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We investigate the properties of different levels of entanglement in graph states which
correspond to connected graphs. Combining the operational definition of graph states
and the postulates of entanglement measures, we prove that in connected graph states

of N qubits there is no genuine k-qubit entanglement, 2 ≤ k ≤ N − 1, among every k
qubits. These results about connected graph states naturally lead to the definition of
fully multi-qubit entangled states. We also find that the connected graph states of four
qubits is one but not the only one class of fully four-qubit entangled states.
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1. Introduction

The trend of quantum information processing is to implement large scale quantum compu-
tation with many qubits [1]. One prospective proposal is the one-way quantum computation
model, based on some special kind of multi-particle entangled states and single qubit measure-
ments [2]. The universal resource in one-way quantum computer is the so called graph states
that correspond to mathematical graphs [3], where the vertices of the graph play the role of
quantum spin systems and edges represent Ising interactions. Graph states also have applica-
tions in quantum communication of many users, e.g. open destination quantum teleportation
[4]. Moreover, various quantum error correcting codes for protecting quantum information
against decoherence are also graph states [5].

On the other hand, it is well known that entanglement is the most fascinating feature of
quantum mechanics. Very recently, entanglement in interacting many-body systems becomes
an increasing important concept in condensed matter physics, such as quantum phase tran-
sitions [6], superconductivity and fractional quantum Hall effect [7]. However, the structure
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and nature of entanglement in multi-particle entangled states is not very clear now. The most
obstacle is that there is no known measure which can completely characterize the entangle-
ment of multi-particle entangled states. Therefore, the study of entanglement properties of
the special significant multi-particle entangled states - graph states is a very important and
interesting topic [8, 9, 10, 11, 12].

In Refs.[9], Hein et al characterize and quantify the genuine multi-particle entanglement
of graph states by the Schmidt measure. They provide the upper and lower bounds of the
Schmidt measure [13] in graph theoretical terms. In this paper, we investigate the entan-
glement properties of graph states from the viewpoint of different levels of entanglement.
The main result is that, using the operational description of graph states and the fact that
entanglement measures always decrease under local operations and classical communications
(LOCC), we present a simple proof that in general connected graph states of N qubits, gen-
uine k-qubit entanglement, 2 ≤ k ≤ N − 1, among every k qubits always vanish. These
results explicitly demonstrate that graph states is indeed a kind of fully multi-qubit entan-
gled states. In addition, we find that the connected graph states of four qubits is only one
class of fully multi-qubit entangled states. We construct different kinds of fully multi-qubit
entangled states that are not local unitary equivalent to connected graph states of four qubits.

2. Graph states

Each mathematical (undirected, finite) graph is denoted as [14]

G = (V,E) (1)

where the finite set V ⊂ N is the set of vertices, and the set E ⊂ [V ]2 is the set of edges. In
the context of graph states, people restrict to the simple graphs, which contain neither edges
connecting vertices with itself nor multiple edges. Given a subset of vertices S ⊂ V , we can
define the subgraph generated by S as GS = (S,ES), where ES ⊂ E, and for every edges
{a, b} ∈ E, if and only if a, b ∈ S then {a, b} ∈ ES .

For a given vertex a ∈ V , its neighborhood Na ⊂ V is defined as the set of vertices
adjacent to the given vertex a, i.e. the set of vertices b ∈ V for which {a, b} ∈ E. For
two vertices a, b ∈ V , we say a and b is connected if there exists an ordered list of vertices
a = a1, a2, · · · , an−1, an = b such that for all i, (ai, ai+1) ∈ E. If any two a, b ∈ V are
connected, the graph is a connected graph, otherwise it is a disconnected graph which can be
viewed as a collection of several separate connected subgraphs.

