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We investigate limitations imposed by sequential attacks on the performance of
differential-phase-shift quantum key distribution protocols that use pulsed coherent light.
In particular, we analyze two sequential attacks based on unambiguous state discrimi-
nation and minimum error discrimination, respectively, of the signal states emitted by
the source. Sequential attacks represent a special type of intercept-resend attacks and,
therefore, they provide ultimate upper bounds on the maximal distance achievable by
quantum key distribution schemes.
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1. Introduction

Quantum key distribution (QKD) [1, 2] is a technique that exploits quantum effects to estab-
lish a secure secret key between two parties (usually called Alice and Bob). This secret key is
the essential ingredient of the one-time-pad or Vernam cipher [3], the only known encryption
method that can provide information-theoretic secure communications.

The first complete scheme for QKD is that introduced by Bennett and Brassard in 1984
(BB84 for short) [4]. A full proof of the security for the whole protocol has been given in
Ref. [5, 6, 7, 8]. After the first demonstration of the feasibility of this scheme [9], several
long-distance implementations have been realized in the last years (see, for instance, Ref. [10,
11, 12, 13, 14, 15] and references therein). However, these practical approaches differ in many
important aspects from the original theoretical proposal which demands technologies that are
beyond our present experimental capability. In particular, the signals emitted by the source,
instead of being single-photons, are usually weak coherent pulses (WCP) with typical average
photon numbers of 0.1 or higher. Moreover, the detectors employed by the receiver have a
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low detection efficiency and are noisy due to dark counts. These facts, together with the loss
and the noise introduced by the quantum channel, jeopardize the security of the protocol,
and lead to limitations of rate and distance that can be achieved by these techniques [16, 17].

The main security threat of QKD based on WCP arises from the fact that some pulses
contain more than one photon prepared in the same polarization state. Now, an eavesdropper
(Eve) can perform, for instance, the so-called Photon Number Splitting (PNS) attack on the
multi-photon pulses [16]. This attack provides Eve with full information about the part of
the key generated from the multi-photon signals, without causing any disturbance in the
signal polarization. As a result, it turns out that the BB84 protocol with WCP can give a
key generation rate of order O(n?), where 1 denotes the transmission efficiency of only the
quantum channel [18, 19].

To obtain higher secure key rates over longer distances, different QKD schemes which are
robust against the PNS attack have been proposed in recent years. One of these schemes is
the so-called decoy-states [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33], where Alice
randomly varies the mean photon number of the signal states sent to Bob by using different
intensity settings. This technique delivers a key generation rate of order O(n) [20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Other possibility is based on the transmission of two
non-orthogonal coherent states together with a strong reference pulse [34]. This scheme has
been analyzed in Ref. [35, 36], where it was confirmed that also in this scenario the secure key
rate is of order O(n). Finally, another possible approach is the use of differential-phase-shift
(DPS) QKD protocols [37, 38, 39, 40, 41]. In this kind of schemes, Alice sends to Bob a
train of WCP whose phases are randomly modulated by 0 or . On the receiving side, Bob
measures out each incoming signal by means of an interferometer whose path-length difference
is set equal to the time difference between two pulses. In this case, however, a secure key
rate of order O(n) has only been proven so far against a particular type of individual attacks
where Eve acts on photons individually, rather than signals [39]. Whether DPS QKD is secure
against the most general attack remains an important open question.

In this paper, we investigate limitations imposed by sequential attacks on the performance
of DPS QKD protocols. In this kind of attacks, Eve measures out every coherent state emitted
by Alice and prepares new signal states, depending on the results obtained, that are given to
Bob. Whenever Eve obtains a predetermined number of consecutive successful measurement
outcomes, then she prepares a train of WCP that is forwarded to Bob. Otherwise, Eve
sends vacuum signals to Bob to avoid errors. Sequential attacks constitute a special type
of intercept-resend attacks [42, 43, 44] and, therefore, they provide ultimate upper bounds
on the performance of quantum key distribution schemes [45, 46]. Here we shall consider
a conservative definition of security, i.e., we assume that Eve can control some flaws in
Alice’s and Bob’s devices (e.g., the detection efficiency and the dark count probability of the
detectors), together with the losses in the channel, and she exploits them to obtain maximal
information about the shared key.

