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For a multipartite quantum system of the dimension d1 ⊗ d2 ⊗ · · · ⊗ dn, where d1 ≥

d2 ≥ · · · ≥ dn ≥ 2, is there an entangled state maximum in the sense that all other
states in the system can be obtained from the state through local quantum operations

and classical communications (LOCC)? When d1 ≥ Πn

i=2
di, such state exists. We show

that this condition is also necessary. Our proof, somewhat surprisingly, uses results from
algebraic complexity theory.
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1 Background and the statement of the main result

A quantum system consisting of several subsystems may be in an entangled state, such that

measurements on the subsystems may produce outcome statistics fundamentally different

from those produced through a classical process. Since its discovery by Einstein, Podolsky,

and Rosen [1], quantum entanglement has been found to be central for non-classical proper-

ties of quantum systems. In particular, it plays a fundamental role in quantum information

processing applications such as unconditional secure key distribution and super fast quantum

algorithms. It is therefore of fundamental importance to understand the nature of entan-
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glement. Indeed, the past two decades have witnessed the rapid development of a theory of

quantum information, at the heart of which is the theory of quantum entanglement. Horodecki

et al. [2] and Gühne and Tóth [3] are recent surveys on the subject.

Our study is motivated by the following objective, which is important for the practical

applications of quantum entanglement: how do we establish quantum entanglement between

multiple parties separated spatially? One straightforward solution is for one party to prepare

the desired state |φ〉, and send the others their corresponding portion of the state. The

problem of this solution is that moving quantum objects around without corrupting them is

difficult and expensive, especially when the parties are remotely separated.

The celebrated quantum teleportation protocol [4] provides an alternative approach: the

parties initially share some special but fixed entangled state |φ0〉, which will then be trans-

formed to |φ〉 through local quantum operations and classical communications (LOCC). Ide-

ally, |φ0〉 should work for all possible |φ〉 desired. The question we address is: for which

dimensions of the system is there such an initial state that can generate all other states in

the system?

Let n, d1, d2, · · · , dn be integers with n ≥ 2, and d1 ≥ d2 ≥ · · · ≥ dn ≥ 2. We denote by

d1 ⊗ d2 ⊗ · · · dn the tensor product of n Hilbert spaces, each of the dimension d1, d2, ..., dn,

respectively. We refer to the whole system and its associated Hilbert space by H, and each

subsystem by A, B, C, ..., Z, respectively. We use superscripts A,B,C, · · · , Z on states or

operators to indicate the space they are associated with. Let |φ1〉 and |φ2〉 be two states in

d1 ⊗ · · · ⊗ dn. We write |φ2〉 ≤LOCC |φ1〉 if |φ1〉 can be transformed to |φ2〉 through a LOCC

protocol. A state |φ0〉 is said to be a maximum entangled state (MES) if |φ〉 ≤LOCC |φ0〉 for all

|φ〉 in the same space. Thus our problem is, which space d1 ⊗ · · · ⊗ dn contains a maximum

entangled state?

Besides the practical motivation described above, our question is also among the most

basic questions in the framework of entanglement manipulations, which is to study proper-

ties of entanglement under LOCC transformations. This is a major paradigm for studying

entanglement where many central results were obtained. A particular task in this paradigm

is to classify entangled states through their conversion relations. Note that classical com-

munication should not increase any reasonable notion quantifying entanglement — indeed,

this monotonicity under LOCC transformation is considered the only natural requirement for

entanglement measures [5]. Therefore, the relation ≤LOCC induces a natural partial ordering

of quantum states (or more precisely, of the LOCC equivalence classes) by the amount of en-

tanglement. Our problem, which is to ask when a maximum element exists, is thus among the

very basic questions regarding the structure of this ordering. We stress that the definition of

“maximum” in this paper is restricted to the LOCC ordering. There may be other definitions

of maximum entangled states with respect to other orderings.