Graph states that correspond to a mathematical graphs G = (V,E) is a certain pure
quantum state on the Hilbert space H = (C∈)⊗N , where N = |V | is the number of the
vertices. For every vertex a ∈ V of the graph G = (V,E), one can define a Hermitian
operator,

Ka
G = Xa

⊗
b∈Na

Zb (2)

where the matrices Xa, Ya and Za are Pauli matrices, the lower index specifies the qubit on
which the operators acts. The graph state |G〉 associated with the graph G = (V,E) is the
unique n−qubit state fulfilling

Ka
G|G〉 = |G〉 (3)
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The graph state |G〉 can be obtained by applying a sequence of unitary two-qubit opera-
tions to the initial state |+〉⊗N as follows,

|G〉 =
∏

{a,b}∈E

Uab|+〉⊗N (4)

where |+〉 = (|0〉 + |1〉)/√2, and |0〉, |1〉 are eigenvectors of Z with eigenvalues ±1. The
unitary two-qubit operation Uab is a controlled Z on qubits a and b, i.e. Uab = |00〉〈00| +
|01〉〈01|+ |10〉〈10|−|11〉〈11|. We note that theses unitary two-qubit operations commute with
each other. Therefore, we can adopt different orders of the sequence of Uab to the initial state
|+〉⊗N and yield the same graph state |G〉. This property is the key point in our following
proof.

As discussed above, a disconnected graph can be viewed as a collection of several separate
connected subgraphs. Therefore, a disconnected graph state is just a product state of the
corresponding connected subgraph states. Without loss of generality, it is sufficient for us
to consider only the connected graph states here. The entanglement structure in multi-qubit
entangled states is much more complex than the situation of two-qubit entangled states. For
pure states of N qubits, there are different levels of genuine k-qubit entanglement, 2 ≤ k ≤ N ,
which is shared among all the k qubits.

In Refs. [10], Hein et al show that there is no 2-qubit entanglement between any two
qubits in general N -vertex connected graph states with N ≥ 3 by examining the properties
of reduced density matrices. However, there is no exact results about general genuine k-qubit
entanglement for 3 ≤ k ≤ N−1. One reason is that unlike 2-qubit entanglement entanglement
[15], there are few well defined genuine multi-qubit entanglement measures [16, 17, 18, 19,
20, 21, 22, 23], especially for general multi-qubit mixed states. For a natural entanglement
measure, it should satisfy several necessary conditions, such as invariant under local unitary
operations, vanish for separable states, and decrease on average under LOCC. In the following,
using the operational definition of graph states and the postulates of entanglement measures,
we first prove that genuine three-qubit entanglement vanish in connected graph states of four
qubits. Then we will generalize our results to arbitrary genuine k-qubit entanglement.

3. Genuine three-qubit entanglement in graph states

In this section, we will investigate genuine three-qubit entanglement among every three qubits
in connected graph states. Genuine three-qubit entanglement is the special kind of entan-
glement which critically involves all of the three qubits. For example, in GHZ state of three
qubits |GHZ〉 = 1√

2
(|000〉+ |111〉), the state becomes separable if any one qubit is lost, which

means that the entanglement in GHZ state is the only global property shared by all of the
three qubits. However, in W state [24] of three qubits |W 〉 = 1√

3
(|001〉+ |010〉+ |100〉), two-

qubit entanglement will still exist when one qubit is neglected. One well defined measure for
genuine three-qubit entanglement is the square root of CKW tangle [25] proposed by Wootters
etc, of which τ(|GHZ〉) = 1 and τ(|W 〉) = 0.

Lemma 1: Genuine three-qubit entanglement vanishes in connected graph states of four
qubits.

