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1 Introduction

Quantum mechanics makes it possible to exchange a random bit string at a distance [1, 2, 3, 4].

In theory, the key distribution is secure, even if an eavesdropper Eve can do anything allowed

by the currently known laws of nature [5, 6, 7, 8].

In practical QKD systems there will always be imperfections. The security of QKD systems

with a large variety of imperfections has been proved [5, 9, 10, 11]. However, a QKD system

is relatively complex, and loopholes and imperfections exist that are not covered by existing

security proofs. A security loophole can be dealt with in two different ways: Either you

modify the implementation, or you increase the amount of privacy amplification [12] required

to remove Eve’s information about the key. The first approach, to modify the implementation,

may often be done without decreasing the rate of which secret key can be generated. It

may however increase the complexity of the implementation, which in turn may lead to

new loopholes. The advantages of the second approach, to increase the amount of privacy

amplification, are that the apparatus can be kept as simple as possible, and that existing

implementations can be made secure with a software update. A drawback is clearly the

reduced key rate, which is considered as a critical parameter in commercial QKD systems.

One of the imperfections to be considered in this paper, is called detector efficiency mis-

match (DEM) [13]. If an apparatus has DEM, Eve can control the efficiencies of Bob’s

aEmail: lars.lydersen@iet.ntnu.no

60



L. Lydersen and J. Skaar 61

detectors by choosing a parameter t in some external domain. Examples of such domains can

be the timing, polarization, or frequency of the photons [13, 14].

To be more concrete, consider DEM in the time-domain. In most QKD systems Bob’s

apparatus contains two single photon detectors to detect the incoming photons, one for each

bit value. (Equivalently, two different detection windows of a single detector can be used for

the two bit values (time-multiplexed detector).) Normally the detectors are gated in the time-

domain to avoid high dark-counts. This means that electronic circuits are used to turn the

detectors on and off, creating detection windows. Different optical path lengths, inaccuracies

in the electronics, and finite precision in detector manufacturing may cause the detection

windows of the two detectors to be slightly shifted, as seen in Fig. 1. The shift means that

there exist times where the two detectors have different efficiencies.

η1(t)η0(t)

Efficiency

Time t

Fig. 1. An example of mismatched efficiency curves for two detectors in the time-domain. The
functions η0(t) and η1(t) are the efficiencies of detector 0 and 1, respectively. The parameter t can

be used to parametrize other domains as well.

Systems with DEM can be attacked with a faked-states attack [13]. The faked-states

attack is an intercept-resend attack where Eve does not try to reconstruct the original state

sent by Alice, but rather exploit the imperfections in Bob’s apparatus to hide errors. The

faked-states attack can be adapted to the Scarani-Acin-Ribordy-Gisin 2004 (SARG04), Ekert,

and Differential Phase Shift Keying (DPSK) protocols, in addition to BB84 [15]. Another

attack on systems with DEM is the time-shift attack [16]. In this attack Eve just selects

the timing of each qubit randomly, thereby gaining information about the bit value when

Bob announces which qubits were received and which were lost. The major advantage of the

time-shift attack is that it does not introduce any quantum bit error rate (QBER). It has

been demonstrated experimentally that the security of a commercially available QKD system

can be compromised with a time-shift attack [17].

A frequently mentioned countermeasure for systems with DEM is called four-state Bob

[18, 19, 13, 16]. In a phase-encoded QKD system, Bob chooses from four different phase

settings {0, π/2, π, 3π/2} instead of only two {0, π/2}. This will randomly assign the bit

values 0 and 1 to the detectors (or the detection windows, in the case of one time-multiplexed

detector) for each received state. Therefore Eve does not know which detector characteristics

that corresponds to the 0 and 1 detectors.

However, as mentioned previously [13, 16] Eve may use a large laser pulse attack [20, 21,
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22, 23] to read Bob’s phase modulator settings. In a large pulse attack Eve uses a strong laser

pulse to measure the reflections from either Alice’s or Bob’s apparatus. The setting of the

phase modulator may give a signature on the reflections, enabling Eve to obtain the phase.

First assume that Eve is able to read Alice’s modulator settings. Then Eve could obtain bit

and/or basis information before the pulse enters Bob’s apparatus, and therefore the security

would be seriously compromised. Fortunately, Alice’s implementation can easily be modified

to avoid the large pulse attack. A setup with a coherent laser source contains an attenuator,

and moving this to the end of the apparatus, as well as introducing an optical isolator, will

put impossible requirements on Eve’s laser [22]. In “plug-and-play” systems Alice already

uses a detector to monitor the input of her setup. Therefore a large pulse attack can easily

be revealed by monitoring the intensity of the input.

