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We show that entanglement of multiple atoms can arise via resonant interaction with a
displaced thermal field with a macroscopic photon-number. The cavity field acts as the
catalyst, which is disentangled with the atomic system after the operation. Remarkably,
the entanglement speed does not decrease as the average photon-number of the mixed
thermal state increases. The atoms may evolve to a highly entangled state even when
the photon-number of the cavity mode approaches infinity.
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In quantum mechanics, superposition effects give arise to many striking features. Superpo-
sitions of product states of composite systems leads to quantum entanglement, which is an
entirely quantum-mechanical effect and results in phenomena that can not be explained in
classical terms. On one hand, an entangled state of two or more particle reveals nonlocal
structure of quantum theory, providing a basis for the test of quantum mechanics against
local hidden variable theories [1,2]. On the other hand, entanglement is an essential ingredi-
ent for quantum informatiom processing, such as quantum cryptography [3] and teleportation
[4]. The Jaynes-Cummings model (JCM ) [5, 6], which describes the interaction of a two-level
atom and a single-mode electromagnetic field, is a typical system for producing entanglement.
It has been shown that for certain pure initial states, entanglement between the atom and
cavity mode oscillates with time [7]. The cavity mode can also act as the catalyst for the
synthesis of multiatom entanglement [8]. Over the past few decades, there have been various
generalizations of the JCM. One of the typical examples is the Tavis-Cummings model [9],
describing the interaction of multiple two-level atoms and the cavity mode.

Recent advances in microwave cavity QED techniques, with Rydberg atoms interacting
with a superconducting cavity, allow the test of many interesting quantum effects arising
from the interaction of atoms with a quantized cavity field [8]. Up to now, entangled states
involving two or three atoms have been produced in experiment [10,11]. In most of the cavity
QED experiments, the cavity field is required to be initially in a pure state. Previous research
show that the microscopic nature of the field is essential for entangling two or more atoms.

In this paper, we show that maximally entangled states for multiple atoms can be produced
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via resonant interaction with a cavity field with a macroscopic photon number, showing that
a macroscopic system can also act as the entanglement catalyst. Secondly, we show that
the entanglement is insensitive to thermal photons. Under certain conditions the atoms are
disentangled with the cavity field, which is distinguished from the previous work showing
that atom-field entanglement always arises when the field is initially in a thermal state [12].
Thirdly, the atoms are resonant with the cavity mode and thus the entanglement speed is very
high. More strikingly, the entanglement speed is independent of both the number of atoms
and the mean photon-number of the thermal field, and high entanglement can appear even
there exist many thermal photons, which is in contrast with the previous work [13]. Finally,
we show that a phase gate between two atoms can be produced with a thermal field, providing
a new prospect for quantum information processing in a nonzero temperature environment.
Suppose that the single-mode cavity field is initially in the thermal state

1 —
pon = — [ e /7 |a) (a] dPa, (1)
m™n

where ny,= 1/(elw/ksT — 1) is the mean photon-number of the thermal field. We first displace
the cavity field by an amount «, leading to the density operator D(a)pi, DV (), with D(«)
being the displacement operator. We here assume that « is a complex number, i.e., @ = re .
The displacement can be achieved by injecting the cavity a coherent field generated by a source
[14]. We consider the resonant interaction of N identical two-level atoms with a single-mode
cavity field. In the rotating-wave approximation, the Hamiltonian is (assuming / = 1)

N
H=> g(a*S; +aS}), (2)

j=1

where S;-r = lej) (951, S; = lg;) (ej|, with [e;) and |g;) being the excited and ground states of
the jth atom, a® and a are the creation and annihilation operators for the cavity mode, and
g is the atom-cavity coupling strength. Suppose that the atoms are initially in the state |¢g).
Then the initial density operator for the whole system is py = D(a) |¢o) (¢o| @ pin DT ().
The evolution operator of the system is given by U(t) = e~*t. After an interaction time the
system evolves to p = U(t)poU™T (t).

We can rewrite the evolution of the density operator as

p = D()Uq(t) |$0) (b0 © pnUy (t)D* (), (3)
where
Ua(t) = DT (a)U(t)D(a) (4)
— iHat
where
N
Hy = Zg[(a+ +a*)S; + (a+ a)S;-r]. (5)

Define the new atomic basis [15,16]
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[+ie) = 7(|6 i+ e?la) 1) = 7(|e i) = €% 1g;))- (6)

Then we can rewrite Hy as
Z{ e ¥at (20,5, + 0l — 05 ,) +e¥a(20. 5, + 05, —0f )]+ 200256}, ()

where 0 j, = %(|+j,<p> (il = I=ie) (=il U_;:cp = |+ie) (il 5 Ojp= |=j.e) (il and
0 =rg. We can rewrite Uy(t) as