Proof: There are six classes of four vertices connected graphs that are nonequivalent under
graph isomorphisms as depicted in Fig. (1). For each graph state |G〉1234, we can write the
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Fig. 1. Six classes of four vertices connected graphs that are nonequivalent under graph isomor-
phisms.

reduced density matrix ρijk of every three qubit i, j, k = 1, 2, 3, 4. By exploiting some skills,
it is easy for us to construct a special pure states decomposition of ρijk as ρijk =

∑
i

|φ′i〉〈φ′i|,
where |φ′i〉 are separable. For example, in the graph state |Gd〉1234 corresponding to Fig
1.(d), ρ123 = 1

2 (|φ1〉〈φ1| + |φ2〉〈φ2|), where |φ1〉 = 1
2 (| + 00〉 + | − 01〉 + | − 10〉 − | + 11〉) and

|φ2〉 = 1
2 (| − 00〉 − | + 01〉 − | + 10〉 − | − 11〉). The special pure states decomposition for

ρ123 is ρ123 =
2∑

i=1

|φ′i〉〈φ′i|, where (|φ′1〉, |φ′2〉)T = U(|φ1〉, |φ2〉), and U = 1√
2

(
1 i
1 −i

)
. It is

obvious that |φ′1〉 and |φ′2〉 are separable for bipartition 1|23. Actually, we could show that
the square root of CKW tangle τ(ρ123) = 0 in a similar way. Therefore we conclude that
genuine three-qubit entanglement vanishes for every three qubits.�

It should be emphasized that we only need to consider 2 equivalence classes under local
Clifford (LC) operations [10]. One class includes Fig 1.(a), (b), (c), and (f), the other class
includes Fig 1. (d) and (e) [26]. Based on lemma 1, we present the following theorem about
genuine three-qubit entanglement in general connected graph states of more than three qubits.

Theorem 1: There is no genuine three-qubit entanglement in general connected graph states
of more than three qubits.

Proof: We examine genuine three-qubit entanglement among every three qubits. Without
loss of generality, we can denote these three qubits as 1, 2, and 3. According to whether the
subgraph G{1,2,3} = ({1, 2, 3}, E{1,2,3}) is connected, there are two kinds of situations.

(a). The subgraph G{123} is connected. Since the number of qubits N > 3 and the
corresponding graph is connected, there must exist one qubit 4 which make the subgraph
G{1,2,3,4} = ({1, 2, 3, 4}, E{1,2,3,4}) is also connected, i.e. it is one class of graph depicted
in Fig 1. (a1). In the first step to obtain the graph state |G〉, we get the state |ψ〉 =∏
{i,j}∈E{1,2,3,4}

Uij |+〉⊗N , i.e. |ψ〉 =|G{1,2,3,4}〉|+〉⊗N−4, where |G{1,2,3,4}〉 is the connected

graph states of four qubits, which leads to that genuine three-qubit entanglement in ρ123 is 0
for |ψ〉 according to lemma 1. (a2). In the second step, we apply unitary two-qubit operations
related to qubit 1, 2 and 3 to ψ〉 and obtain |ψ′〉 =

∏
i∈V −{1,2,3,4},j∈{1,2,3},{i,j}∈E

Uij |ψ〉. The

effects of each block of operations
∏

j∈{1,2,3},{i,j}∈E

Uij for i ∈ V − {1, 2, 3, 4} on ρ123 can be
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characterize by the superoperator ε(ρ123) = 1
2ρ123 + 1

2 (u1⊗u2⊗u3)ρ123(u1⊗u2⊗u3)†, where
u1, u2, u3 = I2 or Z. It describes a certain local operation on qubit 1, 2 and 3. Since
any entanglement measure should be an entanglement monotone function [15], thus genuine
three-qubit entanglement in ρ123 is 0 for |ψ′〉. (a3). In the last step, we apply the remain
unitary two-qubit operations independent on qubit 1, 2 and 3 to |ψ′〉 and obtain the final
graph state |G〉 =

∏
i,j∈V −{1,2,3},{i,j}∈E

Uij |ψ′〉. In this step, ρ123 is unchanged. Therefore, we

conclude that genuine three-qubit entanglement in ρ123 vanishes for |G〉.
(b) The subgraph G{1,2,3} is disconnected. In this situation, we first get |ψ〉 =

∏
{i,j}∈E{1,2,3}

Uij |+〉⊗N . Since G{1,2,3} is disconnected, it is obvious that the state |ψ〉 is separable. The
following steps are similar to the above situation (a). Therefore, we also obtain that genuine
three-qubit entanglement in ρ123 vanishes for the state |G〉, and theorem 1 is proved. �

Our results imply that for general connected graph states of more than three qubits, if we
consider the reduced states of every three qubits by tracing out the other qubits, no genuine
three-qubit entanglement exists. In other words, entanglement in these graph states is the
properties that critically involves more than three qubits which is similar to the case of GHZ
states.