When n = 2, the answer to our question is well known through the use of the teleportation

protocol with the generalized EPR state (commonly referred to as the maximum entangled

state for bipartite systems)

|Φd2〉AB
def

=

d2−1∑

i=0

|i〉A|i〉B , (1)

where {|i〉A : i = 0, · · · , d2 − 1} and {|i〉B : i = 0, · · · , d2 − 1} are orthonormal in A and B,



R. Duan and Y. Shi 927

respectively. The teleportation protocol can be generalized to arbitrary n, as long as

d1 ≥ Πn
i=2di. (2)

On the other hand, not all spaces have a maximum entangled state. For example, Dür,

Vidal and Cirac showed that there is no MES in the 2 ⊗ 2 ⊗ 2 space [6]. The main result of

this paper is that a MES exists only if Eqn. (2) holds.

Our result is actually slightly stronger. Following the notation of Bennett et al. [7], if

|φ1〉 can be transformed to |φ2〉 with a non-zero probability, we write |φ2〉 ≤SLOCC |φ1〉, where

“SLOCC” stands for Stochastic Local Operations and Classical Communications. Similarly,

|φ1〉 is called a stochastic maximum entangled state (SMES) if |φ2〉 ≤SLOCC |φ1〉 for all |φ2〉 in

the same space. The partial ordering ≤SLOCC was introduced by Bennett et al. [7] in order

to provide a simpler classification of multipartite entanglement (there are infinitely number

of LOCC equivalence classes even for 2 qubits), and has been subsequently studied by many

authors. Clearly a MES is also a SMES; thus if Eqn. (2) holds then a SMES exists. We now

state our main theorem.

Theorem 1 If d1 < Πn
i=2di, there is no stochastic maximum entangled state in the state

space d1 ⊗ d2 ⊗ · · · ⊗ dn, where d1 ≥ d2 ≥ · · · ≥ dn ≥ 2.

Our proof uses the notion of tensor rank from algebraic complexity theory (C.f. Chapter

14 in [8]). The tensor rank of |φ〉 ∈ H, Sch(φ), is the minimum number of product vectors

that can linearly express |φ〉. That is, Sch(φ) is the minimum integer ℓ such that there exists

product vectors |φi〉A ⊗ |φi〉B ⊗ · · · |φi〉Z ∈ d1 ⊗ d2 ⊗ · · · ⊗ dn such that

|φ〉 def

=

ℓ∑

i=1

|φi〉A ⊗ |φi〉B ⊗ · · · |φi〉Z . (3)

The quantity Sch(φ) is also called Schmidt rank or Schmidt number [9], and when n = 2, is

precisely the rank of the reduced density matrix TrA(|φ〉〈φ|). In general, the tensor rank is

the minimum number of multiplications to compute a set of linear forms determined by |φ〉.
For example, the minimum number of non-scalar multiplications for multiplying two n by n

matrices is precisely the tensor rank of the following element in n2 ⊗ n2 ⊗ n2:

n−1∑

i,j,k=0

|i, j〉|i, k〉|k, j〉,

where each component space has a product orthonormal basis {|i, j〉 : i, j = 0, · · · , n− 1}. It

was observed in [10] that the above state is precisely the tripartite state |Ψn〉ABC = |Φn〉AB⊗
|Φn〉BC⊗|Φn〉CA. This connection enables us and a co-author to show the equivalence between

the computational complexity of matrix multiplication and efficiency of a certain entanglement

transformation that produces EPR pairs [10].

The tensor rank of a Hilbert space H is

Sch(H)
def

= max{Sch(φ) : |φ〉 ∈ H}.

Many works have been done to determine the tensor rank of specific tensors and of various

spaces. We will use the following results.
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Theorem 2 Consider Sch(H) for H = d1 ⊗ d2 ⊗ d3. Let k = d2d3 − d1.

(i) (Theorem 6(ii) of [11]) If k ≥ 1, then Sch(H) ≥ d1 + ⌊
√

2k + 2⌋ − 2.

(ii) (Theorem 3 of [12]) If k ≤ max{d2, d3} and 0 ≤ k ≤ 4, then Sch(H) = d2d3 − ⌈k
2
⌉.

2 Proof of the Main Theorem

We now turn to the proof of the main result. We only need to focus on the following case

d1 < Πn
i=2di. (4)

To simplify our discussions, we shall first obtain some structural results about SLOCC and

the induced ordering on the states under this special condition. We say that |φ1〉 and |φ2〉 are

SLOCC equivalent if |φ1〉 ≤SLOCC |φ2〉 and |φ2〉 ≤SLOCC |φ1〉. Then ≤SLOCC defines a partial

oder on SLOCC equivalence classes. We will often identify a state with its equivalence class.