In a straightforward implementation of BB84, the phase modulator setting in Bob’s setup

only contains basis information. It usually poses no security threat if Eve reads the basis, as

she will get it during the public discussion anyway. One only has to avoid that Eve receives

the basis information before the pulse enters Bob’s apparatus. This can be taken care of by

placing a properly long coil of optical fiber at the entrance of Bob’s setup.

However, if the DEM loophole is patched with four-state Bob, the large pulse attack is

dangerous, because it may give Eve information about the detector assignments. Modifying

Bob’s setup to avoid large pulse attacks is not an easy task. The most practical solution

seems to be a beam splitter or an optical circulator combined with an intensity detector [22].

Note that the key rate will suffer; the the input of Bob’s setup is precious single photons.

Also the setup gets more complex, which should be avoided as far as possible, to limit the

number of “hidden surprises”. It is therefore not obvious whether such modifications should

be implemented, or whether the security should be regained with extra privacy amplification.

Even though some systems implement four-state Bob, several of them lack countermeasures

for a strong pulse attack on Bob’s side. Therefore we will pursue the latter solution, i.e., we

assume that Eve is able to read Bob’s phase modulator setting after Bob’s detection.

Security bounds state a unconditionally secure key rate, positive a range in some param-

eter(s). Ideally one should be able to prove the converse, namely that with the parameter(s)

outside this range the QKD-system is provable insecure. Unfortunately this is not always

simple. Usually there is a third range of the parameter(s) where it is not known whether the

QKD-protocol is secure. For instance with perfect devices and one-way classical communica-

tion, the QKD-system is unconditionally secure for QBER < 11 % [8], and provable insecure

for QBER > 14.6 % [24]. Until the gap is closed the security bounds represent a lower bound

on the secure key rate, and the best known attacks represent an upper bound.

Fung et al. found a security bound for QKD systems with DEM [14]. QKD systems with

four-state Bob is proved to be secure, provided Eve cannot read Bob’s phase settings with a

large pulse attack. The security proof assumes the so-called squashing model [11].

In this paper we first establish an upper bound for the secure key rate of QKD-system

with DEM by presenting two powerful attacks, one of which even applies to implementations

with four-state Bob (Section II). Then we will establish a lower bound for the secure key rate

by providing a simple security proof of QKD systems with general, basis and bit dependent

detector flaws (Section III), generalizing the proof by Fung et al. More precisely, any basis

dependent, possibly lossy, linear optical imperfections in the channel and receiver are covered
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by the proof. For example, the proof covers mixing between all available optical modes,

misalignments, mode-dependent losses, DEM, and any basis dependence of those effects. The

proof is formulated for a decoy-state BB84 protocol and does not assume a squashing model.

Finally, in Section IV we will examine some examples, including DEM, DEM with mode

mixing, and DEM with misalignment.

2 Security analysis: upper bound

In this section we analyse two powerful attacks on systems with DEM. Such attacks are im-

portant because they establish a regime where QKD-systems with DEM is provable insecure.

To analyze the attacks, for the moment we define η = max {mint η1(t)/η0(t),mint η0(t)/η1(t)} ∈
[0, 1], representing the smallest efficiency ratio available for both bit values. For individual

attacks the secret key rate is given by [12, 25] (given one-way classical communication)

R = I(α : β) − I(α : ǫ), (1)

where I(· : ·) denotes mutual information and α, β, and ǫ represent Alice’s, Bob’s and Eve’s

bits.

In the previous analysis of the faked-states attack [13], the attack was limited by the

introduced QBER rather than Eve’s insufficient knowledge about the key. By attacking only

a fraction of the bits with the faked-states attack one can compromise the security for even

higher values of η. The other fraction could be attacked with the time-shift attack [16] which

introduces no QBER.

To tailor E, the QBER measured by Alice and Bob, the fraction r attacked by the faked-

states attack is given by

r =
E

Efs
= E

1 + 3η

2η
, (2)

where Efs = 2η/(1 + 3η) is the QBER introduced by the faked-states attack. The mutual

information between Alice and Eve is given by

I(α : ǫ) = rI(α : ǫ)fs + (1 − r)I(α : ǫ)ts

= 1 − E − h(
η

1 + η
)

(

1 − 1 + 3η

2η
E

)

,
(3)

where r is given in (2) and I(α : ǫ)fs = 1 − E and I(α : ǫ)ts = 1 − h(η/(1 + η)) denote the

mutual information in the faked-states and the time-shift attack, respectively, as given in Refs

[13, 16]. h(·) is the binary entropy function. Since Alice and Bob does not know how each

bit is attacked, I(α : β) is simply given by 1 − h(E). The key rate (1) thus becomes

R = E + h(
η

1 + η
)

(

1 − 1 + 3η

2η
E

)

− h(E). (4)

Without considering DEM, Alice and Bob think that the key is secure when QBER < 11%

(symmetric protocols with one-way classical communication [8]). Solving the equality R = 0,

where R is given by (4), and setting E = 0.11 gives η = 0.215.