4. General genuine k-qubit entanglement in graph states

Adopt the above idea based on the operational description of graph states and the postu-
lates of entanglement measures, we could investigate the properties of general genuine k-qubit
entanglement in graph states [27].

Theorem 2: Consider a connected graph states of N qubits, and let S be a group of m

qubits, 2 ≤ m ≤ N −1, the reduced density matrix ρS is always separable for some bipartition
A|B, where B = S \A and A ⊂ S is the subset of vertices that connected to the outside S.

Proof: In the similar way as theorem 1, we denote the graph state

|G〉 = UAAUBBUSSUBSUABUAS|+〉⊗N (5)

where UXY =
∏

i∈X,j∈Y,{i,j}∈E

Uij . It is easy to check that for UAS |+〉⊗N , ρS = I
2

⊗|A| ⊗

(|+〉〈+|)⊗|B|, and for UABUAS|+〉⊗N , ρS = (1/2|A|)
∑

i1,···,i|A|=0,1

(|i1 · · · i|A|〉A〈i1 · · · i|A||) ⊗
(|ϕi1···i|A|〉B〈ϕi1···i|A| |), which is separable for the bipartitionA|B. Note that UAAUBBUSSUBS

will introduce only local operations for individual party A and B. Therefore, in the graph
state |G〉, the reduced density matrix ρS is separable for some bipartitions. �

Corollary 1: All genuine k-qubit entanglement, 2 ≤ k ≤ N − 1, vanishes in general
connected graph states of N qubits.

Proof: According to theorem 2, for any subset S of 2 ≤ k ≤ N−1 qubits, the reduced den-
sity matrix ρS is separable for some bipartition, therefore any genuine k-qubit entanglement
measure should be zero, which is one of the necessary conditions for entanglement measures.
Thus we finish the proof of corollary 1. �

This result seems somewhat interesting since it is known that graph states are multi-qubit
entangled [9]. However, theorem 1 and corollary 1 demonstrate that the reduced states of
every k (2 ≤ k ≤ N − 1) qubits is separable and there is no genuine k-qubit entanglement at
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all. This basic entanglement feature of graph states demonstrates that the entanglement in
N -qubit graph states is indeed the genuine N -qubit entanglement, that is the global property
involves all of the N qubits. If any one qubit is lost, the entanglement will vanish. This is
the exact meaning of genuine N -qubit entanglement here.

5. Fully multi-qubit entangled states

The connected graph states can not be written as a product form for any bipartition, and it is
believed that connected graph states are multi-qubit entangled states. Based on the results in
corollary 1, we explicitly show that in connected graph states of N qubits, there is no genuine
k-qubit entanglement for arbitrary 2 ≤ k ≤ N − 1, i.e. the entanglement is completely shared
among all of the N qubits. Moreover, it is easy to check that the reduced density matrix
of each qubit is I/2. With these intuitions, we could naturally define the fully multi-qubit
entangled states as

A pure state of N qubits |ψ〉 is fully N -qubit entangled if it satisfies: (1) There does not
exist a bipartition such that |ψ〉 is product; (2) The reduced state of each qubit is maximally
mixed, i.e. ρi = Tr1,2,···,i−1,i+1,···N |ψ〉 〈ψ| = I/2; (3) There is no genuine k-qubit entangle-
ment for 2 ≤ k ≤ N − 1.