A state |φ〉 is said to be SLOCC maximal if for any |ψ〉, |φ〉 ≤SLOCC |ψ〉 implies |ψ〉 ≤SLOCC |φ〉.
For the rest of the paper, we may omit “SLOCC” when referring to equivalence, equivalence

classes, maximal state, etc. We know the following fact about SLOCC [6].

Lemma 1 Let |φ〉 and |ψ〉 ∈ d1 ⊗ d2 ⊗ · · · ⊗ dn. Then |ψ〉 ≤SLOCC |φ〉 if and only if there are

linear operators L1, · · · , Ln such that (L1 ⊗ · · · ⊗Ln)|φ〉 = |ψ〉. In particular, |φ〉 and |ψ〉 are

equivalent under SLOCC if and only if L1, · · · , Ln can be invertible.

Since local linear operators cannot increase tensor rank, we have the following fact that

relates tensor rank and SLOCC [13].

Proposition 3 If |ψ〉 ≤SLOCC |φ〉, Sch(φ) ≥ Sch(ψ).

For distinct indices i1, i2, ..., iℓ ∈ {1, 2, · · · , n}, denote by ρi1,i2,...,iℓ
Φ

the reduced density

operator of |Φ〉〈Φ| with sub-systems not in {i1, ..., iℓ} traced-out. We say that |Φ〉 ∈ H is of

full local ranks if rank(ρiΦ) = min{di,Πj 6=idj} for any i, 1 ≤ i ≤ n. If Assumption (4) holds,

|Φ〉 is of full local ranks if and only if rank(ρiΦ) = di for all i. Note that local ranks cannot

increase under local linear operators, either.

Proposition 4 If |ψ〉 ≤SLOCC |φ〉, rank(ρiψ) ≤ rank(ρiφ), for any i = 1, · · · , n.
The following lemma will be useful. Denote by supp(ρ) the support of a Hermitian operator

ρ, i.e., supp(ρ) is the space spanned by eigenvectors of ρ corresponding to non-zero eigenvalues.

Lemma 2 If |Φ〉 is not of full local ranks, there exists |Ψ〉 of full total ranks such that

|Φ〉 ≤SLOCC |Ψ〉.
Proof: Without loss of generality, assume that rank(supp(ρ1

Φ)) < min{d1, d2d3 · · · dn}.
Let |α〉 and |β〉 be (normalized) states in d1 and d2 ⊗ · · · dn orthogonal to supp(ρ1

Φ) and

supp(ρ2,3,...,n
Φ

), respectively. Consider |Φ′〉 = |Φ〉+|α〉⊗|β〉. We have that |Φ〉 = ((I−|α〉〈α|)⊗
I ⊗ · · · I) |Φ′〉. Thus |Φ〉 ≤SLOCC |Φ′〉. Furthermore, for any i = 1, 2, ..., n, ρiΦ′ = ρiΦ + γi
for some positive semidefinite γi. In particular for i = 1, γi = |α〉〈α|. Thus we have

rank(supp(ρiΦ′)) ≤ rank(supp(ρiΦ)) for all i, and rank(supp(ρ1
Φ′)) = rank(supp(ρ1

Φ))+1. After

a finite number of repetitions of this process we arrive at a state |Ψ〉 of full total ranks and

|Φ〉 ≤SLOCC |Ψ〉.

We characterize maximal states below.

Lemma 3 A state is maximal if and only if it has full local ranks.
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Proof: We prove the result for n = 3. The other cases are similar. Suppose that |Φ〉 is of

full local ranks. Let |Ψ〉 ∈ H be such that |Φ〉 ≤SLOCC |Ψ〉. Then there exists linear operators

L1, L2, L3 such that (L1 ⊗ L2 ⊗ L3)|Ψ〉 = |Φ〉. As |Φ〉 is of full local ranks, and local ranks

do not increase under local linear operators, we must have that |Ψ〉 is also of full local ranks.

