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In this paper we present six classes of topological quantum codes (TQC) on compact
surfaces with genus g ≥ 2. These codes are derived from self-dual, quasi self-dual and
denser tessellations associated with embeddings of self-dual complete graphs and com-

plete bipartite graphs on the corresponding compact surfaces. The majority of the new
classes has the self-dual tessellations as their algebraic and geometric supporting math-
ematical structures. Every code achieves minimum distance 3 and its encoding rate is
such that k

n
→ 1 as n → ∞, except for the one case where k

n
→ 1

3
as n → ∞.
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1. General

Topological quantum computation is an alternative model of quantum computation with the

advantage of being naturally fault-tolerant due to the topological properties of the physical

system.

The topological quantum codes (TQC) introduced by Kitaev, [1], are a subclass of the sta-

bilizer codes, which in turn form a class of quantum error correcting codes whose construction

is based on the structure of linear codes. In Kitaev’s construction, a qubit is associated, in a

one-to-one correspondence, with each edge of a tessellation of a compact surface (in this case,

a torus), whereas the stabilizer operators, defining the code, are associated with each vertex
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and each face of the tessellation. The latter are local operators, constituting a Hamiltonian

with local interactions, whose ground state coincides with the protected space of the code.

The operations described by the Hamiltonian control an intrinsic mechanism of protection of

the encoded quantum states. One advantage of these codes is related to the locality property

of its operators which may facilitate the physical implementation of these systems.

In [2] Kitaev’s construction is generalized by considering compact surfaces with genus g ≥

2. The geometry associated with such surfaces is the hyperbolic geometry, and consequently,

the corresponding tessellations are hyperbolic, and for their determination it is necessary

to consider the polygons that generate such surfaces and the corresponding tilling. The

remaining steps of the construction is similar to the Kitaev model, taking into consideration

the associated geometry, for more details we refer the reader to [2].

The aim of this paper is to present classes of topological quantum codes from the cons-

truction proposed in [2] derived from self-dual ({p, p}), quasi self-dual ({q− 1, q}) and denser

tessellations ({p, 3}). Such codes are associated with embeddings of self-dual complete graphs

and complete bipartite graphs on orientable compact surfaces. The new codes can correct an

arbitrary quantum error and their encoding rate is such that k
n
→ 1 as n → ∞, except for

the one class where k
n
→ 1

3 as n→ ∞.

This paper is organized as follows. In Section II, we review the relevant aspects of the

TQC codes. In Section III, a brief review on embedding of graphs is presented. In Section

IV, classes of codes derived from self-dual tessellations are presented. Two of these classes of

TQC with distance 3 are associated with self-dual embeddings of complete graphs and the

remaining classes are associated with embeddings of complete bipartite graphs. In Section

V, another class achieving the same distance as in the previous cases, however derived from

quasi self-dual tessellations is considered, where this class is associated with embeddings of

complete bipartite graph. In Section VI a class of TQC derived from denser tessellations are

considered. Finally, in Section VII the conclusions are drawn.

2. Topological Quantum Codes

A quantum error-correcting code (QEC) is a mapping from the 2k-dimensional Hilbert space,

Hk, to the 2n-dimensional Hilbert space, Hn, where k < n. A QEC code C with codeword

length n, dimension k, and minimum distance d is denoted by [[n, k, d]]. Such a code is able

to correct t arbitrary quantum errors which may occur in the qubits of a codeword, where

t = ⌊d−1
2 ⌋.

A stabilizer code C is the simultaneous eigenspace, with eigenvalue +1, of all the elements

of an Abelian subgroup S of the Pauli group Pn, called stabilizer group. The elements of S

are called stabilizer operators. The Pauli group Pn consists of all the n tensor products of the

elements of the set P1 = ±{I, σx, σy, σz}, where

I ≡

[

1 0
0 1

]

; σx ≡

[

0 1
1 0

]

; σy ≡

[

0 −i
i 0

]

; σz ≡

[

1 0
0 −1

]

.

Thus, the stabilizer code C is defined as C = {|ψ〉 : M |ψ〉 = |ψ〉, ∀ M ∈ S}, [3].

Kitaev’s toric codes are defined on the tessellation {4, 4}, Fig. 1, with parameters [[2l2, 2, l]],

where the codeword length is defined as the number of edges of the l× l square grid, that is,

n = 2l2; the number of encoded qubits depends on the genus of the surface and it is given
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by k = 2g (in the particular case of the torus, g = 1); and the code distance is given by the

minimum number of edges contained either in the shortest homologically nontrivial cycle of

the l × l square grid or in the shortest homologically nontrivial cycle of the dual of the l × l

square grid. Since the tessellation {4, 4} is self-dual, and that the homologically nontrivial

cycle is an edge path in the lattice that can not be shrunk to a face, it follows that the shortest

homologically nontrivial cycle corresponds exactly to either the orthogonal axis of the square

grid or the orthogonal axis of its dual square grid. Consequently, d = l.