Uq(t) = e*iQQUz,j,wtefiHitv -

where

N
H;, = Zg ~2at (20, 42 ]er_e—zmt )+e “a(20. . ¢+e—i29t0;¢_ei29ta;:@)] (9)

Jj=1
Assuming that €2 > g, we can neglect the terms oscillating fast. Then H; reduces to
H; = gle " a™ +e*a)o, ,, (10)

where
N
Oop =D Osijp (11)
j=1

The Hamiltonian H; describes a spin-dependent force on the cavity field. It has been
shown that this Hamiltonian can be obtained in the ion trap [17,18]. In this case, a collective
vibrational mode acts as the bosonic system and the internal degrees of freedom of the ions cor-
respond to the spin system. The spin-dependent force has been used to generate Schrédinger
cat states [19] and implement two-qubit phase gates [20] in ion trap experiments. Milburn
et al. [17] have proposed a scheme for realizing multi-qubit gates via sequent applications of
the Hamiltonian with variable parameter ¢. In the ion trap, ¢ is adjustable via the phases of
driving lasers resonant with the sideband transitions. The aim of the following section is to
show that sequent spin-dependent forces with controllable parameter ¢ can be achieved in the
atom-cavity system by applying a sequence of displacements and atomic rotations interspersed
between periods of evolution of the system. The corresponding spin-dependent displacement
along a close path in phase space produces a spin-dependent phase, which can be used to
generate Greenberger-Horne-Zeilinger (GHZ) states and implement two-qubit phase gates.

Define the symmetrical state |® ) with k atoms being in the state |—; ), i.e., the well
known Dicke state [21]. Applying the collective atomic operator o, to the Dicke state |®y ),
we obtain

Tz | Php) = (N/2 = k) |Pp) - (12)

We first assume that ¢ = 0, i.e., « = r. We now assume that each atom is initially in the
state |e;) . |e;) can be rewritten as
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&) = %mm +1=50))- (13)

Then the initial state for the N atoms can be written as a Bloch state [22]

! N oo\ 12
|¢70>sz_%< i ) |Pr,0) - (14)

Using Eqgs.(3), (8), (10), (12), and (14), we obtain evolution of the system after an interaction
time 7

N N ) 1/2 1/2
o = 2%2 3 eitkokhar ( ]IZ ) ( 2‘\7 ) 1Br0) <¢k/’0‘ (15)
k=0k"=0

@D(r)D[~i(N/2 — k)g7]pen DY [~i(N/2 — k' )gr| DT (1),

The resonant interaction of the atom with the strongly displaced thermal field results in the
spin-dependent displacement operator on the cavity mode.

We then displace the cavity mode by an amount —r + 4 and perform the rotation |g;) —
i|g;), which leads to

N N 1/2 1/2
, 1 i [N N
po= ey D e ( A ) ( N ) [@nre) (P mpe| (1)

k=0%'=0
®@D(ir)D[—i(N/2 — k)gr]pin D [~i(N/2 — k )gr| D (ir).

After an interaction time 7, we obtain

N N 1/2 1/2
1 ioior [N N
p2 = 2—NZ Z etilk=k e ( i ) < i ) @k r/2) <(I)k/,7r/2‘ (17)

k=0k'=0
®@D(ir)D[(N/2 — k)g7]|D[—i(N/2 — k)g7]pen
DY [—i(N/2 — k)gr]|DT[(N/2 — k)gr]| D™ (ir).

After the field displacement and atomic rotation, the resonant interaction yields a second
spin-dependent displacement perpendicular to the first one in phase space. This is due to the
fact that the total displacement before the second resonant interaction is just perpendicular
to that before the first resonant interaction.

We repeat the procedure for two more times. During the two cycles the displacements are
—r —4r and r — ir, respectively. The final state of the system is

1 N N ‘ , N 1/2 N 1/2
pro= Gmy D et )m( k> <k) oo (Bemspel - (18)

k=0%'=0
®@D(—ir)D[—(N/2 — k)g7]D[i(N/2 — k)g7] D[(N/2 — k)g]
D[~i(N/2 — k)g7]pin DT [~i(N/2 — k )gT| DF[(N/2 — k) g7]
D[i(N/2 — K )gr|D* [—(N/2 — K )gr] DT (—ir).
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We can rewrite p; as

ps = o5) (65| @ D(=ir)pu, DF (—ir) (19)
where
/—1 i sikQr 2i(N/2-k)gr)? [ K 1/2\ )
lpr) = — oM 2 —rgT ( ) Dy _x/2 (20)
2N =0 N
N 1/2
1 8ikQT—2ikN (g7)? 2ik>(g7)2 ( k )
= —Ze T T e T ‘(I>k,77r/2>'
VN = N

We here have discarded the common phase factor ¢N”(97)°/2 With the choice 2(g7)2 = 7/2
we obtain [23,24]

N
1 ; Q7 —iNT
7)) = 2N+1[em/4H(}+j7—w/2>+681m N2 | 2)) (21)
j=1

N
Lemim/4 H(‘+j»*7f/2> _ SiT—iNm/2 |_j,77r/2>)].
j:l

Since the state ‘ ‘
(|+j,—7r/2> + 68197’sz#/2 ‘_j7—71'/2>)/\/§

is orthogonal to A A
(‘+j,—7r/2> . eSzQ‘rszw/2 ‘_j,—w/2>)/\/§a

|¢f) is a N-particle maximally entangled state, or a GHZ state [2]. The average photon-
number of the displaced thermal state depends upon the amount of the initial displacement:
n= ng, + |a|2. The entanglement persists in the classical limit |oz|2 — 00.