Since for each i, i = 1, 2, 3, supp(ρiΦ) is a subspace of Lisupp(ρiΨ), those two linear spaces

must be the same (as they are of the same dimension). Thus Li : supp(ρiΨ) → supp(ρiΦ) has

an inverse L−1

i : supp(ρiΦ) → supp(ρiΨ), and (L−1
1 ⊗ L−1

2 ⊗ L−1
3 )|Φ〉 = |Ψ〉. Therefore |Φ〉 is

maximal.

For the other direction, assume that |Φ〉 is maximal. By Lemma 2, there exists |Ψ〉 of full

total ranks and |Φ〉 ≤SLOCC |Ψ〉. Since |Φ〉 is maximal, we have |Ψ〉 ≤SLOCC |Φ〉. It follows

from Proposition 4 that |Φ〉 is of full total ranks.

The following lemmas show that there are at least two general ways of constructing a

maximal state.

Lemma 4 There is a maximal state |Φ〉 such that Sch(Φ) = Sch(H).

Proof: By definition, there exists |Φ〉 such that Sch(Φ) = Sch(H). Let |Ψ〉 be a state of

full total ranks and |Φ〉 ≤SLOCC |Ψ〉. The existence of |Ψ〉 follows from Lemma 2. Then |Ψ〉 is

maximal by Lemma 3. Furthermore, from Proposition 3, Sch(Ψ) ≥ Sch(Φ) = Sch(H). Thus

Sch(Ψ) = Sch(H).

Lemma 5 Under Assumption (4), there is a maximal state with tensor rank d1.

Proof: We construct a maximal state with the tensor rank d1 as follows. Take a basis

{|ai〉 : i = 1, · · · , d1} of A and a set of d1 linearly independent product vectors {|bi〉|ci〉 : 1 ≤
i ≤ d1} of B ⊗ C and then construct

|Ψ〉 =

d1∑

i=1

|ai〉|bi〉|ci〉.

Clearly Sch(Ψ) = d1. However, we cannot guarantee that Sch(Ψ) is of full local rank at the

sides of B and C. For instance, {|bi〉 : 1 ≤ i ≤ d1} may not span B. A simple example is

|0〉|00〉 + |1〉|01〉, which is of tensor rank 2 but is not of full local ranks. One can avoid this

problem by using the special construction presented in Ref. [15]. An alternative construction

is as follows. Let {|0〉, · · · , |d − 1〉} be an orthonormal basis for d-dimensional state space.

Consider the following (unnormalized) state

|Φ1〉 =

d3−1∑

i=0

|i, i, i〉 +

d2−1∑

i=d3

|i, i, 0〉 +

d1−1∑

i=d2

|i, bi, ci〉,

where (bi, ci)’s are distinct elements that do not appear in the first two terms. By construction,

we have Sch(Φ1) = d1. We will verify the above state is of full local ranks, thus maximal by

Lemma 3.

By direct computation, ρAΦ1
= IA, thus of full rank. If we now discard the third term by

applying a local operator
∑d2−1

i=0
|i〉〈i|A ⊗ IB ⊗ IC to |Φ1〉, we obtain the following state

|Φ2〉 =

d3−1∑

i=0

|i, i, i〉 +

d2−1∑

i=d3

|i, i, 0〉.
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By direction computation, ρBΦ2
=

∑d2−1

i=0
|i〉〈i|B = IB, and is of full rank. Thus |Φ1〉B is also

of full local rank on B’s sub-system. That |Φ1〉 is of the full local rank on the third sub-system

can be similarly shown. Therefore |Φ1〉 is maximal and has tensor rank d1.

We will now show that Under (4), there are at least two incomparable maximal states.

We will focus on n = 3 and return to the general case later. Let k = d2d3 − d1.

First, we prove the result for the case Sch(H) > d1. We then show if d1 < d2d3 − 1 then

Sch(H) > d1. Finally we show that for d1 = d2d3−1, there are precisely min{d2, d3} = d3 ≥ 2

number of maximal equivalence classes.

By Lemma 4 and 5, if Sch(H) 6= d1 then there are two incomparable maximal states. This

is indeed the case when k > 1.

Lemma 6 There are at least two incomparable maximal states in d1 ⊗ d2 ⊗ d3 if k > 1.