The stabilizer operators of this class of codes are associated with each vertex and each

face of the l× l square grid, Fig. 1. Given a vertex v ∈ V , the vertex operator Av is defined as

the tensor product of σx corresponding to each one of the edges having v as the the common

vertex and the identity operator acting on the remaining qubits. Analogously, given a face

f ∈ F , the face operator Bf is defined as the tensor product σz corresponding to each one

of the four edges forming the border of the face f and the identity operator acting on the

remaining qubits. Equivalently,

Av =
⊗

j∈E

σδ(j∈Ev)
x Bf =

⊗

j∈E

σ
δ(j∈Ef )
z ,

where δ is the Kronecker delta.

The toric code C consists of the space fixed by the Av and Bf operators, or equivalently,

C = {|ψ〉 : Av|ψ〉 = |ψ〉, Bf |ψ〉 = |ψ〉 ∀ v, f}. The dimension of C is 4, that is, C encodes

k = 2 qubits.

f

v

Fig. 1. Square lattice of the torus.

In general, we have

Definition 1 Let M be a compact surface and {p, q} a tessellation (see Section IV) of M

with E edges, V vertices and F faces. Given a vertex v ∈ V and a face f ∈ F , we define the

operators Av as the tensor product of σx corresponding to each edge having v as the common

vertex and the operators Bf as the tensor product of σz corresponding to each edge forming

the border of the face f . A topological quantum code C with length n = |E|, with stabilizer

S = {Av| v ∈ V } ∪ {Bf | f ∈ F}, encodes k = 2g qubits (if the surface has no border) and

its distance is d = min{δ, δ∗}, where δ denotes the code distance in the tessellation {p, q},

whereas δ∗ denotes the code distance in the dual tessellation {q, p}.

As previously mentioned, in [2] a generalization of Kitaev’s codes is presented for orientable

compact surfaces with genus g ≥ 2. In this construction the geometry to be considered is the
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hyperbolic geometry. For more information on hyperbolic geometry we refer the reader to

[4, 5, 6, 7].

This construction consists in selecting a regular hyperbolic polygon (plane model P ′ of

the surface) and its possible tilling {p, q}. Next, we briefly review such a construction.

Remember that a hyperbolic polygon P ′ with p′ edges, or a p′-gon, is a convex closed set

consisting of p′ hyperbolic geodesic segments. The intersection of two adjacent geodesics is

called vertex of the polygon. A p′-gon whose edges have the same length and the internal

angles are equal, is called a regular p′-gon. Furthermore, a regular tessellation of the Euclidean

or hyperbolic plane, is a covering of the whole plane by regular polygons, all with the same

number of edges, without superposition of such polygons, meeting completely only on edges

or vertices. We denote a regular tessellation by {p, q}, where q regular polygons with p edges

meet in each vertex. In particular, if p = q the tessellation is said to be self-dual. Note

that the notation P ′ to regular hyperbolic polygon (plane model of the surface), means the

polygon is associated with the fundamental region of the tessellation {p′, q′}, that is, P ′ is a

polygon with p′ edges where q′ polygons with p′ edges meet in each vertex.

Any compact surface can be realized geometrically. In particular, all compact surface with

genus g ≥ 2 can be realized geometrically as hyperbolic surfaces.

A compact topological surface M may be obtained from a polygon P ′ by pairwise edge-

identifications. An oriented edge-pairing transformation of a hyperbolic polygon P ′, with

equal length edges, is an isometry γ 6= Id of an orientation preserving isometry group Γ,

taking an edge s of P ′ to another edge γ(s) = s′ of P ′. Furthermore, γ−1 ∈ Γ \ {Id} takes

γ(s) = s′ to s. Thus, we say that the edges s and s′ are paired. If s is identified with s′, and

s′ is identified with s′′, then s is identified with s′′. Such a chain of identifications may also

occur with vertices, and so we call a maximal set {v1, v2, . . . vk} of identified vertices a vertex

cycle.

An edge-pairing of P ′ defines an identification space SP ′ making it a hyperbolic surface if

the angles of each vertex cycle adds up to 2π. SP ′ in turn can be identified with a complete

and connected hyperbolic surface H2/Γ, where Γ is a Fuchsian group, since P ′ is compact,

[6].