If N = 2, the above definition will reduce to maximally two-qubit entangled states. We
note that stronger and slight different definitions of maximal multipartite entanglement ap-
peared in Refs [28, 29]. However, the criterions we propose above are from the viewpoint of
different levels of entanglement in multi-qubit entangled states, and is strongly motivated by
the important class of multi-qubit entangled states, i.e. graph states. The above condition 1
means that |ψ〉 is not separable. The condition 2 stems from the complementary relations in
multi-qubit entangled states [30, 31], the fact that the reduced state of each qubit is maxi-
mally mixed implies that local information is minimum, i.e. maximum entanglement. The last
condition is introduced according to different levels of entanglement structure in multi-qubit
entangled states. For example, in general N -qubit GHZ states there is only genuine N -qubit
entanglement, which is shared among all of the N qubits. However, in general N -qubit W
states, there are only two-qubit entanglement, i.e. shared only between pairs of qubits. In
this sense, N -qubit GHZ states are fully N -qubit entangled states, while N -qubit W states
are not.

The connected graph states of four qubits |G4〉 is a kind of fully four-qubit entangled
states. However, it not the only class of fully four-qubit entangled states. A generic pure
state of four qubits can always be transformed to the normal form state by the determinant 1
SLOCC (stochastic local operations and classical communication) operations [32, 33], Gabcd =
a+d
2 (|0000〉 + |1111〉) + a−d

2 (|0011〉 + |1100〉) + b+c
2 (|0101〉 + |1010〉) + b−c

2 (|0110〉 + |1001〉),
where a, b, c, d are complex parameters with nonnegative real part. Without loss of generality,
we could assume A = (a + d)/2 is a positive real number, i.e. A = x1 = |A|. We denote
B = (b + c)/2=x2 exp (iφ2), C = (a − d)/2 = x3 exp (iφ3), D = (b − c)/2=x4 exp (iφ4), with
x2 = |B|, x3 = |C|, x4 = |D|. We consider those Gabcd that is a non-product state. The
reduced density matrix of each qubit in Gabcd is I/2. The square root of CKW tangle of the
mixed states obtained by tracing out one qubit of Gabcd is always equal to zero [32]. To ensure
that pairwise entanglement also vanish in Gabcd, the parameters should fulfill the following
conditions
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2x1x2| cosφ2| ≤ x2
3 + x2

4

2x3x4| cos(φ3 − φ4)| ≤ x2
1 + x2

2

2x1x3| cosφ3| ≤ x2
2 + x2

4

2x2x4| cos(φ2 − φ4)| ≤ x1
2 + x2

3 (6)

2x1x4| cosφ4| ≤ x2
2 + x3

2

2x2x3| cos(φ2 − φ3)| ≤ x2
1 + x2

4

Therefore, we can easily construct an explicit example of fully four-qubit entangled states

|MG4〉 = c(|0000〉+ |1111〉) + i

√
1
2
− c2(|0011〉+ |1100〉) (7)

where 0 ≤ c ≤ √
1/2. It is obvious that |MG4〉 is not always local unitary equivalent to

any four-qubit connected graph state |G4〉. This can be verified by noting that Trρ2
23 is not

always the same for |MG4〉 and |G4〉, where ρ23 is the reduced density matrix of qubit 2 and
3.

6. Conclusions and Discussions

In conclusion, we have investigate the entanglement properties of graph states by calculating
different levels of genuine k-qubit entanglement. In this paper, via the operational definition
of graph states, and using the postulates of entanglement measures, we construct explicit
proofs that there are no genuine k-qubit entanglement, 2 ≤ k ≤ N − 1, in general connected
graph states of N qubits. These results, together with intuitions about graph states, lead
to a definition of fully multi-qubit entangled states. In addition, we find that the connected
graph states of four qubits is only one class of fully multi-qubit entangled states. We present
a kind of fully multi-qubit entangled states that are not always local unitary equivalent to
connected graph states of four qubits. Our results demonstrate exactly that graph states are
genuine multi-qubit entangled states. It may help us to gain some insight into the complex
entanglement structure of multi-qubit entangled states from a new viewpoint of different levels
of entanglement.
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