The above combined attack is implementable with current technology. Up to η = 0.160 it

represent an upper bound on the secure key rate (see Fig. 3). However with four-state Bob,
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the attack is impossible since the faked-states attack requires knowledge of the bit-detector

mapping before Bob receives the pulse.

For higher values of η there exists an even more efficient attack. The optimal individual

attack in the absence of imperfections is known [24]. Here Eve lets the qubit from Alice

interact with a probe. After the basis is revealed, Eve’s probe is in one of two non-orthogonal

states [24]

|ξ0〉 = |0〉 (5a)

|ξ1〉 = cosϕ|0〉 + sinϕ|1〉, (5b)

where ϕ is related to the QBER by

cosϕ = 1 − 2E. (6)

Eve has to separate between |ξ0〉, corresponding to the bit value 0 at Alice, and |ξ1〉, corre-

sponding to the bit value 1. The two states occur with an a priori probability 1/2.

In the presence of DEM, we improve the attack as follows: In addition to using a probe,

Eve launches a time-shift attack. If Bob announces receipt, the probabilities of the two bit

values is now {1/ (1 + η) , η/ (1 + η)} according to the time-shift attack [16]. Then after the

public discussion, Eve has to separate between the states (5) with the a priori probabilities

{1/ (1 + η) , η/ (1 + η)}. The optimal measurement is projective [26], and the probability p of

Eve measuring the correct bit value is found to be

p =

(

1

1 + η

)

cos2

[

1

2
arctan

(

sin 2ϕ
1
η − cos 2ϕ

)]

+

(

η

1 + η

)

sin2

[

ϕ+
1

2
arctan

(

sin 2ϕ
1
η − cos 2ϕ

)]

,

(7)

where ϕ is related to the QBER as in Eq. (6).

Since Eve has probability p to have the same bit value as Alice, I(α : ǫ) is simply 1−h(p).
I(α : β) is given by 1− h(E). The key rate (1) for this improved optimal individual attack is

thus

R = h(p) − h(E), (8)

where p is given by (7).

Without considering DEM, Alice and Bob think that the key is secure when QBER < 11%.

Solving the equality R = 0, where R is given by (8), and setting E = 0.11 gives η = 0.252. In a

commercial QKD system η was found to be approximately 0.25 (see Fig. 3 in [17]) b. Therefore,

this attack could be used to compromise the security of such QKD systems. Note that the

attack does not require the bit-detector mapping until the post-processing step. Therefore

systems patched with four-state Bob are vulnerable to the attack combined with a large pulse

attack.

Note that the both attacks represent a substantial improvement compared to the previ-

ously published attacks which require η < 0.066 [13]. Fig. 3 shows the range of E, η which

compromises security, and compares the two attacks.

bAlso note that the DEM found in this system is heavily asymmetric, and the attacks might be more powerful
if optimized for asymmetric DEM.
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3 Security analysis: lower bound

In this section we will prove the security of the BB84 protocol in the presence of bit and

basis dependent detector flaws, and establish the secure key generation rate. We will prove the

security in a general setting, lifting the so-called squashing model assumption. That is, Eve

may send any multimode, photonic state, and Bob uses practical threshold detectors. Alice

may use a single-photon source or phase-randomized faint laser pulses; in the latter case, Alice

may use decoy states [27, 28, 29] to estimate photon-number dependent parameters. Alice’s

source is otherwise assumed perfect: It emits an incoherent mixture of photonic number states,

randomly in logical modes “0” or “1”, randomly in the X or Z bases, with no correlation

between the bits, bases, and photon number statistics [30].

The state space accessible to Eve consists of the Fock space associated with all photonic

modes supported by the channel. The channel and receiver is modeled as a basis-dependent

quantum operation, CZ and CX , in front of two threshold detectors. Here Z and X denote the

bases chosen by Bob. Since reduced detector efficiencies can be absorbed into the quantum

operations, we can let Bob’s threshold detectors have perfect efficiency. Dark counts are

attributed to Eve, and for double click events, Bob assigns a random value to his bit [9, 11].

In our security proof, the key condition of CZ and CX is that they are passive, in the sense

of

|0〉 → |0〉, (9)

where |0〉 denotes the vacuum state of all modes. In other words, vacuum incident to all

modes gives vacuum out. This condition is rather general; it includes all linear and nonlinear

optical transformations of the modes supported by the channel.

For simplicity, however, we will restrict ourselves to linear optical imperfections. Bob’s

two detectors may still have different efficiencies, depending on the time, frequency, and/or

polarization of the incoming states. Moreover, there may be imperfections in the channel

and Bob’s receiver. This can be described as arbitrary, square matrices CZ and CX , acting

on the channel modes after Eve’s intervention. The linear-optical property of CZ and CX is

ensured from the fact that they are classical transformations (or transfer matrices) operating

on the physical, photonic modes (e.g. temporal modes and polarization modes) rather than

the total Fock space of the modes. Each mode can contain any photonic state such as number

states or coherent states. Although CZ and CX have finite dimension, the associated, induced

quantum operations CZ and CX operate on an infinite dimensional Fock space. We use the

convention that Bob’s basis selector is included in CX (see Subsection 4.1).

