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We provide operational definition of symmetry of entanglement: An entangled state con-

tains symmetric entanglement if its subsystems can be exchanged (swapped) by means
of local operations and classical communication. We show that in general states have
asymmetric entanglement. This allows to construct nonsymmetric measure of entangle-
ment, and a parameter that reports asymmetry of entanglement contents of quantum

state. We propose asymptotic measure of asymmetry of entanglement, and show that
states for which it is nonzero, contain necessarily bound entanglement.
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1 Introduction

There has been much work towards qualitative and quantitative description of quantum entan-

glement [1, 2, 3]. Mostly, because it is a crucial resource for quantum information processing,

but also because it is interesting in itself. Despite huge research, devoted to entanglement,

one issue has not been touched so far: can entanglement of bipartite systems be asymmetric

with respect to interchange of the subsytems? To address this question, one should first define

what does it mean to be symmetric/asymmetric. In this paper we shall provide a suitable

definition. Then we shall prove, that there exist states, in which entanglement is not sym-

metric. However, we shall leave open the question, whether this asymmetry can be lifted in

asymptotic limit, where small inaccuracies are tolerable.

The issue of asymmetry should manifest also in quantitative description of entanglement,

i.e. since entanglement can be asymmetric, there should also exist asymmetric entanglement

measures. Since all the measures introduced so far are symmetric with respect to interchange

of Alice and Bob, they cannot account for the asymmetry reported by us. We therefore

introduce a new measure of entanglement, which is no longer symmetric under Alice-Bob

exchange.
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902 Are quantum correlations symmetric?

Finally, we also propose quantitative description of the degree of asymmetry, i.e. intro-

duce a parameter, which tells us how much asymmetric is the entanglement contained in

the given state. As said, all the above results concern so called ”exact” regime. Though we

do not know, whether in asymptotic regime, where we have many copies of the same state,

and the inaccuracies which vanish in the limit of large number of copies are allowed, the

asymmetry still exists, we relate its hypothetical presence to bound entanglement. Namely,

states which would contain asymmetric entanglement in such regime, must also contain bound

entanglement.

2 Definition of symmmetry of entanglement

Let us start with definition of symmetry of entanglement. First if a bipartite state is sym-

metric with respect to swap of its subsystems, then of course its entanglement contents is

symmetric too, no matter how would we define its symmetry. Consider now a state which

is not symmetric under swap. Let us note that if the state is separable, then by LOCC op-

erations, we can always swap it. The easiest way is to remove it and created a new state -

the swapped version of the original one. Thus any state, which we cannot swap by LOCC

must be necessarily entangled. It is reasonable to attribute the impossibility of swapping by

LOCC to entanglement contents of the state: in some way it must be non-symmetric a. This

motivates the following definition.

Definition 1 Entanglement contained in the state is symmetric, if by LOCC we can produce

a swapped version of the state.

Here by ”swapped version” of a state ρ we mean the state sigma given by

σ = V ρV (1)

where V is unitary operator which swaps the subsystemsb. We should note here that there are

quantities related to entanglement, such as one-way distillable entanglement, that are mani-

festly non-symmetric [4], and therefore could be used to indicate asymmetry of entanglement.

However they are not true entanglement measures in the sense that they can be increased by

local operations and classical communication. (see also discussion in [5], chap. XVIII D).

Our definition of symmetry can be supported by the following analogy. Suppose we have a

sculpture which consists of hard core (e.g. stone), and a soft surface material (clay). Suppose,

that the surface can be easily modified: by adding or removing material from it. Suppose

further, that the core cannot be so easily modified, namely, one can flake it off piece by piece,

but any disruption is irreversible. The core corresponds to entanglement.

Let us ask now how one can recognize, whether the core has left-right symmetry. One way

is to strip it off the clay, and look, whether what is left is already symmetric. In entanglement

domain, it would mean that we distill from a state the entanglement in its essence, without

any loss, i.e. in such a way that we can return to the initial state by LOCC. One might think,

that such essence of entanglement is the pure entanglement, but it is not the case: there are

aOne could argue, that it is not entanglement but some other property of a state which is responsible for
impossibility of swap, but we prefer to call entanglement everything which is in any way not tractable by
LOCC. This is similar to the following common view, according to which any function which cannot be
increased by LOCC is an entanglement measure.
bWe have used here and throughout the paper the fact that V = V

†.
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bound entangled states, which are entangled, but no pure entanglement can be distilled. And

even from distillable states, one can usually draw pure entanglement only in an irreversible,

lossy way. Thus, the situation is as if the clay were partially so strongly bind to the stony

core, that while removing it, one would necessarily destroy the stone. Therefore we need some

other way to decide symmetry of the core. In the case of quantum states, we can easily decide

whether a given state is symmetric as a whole with respect to exchange of subsystems. This,

in the case of our sculpture means, that there is a way to check, whether the sculpture as a

whole is left-right symmetric.