Proof: By Theorem 2, we have Sch(H) ≥ d1 + 1 for k ≥ 4, by Item (i), and for k = 2, 3

by Item (ii) (note that when k = 3, max{d2, d3} ≥ k, since otherwise d1 = d2 = d3 = k = 2).

Therefore, when k > 4, Sch(H) 6= d1. Since any two equivalent states must have the same

tensor rank (by Proposition 3), Theorem 1 implies that there are two incomparable maximal

states.

We now focus on the case d1 = d2d3−1. By Theorem 2(ii), Sch(Φ) = d1. Since a maximal

state has full local ranks thus having a tensor rank ≥ d1, its tensor rank must be precisely d1.

Lemma 7 If d1 = d2d3 − 1, there are precisely d3 inequivalent maximal states.

Proof: We establish a one-to-one correspondence π between the SLOCC equivalence

classes of maximal states in d1 ⊗ d2 ⊗ d3 and the SLOCC equivalence classes of d2 ⊗ d3. Note

that the latter have min{d2, d3} = d3 elements, each of which is represented by a bipartite

state of Schmidt rank i, i = 1, 2, ..., d3.

Let |Φ〉 be a maximal state in d1 ⊗ d2 ⊗ d3. By Lemma 3, |Φ〉 is of full local ranks. Since

d1 ≤ d2 · d3, rank(ρAΦ) = rank(supp(ρBCΦ )) = d1. Let |Φ′〉 be the unique, up to a non-zero

scaler, state in d2 ⊗ d3 perpendicular to supp(ρBCΦ ). We set π to map the class represented

by |Φ〉 to that represented by |Φ′〉.
We show that π is well-defined in that it does not depend on the choice of the representative

state |Φ〉. If |Ψ〉 = (L1 ⊗ L2 ⊗ L3)|Φ〉 be a state equivalent to |Φ〉, where Li, i = 1, 2, 3, is

invertible. Then

(L2 ⊗ L3) supp(ρBCΦ ) = supp(ρBCΨ ). (5)

This is equivalent to

|Φ′〉BC = ((L†
2)

−1 ⊗ (L†
3)

−1)|Ψ′〉BC . (6)

In other words, |Φ′〉 and |Ψ′〉 are equivalent under SLOCC. Therefore π is well defined.

To see that π is on-to, fix an arbitrary bipartite state |Φ′〉BC . Extend |Φ′〉BC to a basis

of d2 ⊗ d3 by |φi〉, i = 1, 2, ..., d1. The state

|Φ〉 =

d1∑

i=1

|i〉 ⊗ |φi〉 (7)

has full local rank on the sub-system A. It must also have full local rank at the other two

sub-systems, as otherwise it would be in the space d1 ⊗ d2 ⊗ (d3 − 1) or d1 ⊗ (d2 − 1)⊗ d3. In
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either case, rank(supp(ρBCΦ )) ≤ d2(d3 − 1) < d2d3 − 1, a contradiction. Thus |Φ〉 is maximal.

Clearly, the equivalence class of |Φ〉 is mapped by π to that of |Φ′〉. Thus π is on-to.

To see that π is in-to, assume that bipartite states |Φ′〉 and |Ψ′〉 have the same Schmidt

rank, and that for invertible L2 and L3, Eqn. (6) holds. Consequently, Eqn. (5) holds. Thus

IA ⊗ L2 ⊗ L3|Ψ〉 =
∑d1−1

i=0
|αi〉A|φi〉, for some states |αi〉A, 0 ≤ i ≤ d1 − 1. Those states |αi〉

must be linearly independent, since L2⊗L3 does not change the local rank of |Ψ〉. Thus there

exists basis |α̂i〉 such that 〈α̂i|αj〉 = δij , 0 ≤ i, j ≤ d1 − 1, where δij is the Kronecker delta.

Then setting L1 =
∑d1−1

i=0
|i〉〈α̂i|, we have that L1 is invertible and |Φ〉 = L1 ⊗ L2 ⊗ L3|Ψ〉.

Thus |Φ〉 and |Ψ〉 are equivalent. Consequently, π is a one-to-one correspondence, implying

there are precisely d3 number of maximal equivalence class.