With singular value decomposition, we can write

CZ = UZFZVZC, (10)

where UZ and VZ are unitary operators, and FZ is a diagonal, positive matrix. In addition to

the usual singular value decomposition, we have included an extra matrix factor C, governing

losses and imperfections in the channel and/or receiver, independent of the basis chosen by

Bob. The matrix C may for example describe loss of the channel and time-dependent detector

efficiencies common for the two detectors. The operator C can be absorbed into Eve’s attack,

thus it never appears in the following analysis. The unitary operators UZ and VZ mix the

modes together. For example, VZ is the result of sending the modes through a network
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isomorphic to the type in [31]. The diagonal matrix FZ represents the different efficiencies of

the two detectors (in addition to basis-dependent absorptions in the receiver), and satisfies

|FZ |2 = diag
[

ηZ0(t1) ηZ1(t1) ηZ0(t2) ηZ1(t2) . . .
]

. (11)

The parameters tj , j = 1, 2, . . . label different modes. For example, tj may correspond to

different temporal modes. In the absence of UZ and VZ , ηZ0(tj) and ηZ1(tj) can be viewed

as the efficiencies of detector 0 and 1 in the Z-basis. Otherwise the efficiencies ηZ0(tj) and

ηZ1(tj) do not necessarily correspond to the detectors 0 and 1, respectively, nor to detection

time tj . However, the notation is selected as in the special case for intuition. Note that FZ
may be represented as a collection of beam splitters with transmittivities ηZ0(t1), ηZ1(t1),

and so forth. Then each mode is incident to its own beam splitter, and the vacuum state is

sent into the other input.

The resulting model is shown in Fig. 2a. In the model we have included an extra measure-

ment, giving information to Eve whether the total state is equal to the vacuum |0〉. While

this information actually comes from Bob, it is convenient to let Eve obtain this information

from a separate measurement. Note that this extra vacuum measurement does not disturb

Bob’s measurement statistics for any basis choice.

Vacuum?

UXVX

FX

UX

FX
VX

VZ

FZ
UZ

Vacuum?

U
†
Z

F̄Z
V

†
Z UXVX

FX

VZ

FZ
UZ

Vacuum?

Eve

2d)

2c)

Eve

2b)

Eve

(Detectors)

2a)

Eve D

√
ηZI D

D

D

Fig. 2. a) Actual protocol. b) Estimation of Alice’s virtual X-basis measurement. c) Simplification

of Fig. 2b from Bob’s point of view. d) Actual parameter estimation in the X-basis.

We will prove security using Koashi’s argument [32, 33, 30] which we briefly summarize

here. In the BB84-like actual protocol Alice generates a large number of bipartite states,

where her part consists of a qubit which she measures randomly in the X- or Z-basis. The

other part of the pairs is sent to Bob via Eve. Bob measures what he receives from Eve

randomly in two different bases, which we will refer to as the “X-basis” or the “Z-basis”.

For example, for polarization encoding Bob’s two measurements should ideally correspond to

threshold detectors in horizontal/vertical or ±45◦ polarization bases, with double clicks as
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random assignment. Alice and Bob discard all events where they used incompatible basis.

Further he publicly announces receipt if he receives something different from vacuum. Let QX
and QZ be the fractions of non-vacuum results in each basis. Alice and Bob compare their

X-basis measurement results to estimate QX and the error rate EX . The N states measured

in the Z-basis yield NQZ non-vacuum results. For these NQZ events Alice’s measurement

result is the raw key.

The required amount of privacy amplification can be found as follows: imagine a virtual

experiment where Alice measures the qubits for the raw key in the X-basis instead of the

Z-basis. Bob tries to predict the result of Alice’s virtual X-basis measurement. Bob does not

perform such a prediction in practice; thus in this prediction we may let Bob do everything

permitted by quantum mechanics, as long as he does not alter the information given to

Eve. Let HvirtX(A|B = µ) denote the entropy of Alice’s virtual X-basis measurement result,

given measurement result µ in Bob’s prediction. It turns out that HvirtX(A|B = µ) can be

bounded using EX and QX , so assume that HvirtX(A|B = µ) ≤ H. Since the uncertainty

about Alice X-measurement is less than H, the entropic uncertainty relation [34] suggests

that any prediction (including Eves prediction) of the measurement result of Alice Z-basis

measurement will have at least NQZ −H entropy. Thus Alice can extract NQZ −H bits of

secret key. Rigorously, this rate is found by concertizing the privacy amplification procedure

by universal hashing. Although Koashi’s original proof is formulated with an obsolete security

definition based on accessible information, the proof can easily be adapted to a composable

security definition [35, 36, 37].