Now, PSL(2,R) is the multiplicative group of Möbius transformations T : C → C defined

by T (z) = az+b
cz+d

, where a, b, c, d ∈ R such that ad−bc = 1, and a Fuchsian group Γ is a discrete

subgroup of PSL(2,R). In this case, Γ is an orientation preserving isometry group whose

elements are edge-pairing transformations γ.

On the other hand, a compact hyperbolic surface M ≡ H2/Γ is the identification space of

a polygon P ′ if P ′ is the fundamental region for Γ, that is, a closed subset of a metric space

X which Γ acts, with non-empty interior, such that
⋃

γ∈Γ

γ(P ′) = X and

int(P ′)
⋂

γ(int(P ′)) = ∅, ∀ γ ∈ Γ − {Id}.

This holds if the following conditions are satisfied:

Edge and Angle conditions [6]: If a compact polygon P ′ is the fundamental region for an

orientation preserving isometry group Γ of S2 (sphere surface), R2 (Euclidean plane), or H2

(hyperbolic plane), then

(i) For each edge s of P ′ there exists a unique edge s′ of P ′ such that s′ = γ(s), for γ ∈ Γ;



960 New classes of TQC associated with self-dual, quasi self-dual and denser tessellations

(ii) Given edge-pairings of P ′, for each set of the identified vertices, the sum of the angles

has to be equal to 2π. This set is a vertex cycle.

Theorem 1 (Poincaré), [6] A compact polygon P ′ satisfying the edge and angle conditions

is a fundamental region for the group Γ generated by the edge-pairing transformations of P ′,

and Γ is a Fuchsian group.

The procedure proposed in [2] takes into consideration polygons P ′ of the type 4g-gon

(fundamental region of the self-dual tessellation {4g, 4g}) as the plane models of the cor-

responding surfaces. In these polygons the edge-pairing transformations are defined by,

γ : S → S; γ(si) = si+2g, where S = {s1, . . . , s4g} is the set of edges of P ′, i = 1, 2, . . . , 4g,

and the sum of the subscripts of s is realized modulo 4g. Such isometry γ realizes the pairings

of opposite edges of P ′, see Fig. 2. The selection of these edge-pairing transformations leads

to a code distance having the greatest hyperbolic distance between the identified edges of P ′.

Since p′ = q′ = 4g, the unique cycle of vertices obtained from these edge-pairing transfor-

mations has the sum of the internal angles equal to (p′/q′)(2π) = 2π, and so satisfying the

necessary and sufficient conditions for P ′ to be a fundamental region of the group of these

edge-pairing transformations Γ.

1

2

3

4 5

6

7

8

Fig. 2. Edge-pairing transformation γ(si) = si+2g in 8-gon (g = 2).

We call the attention to the fact that, for each fixed value of g, polygons with a differ-

ent number of edges from 4g (associated with the tessellation {4g, 4g}), for example 4g + 2

(associated with the tessellation {4g + 2, 2g + 1}), 8g − 4 (associated with the tessellation

{8g− 4, 4}), and 12g− 6 ({12g− 6, 3}), among others, generate surfaces with the same genus.

Theoretically, any polygon which generates a compact surface can be employed in the cons-

truction of such codes. Nevertheless, one of the reasons in selecting the model {4g, 4g}, is

that all the pairings are from opposite edges, and so achieving the greatest minimum distance

of the code.

Every possible tiling {p, q} of the polygon P ′ satisfies the following equation:

µ(P ′) = nfµ(P ), (1)

in addition to the following constraint (p − 2)(q − 2) > 4. In (1) µ(P ′) denotes the area

of the polygon P ′, µ(P ) denotes the area of the polygon with p edges associated with the

tiling {p, q}, and nf is a positive integer which denotes the number of faces of the tessellation

{p, q}. Note that, given a tessellation {p, q}, the dual tessellation {q, p} has to satisfy the

same previous conditions.
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The tessellations obtained as the solutions of equation (1) are in fact all the possible

tessellations of P ′ because they satisfy the following theorem.

Theorem 2 [8] Let M be a closed surface and let p, q, V,E, F be positive integers such

that

V − E + F = χ(M), (2)

pF = 2E = qV. (3)

Then the following hold:

• (Existence):There exist a {p, q}-pattern on M consisting of F p-sided faces, E edges

and V vertices each of valence q; except when M is the projective plane, {p, q} = {3, 3},

V = F = 2, and E = 3;

• (Geometrization): A {p, q}-pattern on M can be made geometric;

• (Classification): A {p, q}-pattern on the sphere or projective plane is unique. For all

other closed surfaces M the {p, q}-patterns on M are classified by conjugate classes of

subgroups isomorphic to the fundamental group of M in the extended (p, q, 2)-triangle

groups of Schwarz.

