K(Y) becausévy) is an eigenvector of with negative eigenvalue, but

|z —v(o), = VN |p—all, <VN|p—ol,, <2VNa <10VNAy <,

and sar ¢ K(,le). A contradiction.
For the second item, assumey ng and0 > Ay > — 55575 Defines = ﬁ Zm»o i i) (v
for A= -3, .o Ai. Clearly,v(o) € K. Also,

o —v(@)lly = VN lp— olly < VN llp — oll,, = 2VNA < 2VNN|Aw]| < c.

Thus,z € K ) . A contradiction.dd

o =

3.2 The target function

Let V be a Hilbert space of dimensiaN. LetT : L(V) — L(V) be a linear operator given in a
Stinespring representation, i.e., as a pair of operdtBrg”) such that

T(X) = Tra(BXCH),

and lete > 0. We assume thaV is a power of2. From B andC we can computd} and7; as in
Equations (1) and (2). We define a target funcjonkK — [—1, 0] by

9(z,y) = —VF(T1(®(x)), Ta(D(y))),
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Claim 3.3 g is convex overs..
Proof. For every0 < A1,..., A\x < 1such thath:1 A =1,

k

k k k k
9> Ni(ajy) = Q(ZAjfﬂij)\j%‘):*\/F(Tl(q’(z)\jxj))sz(‘I’(Z/\jyj)))

j=1

k k
—\/F(Tl(z )\jpj)7T2(Z Aj§j))7
j=1 Jj=1

wherep; = ®(x;) € D(V), {; = ®(y;) € D(V), and we used the fact thdt is linear for convex
sums, i.e.®(3" \jv;) = 3 \;®(v;). Now, by the joint concavity of/F,

k

k k
9> Ni(wyyy) = *\/F(Z AiTi(pj), Z AiT2(&5))

Jj=1

IN

k k
=Y NVE(Tps), To(€)) = Y X9l 95)-
j=1 j=1
O
Claim 3.4 There exists an efficient evaluation oracle §oover K.
Proof. We are given as inputz;, z2) € K ande > 0. We computel; = T1(P(z1)) and My =
Ty (®(22)) and this is done with no error. We would like to compuyte, z2) = H\/HM/WQHtr We
approximate,/M; with ¢ /2 accuracy in the operator norm (it will turn out thiat= W
suffices), and then we change each negative eigenvaluec(i dre any) to zero. We get positive
semi-definiteS; such that||S; — v/M;|| < ¢. We output an approximation dfS;Ss||,, with ¢/2
accuracy.

By Claims 3.5 and 3.6 below:

‘HSlSQHtr - H\/E\/E

Thus, our output is-close tog(x,z2) as required. Also, observe thiaig(¢~!) is polynomial in
the input length, sincéog(||B]|) andlog(||C||) are polynomial in the input length. Therefore, the
evaluation oracle is efficient]

Claim 3.51f p1, pa, 01,02 € L(V) are positive semi-definite angh; — o;|| < ¢ for i € {1,2} then

< N¢(Isil+ | VAE|) < MBI+ ICl+0) < ¢/2

tr

[ p1p2lly, = lloroally, | < NC(llpall + llo2)-

Proof.

| p1p2ller — lp102]ly, | + ’ o102, — oozl ‘
[p1(p2 — o2)lly, + [[(p1 — 01) 02y,

o1l o2 = o2l + llo2ll o1 — oull;,

N(([orll + llozll)-

’ ||p1p2||tr - ||010-2Htr |

ININ IN A

O
Claim 3.6 For anyp € D(V): H\/TTp)H < Bl HJTT(@H el
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Proof. T} is completely positive and sB (p) is positive semi-definite anHi\/Tl (p)H =T (p)]l.
Expressp = ). A; |v;) (v;] with {|v;) } being an orthonormal basis; > 0 and) ", \; = 1. Denote
|wi) =B |Ul> Then,

1T (p)ll = |

Z)\iTrV(B |vi)(v;| BY)

< ZA [ITry (Jws) (wil)|| < Z/\ llwa)llz

where we have usefilry (jw)(w|)|| < [[|w:)[3. Thus,|Ti(p)]| < [|BII* ;A = [|B]*. A similar
argument applies fdf,. [

3.3 The algorithm

To compute the diamond norm of a given super-operator, tharighm essentially solves the convex
program that finds the minimum value @bver the convex set. The last thing that we need is to show
thatg is indeed defined and can be evaluated over points that aresat4far from this set. However
the setK is not good enough for this purpose since matrices that lisidelthis set (but still close to

it) have negative eigenvalues and it is not clear how oneldraefine the fidelity for such matrices.
To overcome this problem we define a new convexS#iat is just a shrinking of<. This ensures
that matrices that areclose to the boundary are still positive.

We setM = —N+/||T1]| |||, where||T;|| is the spectral norm df; when viewed as a linear
operator inHom(L(V), L(.A)). It can be verified thatin,cx g(z) > —M. Givene > 0, we define
a = gy ande’ = - We define

S =1 -a)KW,
Claim 3.7SW = {z € K : Ay(®(z)) > &}. Furthermore,5() is convex, has an efficient mem-

bership oracle ands'"), € K.
Proof.

ze SV o z=(1-a)zforsomer e KM

& B(z)=(1-

Qe

VO (z) + a% for some®(x) € D(V)

& An(D(2)) >

2|2

5™ is convex and has an efficient membership oracle becatiSedoes. Also,s\), ¢ K®)
because it € S and||z — z||, < € then

[l — 2|

AN(6(2)) 2 An(9(z)) — [|(z) — D(2)]| = i

>

S
S
2

(I

We are now ready to prove:
Theorem 3.1LetV be a Hilbert space of dimensioN. LetT : L(V) — L(V) be a linear operator
given in a Stinespring representation, i.e., as a pair ofrap®s (B, C') such that

T(X) = Tru(BXCT),

and lete > 0. Then there exists a polynomial time algorithm (in the injeagth of 7" andlog e 1)
that outputs a value such that ¢ — || 7|, | < e.
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Remark 3.1 The fact that the input operatdr is given in a Stinespring representation is without loss
of generality as there exists efficient algorithms to mosmfsuch a representation to other standard
forms of representing a super-operator (see, e.g., [11{ured]).
Proof. We approximatd 7; || from above in time polynomial in the representatiorfpfand sef\/, «,
and¢’ as above. We defing = S x S(M andg : K — R as above. The target functigrhas an
efficient membership oracle and is convex okeand therefore ove$.. ... By Theorem 2 we can find
a valueopt that approximatesin,, s_., 9(z) to within €’

Now, leto = (01,02) € K be a point minimizingy over K, that is,g(0) = mingecx g(x). We
claim thato’ = (1 — 2a)o liesin S_... Indeed, fix anyy; € Byz_1(0},€'). Then,

AN(@(y:) = An(®(0])) — >

€
VN- N UN
and thereforg € S. Thus,

However,

N
< (1 20) (—VF(Ty(®(0), To(®(02))) ) +20 (ﬁ <T1 (zfz) 12 (z@))

< (1-2a)g(01,02) — 2%\/? (TrVBBT7TrVCC’T) < (1 —2a)g(o).

g(0) = g((1—2a)0) = —VF <T1 <(1 —20)®(01) + 2012{]) T ((1 — 20)®(05) + QQI))

Altogether,|opt — g(0)| < € — 2a g(0) < € +2aM < e. O
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