Bob must ensure that he has an identical raw key. Since it does not matter to Eve what

Bob does (as long as he gives Eve the same information), he measures the bits for the raw

key in the Z-basis. Alice and Bob compares a subset of the raw key to find the error rate

EZ (consuming some of the raw key, but negliable in the asymptotic limit), and Alice sends

Bob NQZh(EZ) bits of error correcting information consuming NQZh(EZ) bits of previously

established secret key. In the asymptotic limit N → ∞ the net secure key generation rate

becomes

RZ ≥ 1 − H

NQZ
− h(EZ). (12)

Note that H is needed to ensure that Alice’s key is secret, and this only requires X-

basis parameters to be estimated by Alice and Bob. Thus there is no need to invoke the

classicalization argument [7] regarding statistics of measurements involved in the simultaneous

estimation of EX and EZ .

For his prediction, Bob will use the virtual measurement in Fig. 2b. Bob first applies

the unitary operator U†
Z , followed by the filter F̄Z , and the unitary operator V †

Z . Then he

applies the operator CX = UXFXVX . Finally he performs an X-basis measurement. Note

that we retain Eve’s vacuum measurement and all components preceding it, so Eve obtains

the identical information as in Fig. 2a. The matrix F̄Z is diagonal, and is given by

F̄ZFZ =
√
ηZI, (13)

where

ηZ = min
ij

{ηZi(tj)}. (14)
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Similarly to FZ , the filter F̄Z is implementable by beam splitters acting separately on each

mode. The largest element of |F̄Z |2 is 1, while the smallest element is ηZ/maxij{ηZi(tj)}.
To analyze how well Bob performs in his prediction, we will now simplify the system in

Fig. 2b to determine Bob’s measurement statistics. To do this, we introduce an extra vacuum

measurement right before Bob’s detectors, assuming nobody records the outcome. Clearly,

Bob’s measurement statistics are not altered by the presence of this extra measurement. The

filter UXFXVXV
†
Z F̄ZU

†
Z obeys (9), being a linear optical transformation. As a result, we show

in the appendix that the output state, after the extra vacuum measurement, is independent

of the presence of Eve’s vacuum measurement (i.e., the first vacuum measurement, after UZ
in Fig. 2b). Thus, to estimate Bob’s measurement statistics, we can remove Eve’s vacuum

measurement. We end up with the simplified system shown in Fig. 2c. Note that the simplified

system is identical to the system in Fig. 2d, the actual protocol when Bob has chosen the

X-basis, except for one thing: There is an extra, mode-independent absorption ηZ in the

channel. This fact will be used for estimating the performance of Bob’s prediction.

To prove the security also for the multiphotonic case, we use the parameters q
(1)
X and

e
(1)
X assumed known from the decoy state protocol. q

(1)
X is the fraction of Bob’s X-basis non-

vacuum events that originate from single photons at Alice. e
(1)
X is the QBER for single photon

events in the X-basis (only single photons generate secure key). Consider the prediction in

Fig. 2b-c. Let NQZ be the number of states in the raw key. In a worst case, the number

of detection events that originate from single photons at Alice, will be only ηZq
(1)
X QXN ,

due to the filter
√
η
Z
I (note that ηZQX < QZ). For each of these events Bob’s entropic

uncertainty about Alice’s bit is (asymptotically) h(e
(1)∗
X ), where e

(1)∗
X is the associated error

rate. We note that e
(1)∗
X is not measured in the actual protocol; it will rather be estimated

below. For the events lost in the filter
√
η
Z
I, Bob’s entropic uncertainty about Alice’s bit is

1, since he has no detection result. Summarizing, Bob’s entropic uncertainty about Alice’s

QZN bits (corresponding to the number of detection events in Fig. 2a) is at most H =

QZN − ηZq
(1)
X QXN [1− h(e

(1)∗
X )]. In our analysis we have ignored the events associated with

Alice sending the vacuum state [30]; their contribution will only give a marginally larger rate.