The entanglement speed is independent of both the number of atoms and the mean photon-
number of the thermal field. The strongly displaced JCM evolution operator produces a
displacement conditional on the atomic state. The cavity field is displaced along the sides of
a square, whose length depends upon the state of the atomic system. After the operation,
the atomic system is disentangled with the cavity field, but acquires a phase conditional on
the displace path [17,18,20], leading to the entanglement. The macroscopic thermal field acts
as the entanglement catalyst.

We note the idea can be generalized to realize geometric phase gates for two atoms with
a thermal field. For the two-atom case, the above mentioned displacements, rotations, and
resonant interactions leads to the transformation:

- 2’ ‘+1,77r/2> |+2,77r/2> ) (22)

|[+1,0) [+2.0)

[+1,0) =200 — |+1,-n/2) |—2-7/2)
) )
) |=2,0)

)

— |_1,—7r/2>|+2,—7r/2>;
o ei2(gm)?

[—1,0) [+2,0
|_1,0 |_2,0 ‘_1,77r/2>|_2,77r/2>-

We here have discarded the trival single-qubit phase shifts, which can be absorbed into next
single-qubit operations. Setting 2(g7)? = 7/2 and performing the rotation |g;) — i|g;) we
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obtain the phase gate

[+1,0) [+2,00 = il+1,0) [+2,0) (23)
[+1,0) |—2,0) — |+1,0) =20,

|=1,0) [+2,00 = [=10)[+20),

|—1,0) [—2,0) — i|l=1,0)]—20)-

The combination of this gate and the single-qubit phase shifts |[+1,0) — —i|+1,0) and |—2,0) —
i|—2,0) corresponds to two-qubit 7-phase gate.

We now show how the gate is robust against parameter fluctuations. Suppose that the
two atoms are initially in the state

|go) = %(|+1,0> +[=1,0))(I+2,0) + [—2,0))- (24)

The phase gate of Eq. (23) produces the maximally entangled state
1 ) )
105) = 5llH10) (i1 +2,0) +1=20)) +[=10) ([+20) +i]=20))]- (25)
If the condition 2(g7)? = 7/2 is not exactly satisfied, the final state is

87) = 31410 (€2 ) +1=20)) + =10} (2.0) + €20 |=))]. (26)

The fidelity is given by

F = (6] ¢'f>‘2 - 2{1 +sin[2(g7)?]}% + i cos[2(g7)?). (27)

Set 2(g7)? = 0.557. Then the fidelity is about 0.99.

In microwave cavity QED experiments [10,25], two or more atoms are simultaneously sent
through a cavity. For the Rydberg atoms with principal quantum numbers 50 and 51, the
radiative time is T}, = 3 x 10725, and the coupling constant is ¢ = 27 x 25kHz [10]. Thus
the interaction times of atoms with the cavity field are t = 47 = 2y/7/g = 2.26 x 10 °s. In
the case N = 3 the decoherence time of the atomic system is 7). = T;./3 = 1 x 10~2s. The
decoherence time of the superposition of different components in the nonzero temperature

heat bath is T, = T./(1 + 2 ng,)d?, where d is the distance between the components in
phase space. During the interaction, the distance between the coherent components is on the
order of g7 ~ 1. Very recently, a ultrahigh fineness Fabry-Perot resonator with a damping
time T, = 0.13s has been built [25]. Set ng= 5. Then, the decoherence time for the
cavity field is about TC/ ~ 6.19 x 1073s. The infidelity induced by the decoherence is about
t/Tr +t/T, = 0.591 x 1072,

In conclusion, we have shown that maximally entangled states for multiple atoms can
be induced by a cavity field initially in a thermal state. The entanglement appears in the
macroscopic limit. The time for the appearance of maximal entanglement is independent of
both the number of atoms and the mean photon-number of the thermal field. The quantum
phase gate for two atoms can also be produced via interaction with the displaced thermal
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field. The macroscopic thermal field acts as the catalyst for producing entanglement and
quantum information processors.

This work was supported by the National Natural Science Foundation of China under
Grant No. 10674025 and funds from Key Laboratory of Quantum Information, University of
Science and Technology of China.
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