The area of a hyperbolic polygon is given by, [5, 6],

µ(P ′) = 4π(g − 1), (4)

where g is the genus of the surface. Moreover, the Gauss-Bonnet Theorem, [5, 6], shows that

the hyperbolic area of a hyperbolic triangle ∆ depends only on its angles, α, β, γ,

µ(∆) = π − α− β − γ.

Given a tessellation, by triangulation of its fundamental region the internal angles of such a

triangle are 2π
p

, π
q

and π
q
. Thus, by using the Gauss-Bonnet Theorem we have

µ(P ) = p[π −
2π

p
− 2

π

q
] = (p− 2)π −

2pπ

q
.

Thus equation (1) may be rewritten as:

4π(g − 1) = nf

[

(p− 2)π −
2pπ

q

]

. (5)

Hence, the number of faces, nf , associated with the tiling {p, q} of P ′ is given by

nf =
4q(g − 1)

pq − 2p− 2q
. (6)

Note that the tessellation {p, q} tiles the polygon P ′ for those values of p and q such that (6)

is a positive integer.
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Fig. 3. Klein group - a 14-gon tiled by the tessellation {7, 3}.

Example 1 The Klein group [6], is a surface of genus 3, obtained by the edge-pairing trans-

formations of a 14-gon (more specifically P ′ = {p′, q′} = {14, 7}) in the hyperbolic plane where

the edges are paired by the relation s2i+1 7→ s2i+6, and the sum of the subscripts of s is realized

modulo 14, Fig. 3. Note that, since this 14-gon satisfies the edge and angle conditions, it is a

fundamental region for Γ, where Γ is the group consisting of the edge-pairing transformations.

In the Klein group, we can see that the 14-gon is tiled by a set of 24 identical regular

heptagons. Note that the condition (p − 2)(q − 2) > 4 is satisfied by the tessellations {7, 3}

and its dual {3, 7}. These two tessellations are dual to each other, in the sense that the

vertices of one tessellation correspond to the faces of the other. That is, the 14-gon may be

tiled by the tessellation {7, 3} and by its dual tessellation {3, 7}. Observe that the area of the

14-gon is equal to the area of the 24 heptagons or the area of the 56 equilateral triangles.

In fact,

µ(P ′) = 4π(g − 1) = 8π,

and, considering the tessellation {7, 3}, we have

µ(P ) = (p− 2)π −
2pπ

q
=

(pq − 2q − 2p)π

q
=
π

3
.

Thus,

nf =
8π
π
3

= 24.

Considering the tessellation {3, 7}, we arrive at µ(P ′) = 4π(g − 1) = π/7, and nf = 56.

Note that the number of vertices nv of the tessellation {7, 3} is equal to the number of

faces of the tessellation {3, 7}, and vice-versa.
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2.1. Operators and parameters

As in Kitaev’s construction, given a vertex v of the tessellation, the vertex operator acts non-

trivially on the q qubits having v as the common vertex and the identity operator acts on the

remaining qubits, that is, Av =
⊗

j∈Ev
σj

x, where Ev denotes the set of edges having v as the

common vertex. Similarly, given a face f of the tessellation, the face operator acts non-trivially

on the p qubits forming the border of this face, and the identity operator acts on the remaining

qubits of the tessellation, that is, Bf =
⊗

j∈Ef
σj

z, where Ef denotes the set of edges forming

the border of f . Therefore, the code is given by C = {|ψ〉 : Av|ψ〉 = |ψ〉, Bf |ψ〉 = |ψ〉 ∀ v, f}.

The operators Av and Bf are the stabilizer operators of this code.

We have that nf is the number of faces of the tessellation {p, q} tiling P ′, since each

edge of this tessellation belongs simultaneously to two faces, then the length of the code is

n = nfp/2 edges, or qubits.

The number of encoded qubits is k = n − nf − nv + 2, where nv = nfp/q. From (5), it

can be shown that k = 2g, and so the dimension of the code C is 22g = 4g.

For TQC on surfaces of genus g ≥ 2, the procedure used to obtain the code minimum

distance is similar to the one used when considering a toric code. We are looking for the

shortest homologically nontrivial cycle either on the tessellation or on the dual tessellation.