From (12) the secure key rate becomes

RZ = −h(EZ) + ηZq
(1)
X QX/QZ

[

1 − h(e
(1)∗
X )

]

. (15)

It remains to bound the parameter e
(1)∗
X , which is the QBER for single photon events in

the estimation Fig. 2b-c. Recall that e
(1)
X is the estimated QBER for single photon events in

the X-basis, Fig. 2d. The only difference between the setup in Fig. 2c and Fig. 2d is the filter√
η
Z
I, which represent identical absorption in all modes. However, the removal of detection

events by this filter is dependent on the photon number, so e
(1)∗
X 6= e

(1)
X in general c. To bound

e
(1)∗
X we use the fact that the filter only alter the detection statistics by removing detection

events. (An exception occurs for the few coincidence counts; these can be taken into account

easily.) In a worst case,

e
(1)∗
X ≤ e

(1)
X

ηZ(1 − e
(1)
X ) + e

(1)
X

≤ e
(1)
X /ηZ . (16)

cNote that although Alice send a single photon for a particular event, Eve may send any state.
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Putting these results together, we obtain the secure key generation rate

RZ ≥ −h(EZ) + ηZq
(1)
X QX/QZ

[

1 − h(e
(1)
X /ηZ)

]

. (17)

A similar result holds when Alice and Bob have chosen the X-basis in the actual protocol:

RX ≥ −h(EX) + ηXq
(1)
Z QZ/QX

[

1 − h(e
(1)
Z /ηX)

]

. (18)

Ineqs. (17) and (18) are valid for any basis and bit dependence of the channel and re-

ceiver/detectors, as long as the imperfections (CZ and CX) can be described as possibly

lossy, linear optical operators acting on the photonic modes.

To compare our result (17) to that of Ref. [14], we let Alice only send single photons. The

rate then becomes

R ≥ −h(E) + η[1 − h(E/η)], (19)

where we have assumed symmetry between the bases, and therefore omitted the Z and X

subscripts. The rate (19) coincides with the rate found in [14] (see Subsection 4.2 for a

discussion on how to identify η). Note, however, that (19) is a stronger result in the sense

that it applies to any basis-dependent linear optical imperfections, not only the case where

UZ,X = I, and VZ,X do not mix modes associated with different logical bits. Also it does not

require the squashing model assumption.

Under the assumption that Eve only sends single photons, it is easy to realize that (16)

can be replaced by e
(1)∗
X = e

(1)
X . Then (19) is improved to

R ≥ −h(E) + η[1 − h(E)]. (20)

Fig. 3 shows the security bounds resulting from (19) and (20) when the right-hand side is

set equal to zero.

4 Examples

4.1 DEM in the time-domain

Consider the case where Bob’s detectors have time-dependent efficiencies, as indicated in

Fig. 1. We assume that the efficiencies are independent of the basis chosen by Bob (FX = FZ).

The channel and receiver are otherwise assumed perfect, except for a background loss C. The

background loss may be mode dependent, but independent of the basis chosen by Bob.

With these assumptions, we may take CZ = FZC and CX = FXHC = FZHC, where

H is a block-diagonal matrix consisting of 2 × 2 Hadamard matrices H(2), interchanging the

bases Z and X for each time:

H = diag
[

H(2) H(2) H(2) . . .
]

. (21)

To maximize the secure key rate, as much as possible of the detector flaws should be absorbed

into C. Therefore, we factorize

FZ = FF ′, (22)

where

F ′2 = diag
[

η′(t1) η′(t1) η′(t2) η′(t2) . . .
]

, (23)
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Q
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R

0 1η0.25

0.11

Fig. 3. Security bounds when Alice sends single photons (q
(1)
Z

= q
(1)
X

= 1), assuming symmetry
between the bases. The bounds are found by setting the associated key generation rates equal to
zero. Solid line: General security bound, as resulting from (19). Dash-dotted line: Security bound

(20) assuming Eve sends single photons. Dashed line: The improvement of the optimal individual
attack from Section 2, as resulting from (8). Dotted line: The combined attack from Section 2,
as resulting from (4). For the attacks it is assumed that the DEM is equal for the two bit values.
The dark grey region is proved to be insecure while the white region is proved to be secure with

extra privacy amplification. The light grey region should be assumed insecure.

and η′(tj) = max{ηZ0(tj), ηZ1(tj)}. Noting that F ′ and H commute, we can absorb F ′ into

C. The remaining diagonal matrix F then has the role of FZ (and FX) in the security proof.

The parameter ηZ = ηX to substitute into the secure key generation rate (17) is therefore the

minimum diagonal element of |F |2:

ηZ = min
t

min

{

ηZ0(t)

ηZ1(t)
,
ηZ1(t)

ηZ0(t)

}

. (24)

4.2 DEM and restricted mode mixing

Consider the case treated by Fung et al. [14], where there is no mixing between modes

associated with different logical bits. Then CZ can be written in block diagonal form

CZ =

[

C0 0
0 C1

]

C, (25)

provided we reorder the modes as in

|FZ |2 = diag
[

ηZ0(t1) ηZ0(t2) . . . ηZ1(t1) ηZ1(t2) . . .
]

, (26)

to be compared to (11). As in Ref. [14] we assume basis independence in the sense

CX =

[

C0 0
0 C1

]

HC. (27)

Here,

H =
1√
2

[

I I
I −I

]

, (28)
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with the present choice of mode order. We assume that CZ is nonsingular. (Otherwise, the

secure key generation rate would be zero.)