An example to illustrate Lemma 7 is the state space H = 3⊗2⊗2. Miyake has obtained all

eight equivalence class of this space [16]. Two of these equivalence classes are maximal. The

above lemma provides an alternative method to characterize the maximal states in this space.

By the Lemma, there is a one-to-one correspondence between the maximal equivalence class

of H and the equivalence class of H′ = 2 ⊗ 2. The latter space has precisely two equivalence

classes with the representatives |Φ′
1〉 = |10〉 and |Φ′

2〉 = |01〉− |10〉. As a result, there are only

two maximal equivalence classes in H, which can be constructed according to |Φ′
1〉 and |Φ′

2〉
as follows:

|Φ1〉 = |0〉|00〉 + |1〉|01〉 + |2〉|11〉,
|Φ2〉 = |0〉|00〉 + |1〉(|01〉 + |10〉) + |2〉|11〉. (8)

Lemma 6 and 7 together imply Theorem 1 for n = 3. We deal with the general case below

(that is to show that there is no maximum state in d1 ⊗ d2 ⊗ · · · ⊗ dn if d1 < d2d3 · · · dn).
Proof of Theorem 1: We need only consider n > 3. Suppose that n = 4 and

d1 < d2d3d4. Consider the tripartite state space d1 ⊗ d2 ⊗ d3d4. There are two cases:

Case 1. d3d4 = d1d2. Since d1 ≥ d2 ≥ d3 ≥ d4 we have d1 = d2 = d3 = d4 = d. One

can easily verify that |Φd〉AB ⊗ |Φd〉CD and |Φd〉AC ⊗ |Φd〉BD both are of full local rank d,

where |Φd〉 is the generalized EPR state defined in Eqn. 1. Observe that with respect to the

AC : BD partition, the former is entangled yet the latter is not, and with respect to the

AB : CD partition, the opposite holds. Since no LOCC protocol can create entanglement,

the two states are incomparable under SLOCC.

Case 2. d3d4 < d1d2. Any maximal state in this tripartite space d1 ⊗ d2 ⊗ (d3d4) must be

of d3d4 rank on the (d3 ⊗ d4) sub-system, thus as a state in d1 ⊗ d2 ⊗ d3 ⊗ d4, it must be of

the maximumly possible local rank on the d3 and d4 spaces. It follows that it remains of full

local rank in the four-partite system. Therefore, applying the result for n = 3 we know that

there are at least two inequivalent maximal states in d1 ⊗ d2 ⊗ d3d4. They remain maximal

states in the four-partite system, and are incomparable under SLOCC with respect to this

refined partition.

Suppose that the theorem is correct for n = ℓ, ℓ ≥ 4. Consider n = ℓ + 1. Since ℓ ≥ 4,

dℓdℓ+1 < d1d2d3 · · · dℓ−1. By the inductive hypothesis, there are two incomparable maximum

states in d1 ⊗ d2 ⊗ · · · ⊗ dℓ−1 ⊗ dℓdℓ+1. By an argument similar to that in Case 2 of n = 4,

they remain maximal and incomparable in the refinement H. Thus the theorem is correct for
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n = ℓ+ 1, therefore correct for all n ≥ 4.

3 Correspondence between maximal equivalence classes and SLOCC equivalence

classes

In this section we further study state spaces such that d1 < d2 · · · dn. So it is impossible to

find one state from which one can locally prepare any other state even probabilistically.

An alternative goal is to characterize all maximal equivalence classes. In particular, we

ask when a multipartite state space H has only a finite number of maximal stochastic equiv-

alence classes. Suppose that H has a finite number of maximal equivalence classes with the

representative states |Φ1〉, · · · , |ΦN 〉. Then for any state |ψ〉 ∈ H, there exists i, 1 ≤ i ≤ N

such that |Φi〉 can be converted into |ψ〉 by SLOCC. So the set of states {|Φ1〉, · · · , |ΦN 〉} is

able to locally prepare any other state in H with nonzero probability. In practice, we only

need to prepare the set of maximal states {|Φi〉} and then create other states using SLOCC.

Thus identifying the maximal equivalence classes for a given space is highly desirable.