This gives the following possibility of verifying symmetry of the sculpture: we try to

modify the surface in such a way that the new sculpture is a reflected version of the initial

one (of course we assume that the sculpture can be modified but cannot be rotated, i.e. it

is firmly stuck to the ground). If we can reflect the sculpture in this way, the core must be

symmetric. This is illustrated on the figure 1.

a)

b)

Fig. 1. Impossibility of reflecting the object by modification of the surface implies that the ”core”
must be asymmetric. a) The core is symmetric, by modifing the surface one can reflect the object
b) the core is asymmetric, hence the object cannot be reflected by merely modifying the surface.

This process corresponds to trying swap the state by means of LOCC: by LOCC opera-

tions, one is modifying the “surface”, and if entanglement itself is symmetric, the state can be

swapped, because only the ”surface” has to be swapped. But if entanglement is not symmet-

ric, one cannot swap the state by LOCC. And vice versa: if we cannot swap the state, then,

since the ”surface” is swapable, it must have been entanglement, which was non-symmetric

hence it prevented us from swapping the state by LOCC.

3 States with non-symmetric entanglement.

We will now prove that for a large class of states one can swap them by LOCC only when

one can swap them by local unitaries. The class consists of all states that have full Schmidt

rank [6]. Equivalently, such states can be characterized by the measure of entanglement G-

concurrence, denoted as G [7] (see also [8] where similar measures were defined though not

proved to be monotoneous under average LOCC operations). The measure for pure state is

given by

G(ψAB) = d(det ρA)
1

d (2)

where ρA is reduced density matrix of ψ. For mixed states G is given by

G(ρ) = inf
∑

i

piG(ψi) (3)
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where infimum is taken over decompositions ρ =
∑

i |ψi〉〈ψi|. (This is standard convex roof

procedure [9, 10].) Note that G(ψ) is nonzero if and only if ψ has maximal Schmidt rank. It

follows that our class of mixed states is characterized by G(ρ) > 0. Thus, we will prove that

if G > 0, then swapping by LOCC means swapping by product unitary.

In particular, it follows that if state with G > 0 has different entropies of subsystems,

it cannot be swapped by LOCC, since clearly local unitaries cannot change local entropy.

Moreover, for two-qubit states, G > 0 iff a state is entangled so that we obtain that any

entangled two-qubit state is LOCC swapable iff it is swapable by UA ⊗ UB .

Our main result is contained in the following theorem

Theorem 1 Consider state ρ acting on Cd ⊗ Cd, for which G > 0 (equivalently, with

Schmidt rank equal to d). Then, if such state can be swapped by LOCC, then it can be also

swapped by some product unitary operation UA ⊗ UB.

To prove this theorem we need two lemmas.

Lemma 1 For any state ρ on Cd ⊗ Cd, and trace preserving separable operation Λ(·) =
∑

iAi ⊗Bi(·)A
†
i ⊗B†

i there holds

∑

i

piG(σi) ≤
∑

i

|detAi|
1

d |detBi|
1

dG(ρ) (4)

where σi = 1
pi
Ai ⊗Bi(ρ)A

†
i ⊗B†

i , pi = Tr(Ai ⊗Bi(ρ)A
†
i ⊗B†

i ).

Remark 1: Similar result (with equality) was obtained for concurrence in [11]. In the

proof we will use, in particular, techniques from the proof of monotonicity of convex roof

EM’s under LOCC [9, 3].

Proof: Consider optimal decomposition ρ =
∑

j qj |ψj〉〈ψj |, so that G(ρ) =
∑

j qjG(ψj).