We should associate as much as possible of the imperfections to the common channel

operator C. Let the singular-value decomposition of C0C
−1
1 be usv, where u and v are

unitary matrices, and s is diagonal and positive. Let λ2 be the maximum of max s and

max s−1. Factorize

CZ = λ

[

us1/2 0
0 v†s−1/2

]

1

λ

[

s−1/2u†C0 0
0 s1/2vC1

]

C. (29)

Defining

C ′ =
1

λ

[

s−1/2u†C0 0
0 s1/2vC1

]

, (30)

and noting that s−1/2u†C0 = s1/2vC1, we have C ′H = HC ′. This gives

CZ = λ

[

us1/2 0
0 v†s−1/2

]

C ′C, (31a)

CX = λ

[

us1/2 0
0 v†s−1/2

]

HC ′C. (31b)

Similarly to the reasoning in Section III, Bob applies a virtual filter to transform CZ into an

operator proportional to CX . Applying

1

λ

[

us1/2 0
0 v†s−1/2

]

H
1

λ

[

s−1/2u† 0
0 s1/2v

]

,

the operator CZ is transformed into CX/λ
2. Following Section III,

√
η = 1/λ2. This gives

√
η = min(min s,min s−1). (32)

Equivalently, η is the minimum value of the eigenvalues and inverse eigenvalues of C0C
−1
1 (C0C

−1
1 )† =

C0(C
†
1C1)

−1C†
0 . This η should be substituted into (17) to find the secure key generation rate.

The parameter η can be measured as follows. For single photon input in a given super-

position ψ of logical “0” modes, the probability of a click in detector 0 is given by ψ†C†
0C0ψ.

Similarly, we may use the identical superposition ψ of “1” modes to find the detection prob-

ability of detector 1. Note that ψ denotes a classical field vector, where each element corre-

sponds to a separate mode. The parameter η turns out to be equal to the minimum detection

probability ratio

η = min

(

min
ψ

ψ†C†
0C0ψ

ψ†C†
1C1ψ

,min
ψ

ψ†C†
1C1ψ

ψ†C†
0C0ψ

)

. (33)

In other words, η is given by the minimum efficiency mismatch ratio for all superpositions of

input modes.

To see this, let us2u† be the spectral decomposition of C0(C
†
1C1)

−1C†
0 . Then we have
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C−1†
0 (C†

1C1)C
−1
0 = us−2u†, and

ψ†C†
1C1ψ

ψ†C†
0C0ψ

=
ψ′†C−1†

0 C†
1C1C

−1
0 ψ′

ψ′†ψ′

=
ψ′†u†s−2uψ′

ψ′†ψ′

= s−2.

(34)

Combining (32) and (34) gives the desired result.

4.3 DEM and misalignments

In addition to the detector efficiency mismatch in Subsection 4.1, suppose that Bob’s

detectors are misaligned. The misalignments may be dependent on Bob’s choice of basis, and

are described by unitary matrices VZ and VX . This gives the channel operators CZ = FZVZC

and CX = FXVXHC. Assuming no coupling between different temporal modes (no multiple

reflections), VZ and VX are block-diagonal matrices. For example,

VZ = diag
[

V
(2)
1 V

(2)
2 V

(2)
3 . . .

]

, (35)

where V
(2)
j are unitary 2 × 2 matrices. Here we have used the same order of modes as in the

original definition (11). Taking FX = FZ and factorizing as in Subsection 4.1, we find that

the parameter ηZ = ηX again is given by (24). The secure key generation rate is then found

from (17).

If there is coupling between modes associated with different t’s (in addition to the mis-

alignment), we must retain the general definition of ηZ in (14). For unnormalized detection

efficiencies, this definition can be rewritten

ηZ =
mini,t{ηZi(t)}
maxi,t{ηZi(t)}

. (36)

Eq. (36) is obtained by absorbing the maximum detector efficiency maxi,t{ηZi(t)} into C.

Omitting the requirement FX = FZ , (36) must be rewritten as

ηZ =
mini,t{ηZi(t)}

max (maxi,t{ηZi(t)},maxi,t{ηXi(t)})
. (37)

4.4 Characterizing DEM of Bob’s receiver

To estimate the secure key generation rate, Bob must characterize his receiver to find ηZ
and ηX (or η ≡ min{ηZ , ηX}). We note that rather different results are obtained dependent on

whether or not there are coupling between different modes. For the case of DEM in the time-

domain, since it is difficult to eliminate multiple reflections in Bob’s receiver, a conservative

approach is to use (37).