We call the attention to the fact that the shortest homologically nontrivial cycle in a p′-

gon is given by the geodesics of least length that connect the edge-pairing of P ′. In terms of

the edges of the tessellation of P ′, the shortest homologically nontrivial cycle is an edge path

that is closest to the geodesic with shortest length. Thus, the code distance is the minimum

number of edges between the nearest path of the shortest homologically nontrivial cycle of

the tessellation and the nearest path to the shortest homologically nontrivial cycle of the dual

tessellation.

Thus, the minimum distance of these codes, dTQC , is the lower bound on the ratio dh

l(p,q) ,

where dh is the distance between the edge-pairings of P ′, and l(p, q) is the edge-length of

the tessellation {p, q}. The distance dh is the hyperbolic length of the orthogonal geodesic

common to two opposite edges, and it is given by, [2],

dh = 2a = 2 arccosh

[

cos(π/4g)

sin(π/4g)

]

, (7)

and the edge-length of the tessellation {p, q} is given by, [2],

l(p, q) = arccosh

[

cos2(π/q) + cos(2π/p)

sin2(π/q)

]

. (8)

Thus,

dTQC >
2 arccosh

[

cos( π
4g

)

sin( π
4g

)

]

arccosh
[

cos2( π
q
)+cos( 2π

p
)

sin2( π
q
)

] , (9)

3. Review of Embedding of Graphs

A finite graph G consists of a finite set VG of vertices, a finite set EG of edges and an incidence

function IG that associates to each edge e an endpoint set VG(e) containing either one or two
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elements of the vertex set VG. A graph is called simplicial if it has no self-loops or multiple

edges. A simplicial graph is called complete if every pair of vertices is adjacent, that is, they

are the endpoints of the same edge. A complete graph on s vertices is denoted by Ks.

A bipartite graph is a graph where its vertex set can be partitioned into two subsets U

and W such that the vertices in each one of theses subsets are mutually nonadjacent. If every

vertex of U is adjacent to every vertex of W , then the graph is called complete bipartite on

the sets U and W . The complete bipartite graph on sets U and W with m′ and n′ vertices,

respectively, is denoted by Km′,n′ .

A graph is said to be embeddable on a surface M if it can be drawn on M without crossing

edges. The genus of a graph is the lowest genus of any surface on which the graph can be

embedded, and it is denoted by γ(G). The embedding of a graph is said to be orientable if

M is an orientable surface.

If a graph G has a minimal embedding on an orientable compact surface M with genus g,

then

V − E + F = 2 − 2g,

where, V,E and F are the number of vertices, edges and faces of M, respectively.

For m′, n′ ≥ 2, the Eüler characteristic of the complete bipartite graph Km′,n′ is given by

χ(Km′,n′) = 2[(m′ + n′ −
m′n′

2
)/2], (10)

where [a] denotes the greatest integer less than or equal to the real number a.

If there is no restriction of the embedding to be a 2-cell embedding (a region homeomorphic

to an open disc), then the embedding may be realized on every orientable compact surface

with characteristic greater than or equal to the Eüler characteristic of the given surface.

The dual of an embedding of a graph on a surface is obtained by considering the interior

of each face of the original embedding as a vertex of a new embedded graph. If two faces are

adjacent along an edge in the original graph, we join the two faces with a new edge crossing

the old edge along which the two faces are adjacent. The resulting embedding of the new

graph on the same surface is called the dual of the original embedding, and if the dual graph

is isomorphic to the original one, then the original and the new embedding are said to be

self-dual.

For more information on graphs we refer the reader to [9].

4. Classes of TQC Derived from Self-dual Tessellations

From the tables shown in [2], we took into consideration the codes with the greatest distances

dTQC . Among these cases, we analyze the self-dual tessellations due to the lesser complexity

involved in a possible code implementation.

4.1. Codes associated with self-dual embeddings of complete graphs

Let V,E and F denote respectively the number of vertices, edges and faces in a self-dual

orientable embedding of complete graphs, Ks. For such graphs, the parameters can take on

the following values:

V = F = s, E =
s(s− 1)

2
=

(

s
2

)

.



C. D. Albuquerque, R. Palazzo Jr. and E. B. Silva 965

Thus, the Eüler characteristic of these graphs is given by γ(Ks) = s − s.(s−1)
2 + s. If the

minimal embedding is on a surface with genus g, then γ(Ks) = χ(M) = 2 − 2g, yielding

g = (s−1)(s−4)
4 . Therefore, such an embedding can exist only if s ≡ 0 or 1 mod 4, [10].