For the sake of convenience, from now on we mainly focus on tripartite state space. Most

of our results are also valid for the case of n > 3. We assume that d1 = d2d3 − k, where

k < d2d3/2. We shall employ a correspondence between the maximal equivalence classes of

d1 ⊗ d2 ⊗ d3 and the equivalence classes of k ⊗ d2 ⊗ d3.

Definition 1 Let |Φ〉 ∈ d1 ⊗ d2 ⊗ d3 and rank(ρA1

Φ
) = d1, write |Φ〉 =

∑d1
i=1

|i〉A1 |φi〉A2A3 ,

where {|i〉A1 : 1 ≤ i ≤ d1} is any orthonormal basis for d1. Let T A1(Φ) be the SLOCC

equivalence class of k ⊗ d2 ⊗ d3 with representative state |Φ′〉 =
∑k

i=1
|i〉A1 |φ⊥i 〉A2A3 , where

{|i〉A1 : 1 ≤ i ≤ k} is a basis for the space k and {|φ⊥i 〉 : 1 ≤ i ≤ k} is any basis for

span⊥{|φi〉A2A3 : 1 ≤ i ≤ d1}.
It is easy to see that T A1(Φ) is well-defined in the sense that it does not depend on which

basis of span⊥{|φi〉A2A3 : 1 ≤ i ≤ d1} we choose. It is also worth noting that by construction

any state in T A1(Φ) should have a full local rank k at A1’s side.

The importance of the map T A1 is due to the following lemma, which can be treated as

a generalization of Lemma 7.

Lemma 8 Let |Φ〉 and |Ψ〉 be two vectors in H such that rank(ρA1

Φ
) = rank(ρA1

Ψ
) = d1. Then

|Φ〉 and |Ψ〉 are equivalent under SLOCC if and only if T A1(Φ) = T A1(Ψ).

Proof: The proof idea is similar to Lemma 7. For completeness, we present a detailed

proof here. By Lemma 1, |Φ〉 and |Ψ〉 are equivalent under SLOCC if and only if there are

invertible linear operators L1, L2, L3 such that |Φ〉 = (L1 ⊗ L2 ⊗ L3)|Ψ〉. More explicitly, we

have
d1∑

i=1

|i〉A1 |φi〉A2A3 = (L1 ⊗ L2 ⊗ L3)

d1∑

i=1

|i〉A1 |ψi〉A2A3 . (9)

Applying 〈j|A1 ⊗ IA2A3 to both sides of the above equation, we have

|φj〉A2A3 = (L2 ⊗ L3)

d1∑

i=1

〈j|L1|i〉|ψi〉A2A3 .

That means

|φj〉A2A3 ∈ (L2 ⊗ L3)span{|ψi〉A2A3 : 1 ≤ i ≤ d1}
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for each 1 ≤ j ≤ d1. Noticing further that L1 is invertible, we have

span{|φi〉A2A3} = (L2 ⊗ L3)span{|ψi〉A2A3}. (10)

Conversely, we can readily show that the existence of invertible linear operators L2 and L3

such that Eqn. (10) holds also implies the SLOCC equivalence between |Φ〉 and |Ψ〉. It is

easy to verify Eqn. (10) can be rewritten into the following

span⊥{|φi〉A2A3} = ((L†
2)

−1 ⊗ (L†
3)

−1)span⊥{|ψi〉A2A3}. (11)

Using a similar argument, we can show the above equation means that |Φ′〉 =
∑k

i=1
|i〉A1 |φ⊥i 〉A2A3

and |Ψ′〉 =
∑k
i=1

|i〉A1 |ψ⊥
i 〉A2A3 are equivalent. In other words, T A1(Φ) and T A1(Ψ) coincide.

When k < d2d3/2, we have k < d1. It may be much easier to decide the SLOCC equiv-

alence between T A1(Φ) and T A1(Ψ) than that between |Φ〉 and |Ψ〉. However, T A1 is not a

one-to-one correspondence between the maximal equivalence classes of d1 ⊗ d2 ⊗ d3 and the

equivalence classes of k ⊗ d2 ⊗ d3. In general, the image of T A1 is only a proper subset of

k⊗d2 ⊗d3. Fortunately, in the special case of k = 1, we do have a one-to-one correspondence

as stated below. The proof is exactly the same as the case of n = 3, which has been proven

in Lemma 7.