For the case with gated detectors, the efficiencies approach zero at the edges of the detec-

tion window. When there are coupling between different temporal modes, the resulting key

generation rate will therefore be close to zero. Even if no such coupling is present, the key

generation rate may approach zero, since at the edges of the detection window the efficiency



L. Lydersen and J. Skaar 73

ratio may be very small. (Although the average detection probability at the edges may be

small, Eve may compensate this by replacing the channel by a more transparent one, or by

increasing the power of her pulses [13].) A possible solution may be that Bob monitors his

input signal at all times, to ensure that Eve does not send photons outside the central part

of the window. Then η can be obtained by measuring the minimum and maximum detection

efficiency for (superpositions of) modes with times inside this central part.

Such a measurement may be cumbersome due to many degrees of freedom of the possible

inputs. Alternatively, one could specify the maximum possible amount of mode coupling in

the system, and use this information to lower bound η. Suppose that the maximum (power)

coupling from one mode j to all other modes is δ. Then the unitary matrix VZ satisfies
∑

i,i 6=j |Vij |2 < δ in addition to
∑

i |Vij |2 = 1, omitting the subscript Z for clarity. Let |fj |2
be the jth diagonal element of FZ . By measuring the detection efficiency when photons are

incident to the jth mode, we obtain
∑

i |Vij |2|fi|2 = |fj |2+
∑

i,i 6=j |Vij |2
(

|fi|2 − |fj |2
)

. Hence,

the elements |fj |2 can be found from the detection efficiency as a function of j of the incident

mode, up to an error
∣

∣

∣

∑

i,i 6=j |Vij |2
(

|fi|2 − |fj |2
)

∣

∣

∣
< δ. A lower bound of η is therefore

η >
mint,basis,bit(detection efficiency) − δ

maxt,basis,bit(detection efficiency) + δ
. (38)

The required measurement is to obtain the detection efficiency as a function of t and logical

bit value for both bases. For detection efficiency mismatch in the time-domain the test pulses

should be sufficiently short, in order to capture all details. An upper bound of the parameter

δ may be estimated from the (worst case) multiple reflections and misalignment’s that may

happen in the system.

5 Discussion and conclusion

In this work we have proved the security of BB84 in the presence of any basis dependent,

possibly lossy, linear optical imperfections in the channel and receiver/detectors. The security

proof thus covers a combination of several imperfections: Detection efficiency mismatch,

misalignments, mixing between the modes, multiple reflections, and any basis dependence

of those effects. Contrary to most previous security proofs, this proof does not require a

squashing detector model.

A specific implementation of a QKD system may have several different imperfections.

Ideally there should be a universal security proof with a set of parameters that cover all

(worst case) imperfections and tolerances of the equipment. We have made a step towards

this goal by describing generic imperfections at the detector, and by providing a compact

proof, which may hopefully prove useful for an even more general description.

We have established an upper bound for the secure key rate by providing two powerful

attacks. One of the attacks may be applied to systems even with the four-state Bob patch,

and this demonstrates the seriousness of the detection efficiency loophole. This attack is

based on a combination of an optimal individual attack, a time shift attack, and a large pulse

attack. As a consequence of such types of attacks, the key generation rate may not increase

substantially as a result of the four-state Bob patch. A possible countermeasure is to use the

general bounds (17) and (18) for estimating the required amount of privacy amplification.
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Appendix A Properties of vacuum measurement

Let {|n〉} be an orthonormal basis for a state space of interest. We refer to the state |0〉 as

the “vacuum state of all modes”, although it could in principle be any fixed, pure state. A

vacuum measurement is a projective measurement with projectors P = |0〉〈0| and I −P . We

claim that if F is any quantum operation satisfying (9), i.e.,

F(|0〉〈0|) = |0〉〈0|, (A.1)

the presence of a vacuum measurement before F does not change the statistics and output

state of a vacuum measurement after F , see Fig. A.1.

This result can be proved by using the fact that any quantum operation can be viewed as

a unitary transformation on an extended state space, with a standard state |0〉aux as auxiliary
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Vacuum? Vacuum? Vacuum?

F F≡

Fig. A.1. The statistics and output state of the vacuum measurement after F is not changed by
the introduction of a vacuum measurement before F .

input. Due to (A.1), we can assume that the unitary transformation transforms

|0〉 ⊗ |0〉aux → |0〉 ⊗ |0〉aux, (A.2)

with no loss of generality.

Consider the right-hand side of the identity (Fig. A.1). Let Paux = |0〉aux〈0|aux. A

vacuum measurement at the input can now be described as a projective measurement with

P ⊗ Paux and I − P ⊗ Paux, since the auxiliary input is fixed at |0〉aux. Clearly, it does not

matter if we measure the auxiliary output with projectors Paux and I − Paux. In total, the

extended measurement at the output is described by projectors P ⊗ Paux, P ⊗ (I − Paux),

(I−P )⊗Paux, and (I−P )⊗ (I−Paux). Transforming the projector P ⊗Paux backwards, we

find that the corresponding projector at the input is P ⊗ Paux. In other words, the extended

vacuum measurement at the output contains the vacuum measurement at the input, so the

latter is redundant.