Since g = (s−1)(s−4)
4 , it follows that the number of qubits to be encoded is

k = 2g =
(s− 1)(s− 4)

2

=
s2 − 5s+ 4

2

=
s2 − s

2
+

(−4s+ 4)

2

=
s(s− 1)

2
− 2(s− 1)

=

(

s
2

)

− 2(s− 1). (11)

On the other hand, the number of edges of the polygon resulting from the embedding of the

complete graph Ks on a compact surface with genus g, is equal to the number of edges of the

graph. Hence, n =

(

s
2

)

.

In order to know the tessellations which give rise to codes with parameters k and n given

above, first note that n = s(s − 1)/2, and that n = nfp/2. By considering nf = s and

p = nf − 1 = s − 1, and substituting these values in (6) yields q = s − 1. Therefore, the

resulting tessellations are self-dual {s− 1, s− 1} tessellations.

Independent of the case in consideration, that is, either s ≡ 0 mod 4 or s ≡ 1 mod 4, the

code distance using (9), is given by

dTQC >
2 arccosh

[

cos( π
(s−1)(s−4)

)

sin( π
(s−1)(s−4)

)

]

arccosh
[

cos2( π
s−1 )+cos( 2π

s−1 )

sin2( π
s−1 )

] , (12)

where g = (s−1)(s−4)
4 , p = q = s − 1. It can be shown that the right-hand side of (12) is the

infimum of the code distance and for s→ ∞ leads to 2.

Therefore, the topological quantum codes have parameters

[[n, k, d]] =

[[(

s
2

)

,

(

s
2

)

− 2(s− 1), 3

]]

,

for s ≡ 0 or 1 mod 4.

When s ≡ 1 mod 4, such a class of codes coincides with the class shown in [11].

Tables 1 and 2 illustrate some examples of self-dual tessellations and the corresponding

TQC codes.

Observe that the encoding rate k
n

= 1 − 4
s
→ 1 as s→ ∞.

4.2. Codes associated with embeddings of complete bipartite graphs

According to [10], self-dual orientable minimal embedding of complete graphs Ks can exist

only if s ≡ 0 or 1 mod 4. Nevertheless, there are self-dual tessellations such as {5, 5}, {6, 6}, {9, 9},
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Table 1. Codes derived from embeddings of complete graphs Ks, s ≡ 0 mod 4, s ≥ 8

s g {p, q} dh l(p, q) dh/l(p, q) [[n, k, dTQC ]]

8 7 {7,7} 5.75 2.72 2.11 [[28,14,3]]

12 22 {11,11} 8.05 3.79 2.12 [[66,44,3]]

16 45 {15,15} 9.48 4.46 2.13 [[120,90,3]]

20 76 {19,19} 10.53 4.95 2.13 [[190,152,3]]

Table 2. Codes derived from embeddings of complete graphs Ks, s ≡ 1 mod 4, s ≥ 9

s g {p, q} dh l(p, q) dh/l(p, q) [[n, k, dTQC ]]

9 10 {8,8} 6.47 3.06 2.12 [[36,20,3]]

13 27 {12,12} 8.46 3.98 2.12 [[78,54,3]]

17 52 {16,16} 9.77 4.60 2.13 [[136,104,3]]

21 85 {20,20} 10.75 5.06 2.13 [[210,170,3]]

{10, 10}, {13, 13}, {14, 14}, . . . which are not the embedding of complete graphs on compact

surfaces. In the next subsections we show that these tessellations generate two classes of

TQC, one class with s ≡ 0 mod 4, and the other one with s ≡ 0 mod 2. Such codes are

associated with embeddings of complete bipartite graphs Km′,n′ .

4.2.1. Class of TQC derived from embeddings of graphs of the type K s
2 ,s−3

Consider nf = s and p = q = s − 3. Since n = nf
p
2 , it follows that the code length is

n = s(s−3)
2 . Substituting the values of nf , p and q in (6) yields g = s(s−3)

4 − s + 1, and

therefore the code dimension is k = 2g = s(s−3)
2 − 2(s − 1). As can be seen from Table 3

and by substituting the values of g, p and q for each case in consideration in (9) leads to

dTQC = 3. Hence, this class of topological quantum codes has parameters

[[n, k dTQC ]] =

[[

s(s− 3)

2
,
s(s− 3)

2
− 2(s− 1), 3

]]

.

Table 3 illustrates some examples of codes belonging to this class. Note that s ≡ 0 mod 4

and s ≥ 8.

Since the number of edges of a complete bipartite graph Km′,n′ is m′n′, it follows that

n = m′n′. Thus, we may consider m′ = s
2 and n′ = s − 3. Therefore, this class of codes

is associated with the embedding of the graph K s
2 ,s−3. Such embeddings are possible since

the genus g = s(s−3)
4 − s + 1 is greater than or equal to the minimum value of the Eüler

characteristic, (10).