One finds that

σi =
∑

j

qjp
(j)
i

pi

(

1

p
(j)
i

Xi|ψj〉〈ψj |X
†
i

)

(5)

≡
∑

j

r
(i)
j |φ

(i)
j 〉〈φ

(i)
j | (6)

where we have denoted Xi = Ai ⊗ Bi, p
(j)
i = Tr(Xi|ψj〉〈ψj |X

†
i ). The coefficients r

(i)
j are

probabilities for fixed i and φ
(i)
j are normalized states. We then have

∑

i

piG(σi) =
∑

i

piG(
∑

j

r
(i)
j |φ

(i)
j 〉〈φ

(i)
j |) ≤

≤
∑

ij

pir
(i)
j G(φ

(i)
j ) =

∑

ij

qjG(Xiψj) (7)

where we have used convexity of G and the fact that G(αρ) = αG(ρ) for α ≥ 0. Now, as

shown in [7] G(A⊗Bψ) = |detA|
1

d |detB|
1

dG(ψ). It follows that
∑

i

piG(σi) ≤
∑

i

|detAi|
1

d |detBi|
1

d

∑

j

qjG(ψj) =
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∑

i

|detAi|
1

d |detBi|
1

dG(ρ) (8)

This ends the proof of the lemma.

The second lemma we need is as follows:

Lemma 2 For operation Λ from lemma 1 we have
∑

i |detAi|
1

d |detBi|
1

d ≤ 1 with equality

if and only if Λ is mixture of product unitary operations.

Proof: Note that |detAi|
1

d |detBi|
1

d = [det(X†
iXi)]

1

d2 where Xi = Ai⊗Bi. We then have

[det(X†
iXi)]

1

d2 ≤
1

d2
Tr(X†

iXi) (9)

as this is actually the inequality between geometric and arithmetic mean of eigenvalues of

X†
iXi (cf. [12]). It then follows that equality can hold if and only if all eigenvalues are equal

i.e. when X†
iXi is proportional to identity. Summing up we get

∑

i

|detAi|
1

d |detBi|
1

d ≤
1

d2
Tr
∑

i

(X†
iXi) = 1 (10)

where used the fact that Λ is trace preserving, so that
∑

iX
†
iXi = I. Equality can hold

only when it holds for all terms, which implies that (Ai ⊗ Bi)
†(Ai ⊗ Bi) is proportional to

identity. Hence Ai and Bi are proportional to unitaries. Thus, Λ is mixture of product unitary

operations.

Proof of the theorem 1 : We assume that G(ρ) > 0 and that we can swap ρ by

LOCC, i.e. Λ(ρ) = V ρV . We will now use notation from the lemmas. Thus we assume that
∑

i piσi = V ρV . Using invariance of G under swap, convexity of G and lemma 1 we obtain

G(ρ) = G(V ρV ) = G(
∑

i

piσi) ≤
∑

i

piG(σi) ≤

≤
∑

i

|detAi|
1

d |detBi|
1

dG(ρ) (11)

Since G(ρ) > 0 we get
∑

i |detAi|
1

d |detBi|
1

d ≥ 1. Thus in view of lemma 2 we obtain that Λ

must be mixture of product unitaries:

Λ(ρ) =
∑

i

piU
i
A ⊗ U i

BρU
i†
A ⊗ U i†

B ≡
∑

i

piσi (12)

Then the states σi have the same von Neumann entropy S as ρ, so that

S(
∑

i

piσi) = S(V ρV ) = S(ρ) =
∑

i

piS(σi) (13)

Now, from strict concavity of entropy we obtain that all σi’s must be the same, so that

V ρV = U1
A ⊗ U1

BρU
1†
A ⊗ U1†

B . Thus swap can be performed by local unitary operation.
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3.1 Examples

From the theorem it follows that all entangled two qubit states are swapable, if they are

swapable by UA ⊗ UB Thus any state with subsystems of different spectra is not LOCC

swapable, since local unitaries keep local spectra. Exemplary state is mixture of |01〉 and

a|00〉 + b|11〉 for a 6= b.

Let us see, whether the assumption that G > 0 is essential. For higher dimensions there

are many states that have G = 0. One would be tempted to think that for any entangled state

that is LOCC swapable, we can swap it by local unitaries. However, it is not true. Consider

state on C2⊗C4 system: being a mixture of |ψ+〉 = 1√
2
(|00〉+ |11〉) and |ψ〉 = 1√

2
(|02〉+ |13〉).

The subsystems have different spectra, so that we cannot swap it by local unitaries. However,

the mixture can be reversibly transformed into e.g. ψ+ by local unitary. Thus it can be

swapped.