Theorem 5 There is a one-to-one correspondence between the maximal equivalence classes

in d1⊗· · ·⊗dn and the stochastic equivalence classes of d2⊗· · ·⊗dn, where d1 = d2 · · · dn−1.

The following theorem also follows directly from Lemma 8.

Theorem 6 If k⊗d2⊗· · ·⊗dn has a finite number of equivalence classes, d1⊗d2⊗· · ·⊗dn
also has a finite number of maximal equivalence classes.

Using the known result that there are a finite number of equivalence classes for tripartite

systems of the dimensions d3 = 2, d2 ≤ 3 [14], we have the following corollary.

Corollary 1 Each of the following spaces has a finite number of maximal equivalence classes:

(2n− 2) ⊗ n⊗ 2, (2n− 3) ⊗ n⊗ 2 and, when 2 ≤ min{m,n} ≤ 3, (2mn− 1) ⊗m⊗ n⊗ 2.

For H = 7 ⊗ 2 ⊗ 2 ⊗ 2, it follows from the above corollary that H has a finite number

of maximal equivalence classes. In contrast, H has an infinite number of equivalence classes

[18]. Another notable case is H = 4 ⊗ 3 ⊗ 2. We know from [16] that H′ = 2 ⊗ 3 ⊗ 2 has

8 equivalence classes. Thus by Theorem 6, H has at most 8 different maximal equivalence

classes. However, the exact number is strictly smaller than 8 as some equivalence classes do

not correspond to any equivalence classes. A careful investigation shows that 4 ⊗ 3 ⊗ 2 has

exactly 5 maximal equivalence classes.

4 Discussions and open problems

We showed as our main result that a multipartite quantum system is allowed to have a

maximum entangled state only when there is a subsystem whose dimension is no less than

the total dimension of the rest of the system. When this condition does not hold, there are

multiple distinct maximal equivalence classes. A complete classification of those maximal

states would be of great value, both theoretically and practically. To this end, we provided

a connection between the maximal equivalence classes in a state space with the stochastic
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equivalence classes in another state space of a smaller dimension. In particular, we proved

that when d1 = d2 · · · dn − 1, there is a one-to-one correspondence between the maximal

equivalence classes of d1 ⊗ · · · ⊗ dn and the stochastic equivalence classes of d2 ⊗ · · · ⊗ dn.

Various examples are studied to demonstrate the applications of these results.

We conclude by proposing two directions for further investigations that we consider of

both theoretical and practical importance. The first is to understand deeper the structure of

partial orders on LOCC and equivalence class. Structural results will not only deepen our

understanding of entanglement, but will also find applications for establishing multipartite

entanglement when there is no maximum state.

For example, which spaces have an infinite number of SLOCC equivalence classes, or an

infinite number of maximal classes? For those spaces having a finite number of maximal

equivalence classes, the parties can share some number of each maximal states, and use them

later to generate arbitrary desired states. Note that in this case the ratio of the output states

and the initial states will not be as efficient as the case when a maximum state exists, unless

the distribution of the output states is known in advance. A second and related question is,

given a space that does not admit a maximum state, what is the “smallest” state outside the

specified space yet is able to generate an arbitrary state in that space? For instance, there

are two maximal equivalence classes in 2 ⊗ 2 ⊗ 3, represented by the states |Φ1〉 and |Φ2〉 in

Eqn. (8). Either state, however, can generate any state from 2 ⊗ 2 ⊗ 2 through SLOCC.

A second direction is to consider approximate generation of entangled states. Are there

spaces that do not have a maximum state but have an “approximate” maximum state in the

sense that all other states can be approximated to an arbitrary small precision through an

LOCC protocol on that state? Such an approximate state is as good as the precise state in

practice. Consider another setting where the parties wish to generate a large number of a

target state. A solution is for them to share in bulk some initial state, since many copies of a

fixed state are likely to be cheaper to manufacture. A natural question is, which initial state

will offer the most efficient rate of conversion in the worst case (over all possible target states)?

In particular, which spaces admit the best possible ratio of 1 asymptotically? Perhaps the

notion of “border rank” (C.f. Chapter 15 in [8]), the approximate version of tensor rank, in

algebraic complexity theory may be useful for tackling those intriguing problems.
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