Table 3. Codes derived from embeddings of complete bipartite graphs K s
2

,s−3, s ≡ 0 mod 4

s g {p, q} dh l(p, q) dh/l(p, q) [[n, k, dTQC ]]

8 3 {5,5} 3.98 1.68 2.36 [[20,6,3]]

12 16 {9,9} 7.41 3.34 2.22 [[54,32,3]]

16 37 {13,13} 9.09 4.16 2.19 [[104,74,3]]

20 66 {17,17} 10.25 4.72 2.17 [[170,132,3]]

Observe that the encoding rate k
n

= 1 − 2(s−1)
s(s−3) → 1 as s→ ∞.
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4.2.2. Class of TQC derived from embeddings of graphs of the type Ks−5,s

Consider nf = s and p = q = 2(s − 5). Thus, the code length is n = s(s − 5). Substituting

the values of nf , p and q in (6) we obtain g = s(s−5)
2 − s + 1, and so the code dimension is

k = 2g = s(s− 5) − 2(s− 1).

Following the same procedure as in the previous cases, it can be shown that the code

distance is dTQC = 3. Therefore, the resulting class of TQC codes has parameters

[[n, k, dTQC ]] = [[s(s− 5), s(s− 5) − 2(s− 1), 3]] .

Table 4 illustrates some examples of codes belonging to this class. Note that s ≡ 0 mod 2

and s ≥ 8.

Again, since the number of edges of a complete bipartite graph Km′,n′ is m′n′, and since

n = s(s−5), we may considerm′ = s−5 and n′ = s. Therefore, this class of codes is associated

with the embedding of the graph Ks−5,s. Observe that the genus g = s(s−5)
2 −s+1, is greater

than or equal to the minimum value of g obtained from (10), and so it is possible to have

such embeddings.

Table 4. Codes derived from embeddings of complete bipartite graphs Ks−5,s, s ≡ 0 mod 2

s g {p, q} dh l(p, q) dh/l(p, q) [[n, k, dTQC ]]

8 5 {6,6} 5.06 2.29 2.21 [[24,10,3]]

10 16 {10,10} 7.41 3.58 2.07 [[50,32,3]]

12 31 {14,14} 8.74 4.31 2.02 [[84,62,3]]

14 50 {18,18} 9.69 4.84 2.002 [[126,100,3]]

Again, k
n

= 1 − 2(s−1)
s(s−5) → 1 as s→ ∞.

5. Classes of TQC Derived from Quasi Self-dual Tessellations

Besides the self-dual codes, we find a class of TQC codes derived from non self-dual tessella-

tions. In particular, we consider the case where {p, q} = {q−1, q} because the code minimum

distance associated with the {q − 1, q} tessellation equals the code minimum distance of its

dual tessellation, [2].

Let nf = s, q = s
2 and p = s

2 − 1. Thus, the code length is n = s(s−2)
4 . Once the

number of vertices, nv, of the tessellation {p, q} is known, the Eüler characteristic may be

determined. However, the number of vertices of the tessellation {p, q} equals the number of

faces of the dual tessellation {q, p}. Thus, nv = sp
q

= s− 2. Substituting the values of nf , nv

and n in the Eüler characteristic, yields 2g = s(s−2)
4 − 2s + 4, that is, the code dimension is

k = 2g = s(s−2)
4 − 2(s− 2).

Following the same procedure as in the previous cases, it can be shown that the code

distance is dTQC = 3. Therefore, the parameters of this class of codes are

[[n, k, dTQC ]] =

[[

s(s− 2)

4
,
s(s− 2)

4
− 2(s− 2), 3

]]

.

Note that if we consider the dual tessellation the results are the same.

Table 5 illustrates some examples of codes belonging to this class. Note that s ≡ 0 mod 2

for s ≥ 10.
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Since n = s(s−2)
4 , it follows that m′ = s−2

2 and n′ = s
2 . Therefore, this class of codes is

associated with the embedding of the graph K s−2
2 , s

2
. Note that the genus g = s(s−2)

8 − s+ 2

satisfies condition (10) for the existence of such embeddings.

Table 5. Codes derived from embeddings of complete bipartite graphs K s−2
2

, s
2
, s ≡ 0 mod 2

s g {p, q} {q, p} dh l(p, q) dh/l(p, q) l(q, p) dh/l(q, p) [[n, k, dTQC ]]

10 2 {4,5} {5,4} 3.06 1.25 2.44 1.06 2.88 [[20,4,3]]

12 5 {5,6} {6,5} 5.06 2.12 2.38 1.88 2.70 [[30,10,3]]

14 9 {6,7} {7,6} 6.25 2.63 2.38 2.39 2.62 [[42,18,3]]

16 14 {7,8} {8,7} 7.14 3.002 2.38 2.78 2.57 [[56,28,3]]

Note that the encoding rate k
n

= 1 − 8
s
→ 1 as s→ ∞.