3.2 Asymmetric entanglement measure

We take any ”distance” D which is continuous, satisfies D(Λ(ρ)|Λ(σ)) ≤ D(ρ, σ) and D(ρ, σ) =

0 if and only if ρ = σ. We consider associated measure ED(ρ) = infσsep
D(ρ, σsep) [13] where

infimum is taken over all separable states. Consider then a fixed state σ that cannot be

swapped by LOCC. Now, our measure is defined as

Eσ(ρ) = ED(σ) − inf
Λ

D(σ,Λ(ρ)) (14)

where infimum is taken over all LOCC operations Λ. Note that for separable states Eσ = 0,

and that by definition it does not increase under LOCC. We have Eσ(σ) = ED(σ) while

Eσ(V σV ) < ED(σ). To see it note that if we cannot swap a state exactly, then we also cannot

swap it with arbitrary good accuracy according to distance satisfying the above conditions.

This follows from compactness of set of separable operations. Thus the second term is nonzero.

3.3 Measure of asymmetry of entanglement

We can define a parameter that would report asymmetry of entanglement of a given state.

AE(ρ) = inf
Λ

D(Λ(ρ), V ρV ) (15)

where infimum is taken over all LOCC operations Λ. Clearly, it is nonzero if and only if a

state cannot be swapped by LOCC.

4 Asymptotic regime

So far we have talked about exact transformations. It is interesting to ask if the effect survives

limit of many copies, where we allow inaccuracies that vanish asymptotically. We have not

been able to answer this question, however we think it is most likely, that even asymptotically,

in general one cannot swap states by LOCC.

Under such assumption, we can consider a parameter, which will report asymptotic sym-

metry of entanglement.

To define this parameter we need the notion of optimal transition rate of given state ρ

to other state σ denoted as R(ρ → σ) which is the maximal ratio m
n

of the transformation

ρ⊗n → σ′ ≈ σ⊗m via some LOCC map [3].
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Definition 2 Let ρAB ∈ B(HA ⊗HB) be an entangled state. Then swap-symmetry is defined

for entangled states as follows:

Sswap(ρ) = R(ρ→ V ρV ). (16)

which is the optimal rate of transition from ρ to V ρV by means of LOCC.

This quantity is clearly infinite for separable states. However for entangled states it is

always finite

Lemma 3: For entangled state ρ we have

Sswap(ρ) ≤ 1 (17)

Proof: We apply relation between rates and asymptotically continuous entanglement

monotones [3]. Consider two state σ and ρ, and an asymptotically continuous entanglement

monotone E. Let us assume that E∞(σ) > 0. Then we have

R(ρ→ σ) ≤
E∞(ρ)

E∞(σ)
(18)

Here we will take σ = V ρV and E to be entanglement of formation EF . Regularization of EF

is entanglement cost: E∞
F = Ec and it was shown in [14] that it is nonzero for any entangled

state. Since Ec(ρ) = Ec(V ρV ) we obtain that R(ρ→ V ρV ) ≤ 1 which ends the proof.

We can also design another quantity, which would also report how much asymmetric is

entanglement of a given state. To this end let us consider round-trip-travel rate i.e. the

optimal rate of transferring state ρ into itself via some other state σ (cf. [15]). It is formally

defined as

R(ρ ⇀↽ σ) = R(ρ→ σ)R(σ → ρ) (19)

where we use convention 0 · ∞ = ∞ · 0 = 0. We now define our second quantity:

Definition 3 The following quantity

Ssym(ρ) = sup
σ
R(ρ ⇀↽ σ) (20)

where supremum is taken over all symmetric states σ we will call symmetry.

Again, using [14] we can get that for any entangled state Ssym ≤ 1. However surprisingly,

it turns out that the two quantities are equal:

Theorem 2 The quantities Ssym and Sswap are equal to each other

Ssym = Sswap (21)

Proof: To see that Ssym ≤ Sswap consider the protocol achieving Ssym

ρ⊗n → σ⊗m → ρ⊗k (22)

where σ = V σV . Since the protocol is optimal, we have k/n ≈ Ssym. In the second stage

(transforming σ into ρ) let us exchange roles of Alice and Bob. Then, instead of ρ⊗k we will

obtain (V ρV )⊗k. Thus the total protocol will simply swap the state with rate k/n. Thus we

can swap at least with rate Ssym which proves Sswap ≥ Ssym.
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To prove converse, it is enough to find a symmetric state σ such that R(ρ ⇀↽ σ) will be

equal to Sswap. Clearly, instead of symmetric (i.e. swap invariant state) we can choose a state

which can be made symmetric by local unitaries. We will take

σ = ρ⊗ V ρV (23)

It is easy to see that local swaps produce a symmetric state from σ. We will now express

R(ρ ⇀↽ ρ⊗ V ρV ) in terms of Sswap(ρ). To this end consider the following transformation

ρ⊗n ⊗ ρ⊗m → (V ρV )⊗m ⊗ ρ⊗m = σ⊗m (24)

where the rate m/n ≈ Sswap is possible by definition of Sswap. Then we consider transforma-

tion that returns to the state ρ:

σ⊗m = (V ρV )⊗m ⊗ ρ⊗m → ρ⊗k ⊗ ρ⊗m (25)

where again by definition of Sswap the rate k/m ≈ Sswap is possible. Thus the overall round-

trip-travel rate vis state σ satisfies

R(ρ ⇀↽ σ) ≤
k +m

n+m
≈
Sswap + 1

1
Sswap

+ 1
= Sswap (26)

Since Ssym is supremum of such rates, we obtain that Ssym ≥ Sswap. This ends the proof.

We thus obtain our asymptotic quantities measuring symmetry/asymmetry.

Definition 4 The quantity Ssym = Sswap we will call symmetry of entanglement, and will

denote by Sas
E . The quantity Aas

E = 1 − Sas
E we will call asymmetry of entanglement.

Thus, entanglement in a given state is not symmetric when Aas
E > 0. We will now

argue that states with nonsymmetric entanglement must possess bound entanglement, i.e.

for such state distillable entanglement is strictly smaller than entanglement cost ED < Ec.

Thus asymptotic asymmetry brings irreversibility. The reason is obvious, reversibility in

distillation-creation process means that we can go reversibly from ρ to ρ through maximally

entangled state which is symmetric state. Thus Sas
E = 1 in such case. We have

Theorem 3 For entangled states, we have

ED

Ec

≤ Sas
E ≤ 1 (27)

Equivalently we have
Eb

Ec

≥ Aas
E (28)

where Eb = Ec − ED.

Proof: The optimal rate R(ρ ⇀↽ ψ+) where ψ+ = 1
2 (|00〉 + |11〉) is given by

R(ρ ⇀↽ ψ+) =
ED

Ec

(29)

Since maximally entangled state is symmetric, this is rate of a particular protocol of round-

trip-travel from ρ to ρ via symmetric state. Thus it is no greater than Sas
E which is supremum

of rates over such protocols.

From this theorem it follows that Sas
E is nonzero for distillable states.
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5 Concluding remarks.

We have proposed an operational definition of asymmetry of entanglement, and provide exam-

ples of states containing asymmetric entanglement. We also propose a quantitative measure

of asymmetry of entanglement for a single copy of quantum state. This proposition is not

unique. Other candidate can be the infimum of distance from the set of single copy LOCC

swapable states. It seems that the lower bound on this measure in terms of G-concurrence

can be found.

We also conjecture that entanglement can be asymmetric in asymptotic regime of many

copies i.e. that there exist states with Sas
E < 1. This would imply a nice correspondence.

Namely existence of bound entanglement can be viewed as ”time asymmetry”, hence we would

have that ”space asymmetry” of entanglement would imply its ”time asymmetry” c. Moreover

one could then ask if V can increase ED of some distillable states i.e. if ED(ρ ⊗ V ρV ) >

ED(ρ⊗2).

If however Sas
E = 1 for all states one would have that certain nontrivial task can be

achieved via LOCC. Namely one would get the answer to the question what Alice and Bob

should do if by accident they got ρ⊗n
BA instead of ρ⊗n

AB . Moreover a nice correspondence between

transposition and swap would hold. As we have mentioned, like I ⊗ T is not physical, the

operation I ⊗ V can not be implemented by means of LOCC i.e. it is not physical with

respect to this class of operations. Although transposition is not completely positive it can

be performed on a known state, as it is positive. If then Sas
E = 1 for all states i.e. all states

would be swapable, then V like T could be performed on a known state (in this case via LOCC

operations).

Note that still there are many states which have Sas
E = 1 because they are swap invariant.

It is then tempting to develop a scheme of symmetry of entanglement with respect to certain

group G of unitary transformations (see in this context [16]). That is G−symmetry of a state

would be maximal rate of distillation of states which are invariant under actions of G.

As a generalization of our approach one can consider the asymmetry of general quantum

correlations by restricting class of allowed operations to so called closed LOCC operations

[17]. In such case also certain separable states may exhibit asymmetry. Moreover in analogy

to asymmetry of entanglement one can also quantify asymmetry of private (cryptographic)

correlations.

Finally, we note that quite recently other interesting investigations of notion of exchange

of subsystems and swap symmetry have been independently developed [18, 19, 20].
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