6. Classes of TQC Derived from Densest Tessellations

It is known that the tessellations {p, 3} are denser than the corresponding previous tessella-

tions. Hence, based on this fact we consider the codes obtained from these tessellations in

order to find a class of TQC codes derived from embeddings of complete bipartite graphs.

In this case, nv = s, p = s
4 and q = 3. Since nv = nf

p
q
, it follows that nf = nv

q
p

= 12.

Thus, the code length is n = 3s
2 . Substituting the values of nf , nv and n in the Eüler

characteristic, the code dimension is k = 2g = s
2 − 10. For the cases considered in Table 6

and from (9) the code distance is dTQC = 3.

In this case, there is a large class of codes with parameters

[[n, k, dTQC ]] =

[[

3s

2
,
s

2
− 10, 3

]]

.

Note from (9) as s goes to infinity the code distance goes to one.

Table 6 illustrates some examples of codes belonging to this class. Note that s ≡ 0 mod 4

for s ≥ 28. Since n = 3s
2 , it follows that m′ = 3 and n′ = s

2 . Therefore, this class of codes is

associated with the embedding of the graph K3, s
2
. Note that, the genus g = s

4 − 5 satisfies

the condition for the existence of such embeddings, that is, it is greater than or equal to the

minimum value of g, (10).

Table 6. Codes derived from embeddings of complete bipartite graphs K3, s
2
, s ≡ 0 mod 4

s g {p, q} {q, p} dh l(p, q) dh/l(p, q) l(q, p) dh/l(q, p) [[n, k, δ]] [[n, k, δ∗]]

28 2 {7,3} {3,7} 3.06 0.57 5.37 1.09 2.81 [[42,4,6]] [[42,4,3]]

32 3 {8,3} {3,8} 3.98 0.73 5.45 1.53 2.60 [[48,6,6]] [[48,6,3]]

36 4 {9,3} {3,9} 4.60 0.82 5.60 1.86 2.47 [[54,8,6]] [[54,8,3]]

40 5 {10,3} {3,10} 5.06 0.88 5.75 2.12 2.39 [[60,10,6]] [[60,10,3]]

44 6 {11,3} {3,11} 5.43 0.92 5.90 2.35 2.31 [[66,12,6]] [[66,12,3]]

48 7 {12,3} {3,12} 5.75 0.95 6.05 2.55 2.25 [[72,14,7]] [[72,14,3]]

Note that the encoding rate k
n

= 1
3 − 20

3s
→ 1

3 as s→ ∞.

As can be seen from the last two columns in Table 6, the codes derived from the complete

bipartite graphs K3, s
2
, s ≡ 0 mod 4, inherit an unequal error protection. This property has
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its advantages in applications where the interferences in the channel act in a nonhomogeneous

way on the qubits, or equivalently, act unequally on each homologically nontrivial cycle.

7. Conclusions

In this paper we have presented six classes of topological quantum codes (TQC). What is

relevant in the study of such classes of codes is the fact that they are associated with the self-

dual, quasi-self-dual and denser tessellations, providing in this way a global view from what

is possible to obtain in terms of TQC codes. These classes are associated with embeddings

of self-dual complete graphs and complete bipartite graphs on the corresponding compact

surfaces.

It is known that codes defined by self-dual tessellations demand less computational effort,

moreover as shown by Kitaev, [1], these codes may be implemented by use of anyons. Whereas

codes defined by non-self-dual tessellation, for example, cases where q = 3, besides being

denser tessellations, they may be of use in channels where the unequal error protection is

essential. This is due to the fact that the code distances associated with the tessellation and

its dual are different.

Four classes are derived from self-dual tessellations whereas two classes are derived from

non-self-dual tessellations. These tessellations were chosen due to their good properties such

as the distance dTQC and by the fact of being self-dual and denser tessellations. Every code

achieves minimum distance 3 and its encoding rate is such that k
n
→ 1 as n→ ∞, except for

the latter class whose asymptotic rate is k
n
→ 1

3 . However, this latter class contains the case

of denser tessellations than the previous ones.

These constructions could be applied to other situations in the future, as suggested by the

referee, like: a) TQCs for qudits (generalization of qubits); b) Surfaces with boundaries; and

c) Topological color codes.
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