We analyze two possible sequential attacks. In the first one, Eve realizes unambiguous
state discrimination (USD) of Alice’s signal states [42, 47, 48, 49, 50, 51]. When Eve identifies
unambiguously a signal state sent by Alice, she considers this result as successful. Otherwise,
she considers it a failure. In the second attack, Eve performs first a filtering operation on
each signal emitted by Alice and, afterwards, she measures out each successful filtered state
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following the approach of minimum error discrimination (MED) [52, 53], i.e., she guesses the
identity of the filtered state with the minimum probability of making an error. (See also
Ref. [44].) As a result, we obtain upper bounds on the maximal distance achievable by DPS
QKD schemes as a function of the error rate in the sifted key, the double click rate at Bob’s
side, and the mean photon-number of the signals sent by Alice.

Instead of using an USD measurement on each signal state sent by Alice, like in the first
sequential attack that we consider, Eve could as well employ the same detection device like
Bob. This sequential attack was very briefly introduced in Ref. [39]. A successful result is now
associated with obtaining a click in Eve’s apparatus, while a failure corresponds to the absence
of a click. However, since Alice’s signal states are typically coherent pulses with small average
photon number, the probability of obtaining a successful result in this scenario is always
smaller than the one of a sequential USD attack. Therefore, a sequential USD attack can
provide tighter upper bounds on the performance of DPS QKD protocols than those derived
from an eavesdropping strategy where Eve uses the same measurement apparatus like Bob.

A different QKD scheme, but also related to DPS QKD protocols, has been proposed
recently in Ref. [56]. (See also Ref. [57].) However, since the abstract signal structure of this
protocol is different from the one of DPS QKD schemes, the analysis contained in this paper
does not apply to that scenario. Sequential attacks against the QKD protocol introduced in
Ref. [56] have been investigated in Ref. [58] following a similar approach as in this paper.

The paper is organized as follows. In Sec. 2 we describe in more detail DPS QKD protocols.
Then, in Sec. 3, we present sequential attacks against DPS QKD schemes. Sec. 4 includes
the analysis for a sequential USD attack. Here we obtain an upper bound on the maximal
distance achievable by DPS QKD schemes as a function of the error rate, the double click
rate at Bob’s side, and the mean photon-number of Alice’s signal states. Similar results are
derived in Sec. 5, now for the case of sequential attacks based on MED of the signals sent by
Alice. Finally, Sec. 6 concludes the paper with a summary.

2. Differential-phase-shift QKD
The setup is illustrated in Fig. 1 [37, 38, 39, 40, 41].
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Fig. 1. Basic setup of a DPS QKD scheme. PM denotes a phase modulator, BS, a 50 : 50 beam-
splitter, M, a mirror, DO and D1 are two photon detectors, and At represents the time difference
between two consecutive pulses.

Alice prepares first a train of coherent states |«) and, afterwards, she modulates, at random
and independently every time, the phase of each pulse to be 0 or 7. As a result, she produces
a random train of signal states |a) or | — @) which are then sent to Bob through the quantum
channel. On the receiving side, Bob uses a 50 : 50 beam-splitter to divide the incoming pulses
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into two possible paths of different length and then he recombines them again using another
50 : 50 beam-splitter. The time delay introduced by Bob’s interferometer is set equal to the
time difference At between two pulses. Whenever the relative phase between two consecutive
pulses is 0 (£7) only the photon detector DO (D1) may produce a “click” (at least one photon
is detected). For each detected event, Bob records the exact time where he obtained a click
and the actual detector that fired.

Once the quantum communication phase is completed, Bob uses a classical authenticated
channel to announce the time instances where he detected at least one photon. From this
information, together with the knowledge of the phase value used to modulate each pulse,
Alice can infer which photon detector fired at Bob’s side at each given time. Then, Alice and
Bob can agree, for instance, to select a bit value “0” whenever the photon detector DO clicked,
and a bit value “1” if the detector D1 fired. In an ideal scenario, Alice and Bob end up with
an identical string of bits representing the sifted key. Due to the noise introduced by the
quantum channel together with possible imperfections of Alice’s and Bob’s devises, however,
the sifted key typically contains some errors. Then, Alice and Bob perform error-correction
to reconcile the data, and privacy amplification to decouple the data from Eve. (See, for
instance, Ref. [1, 2].)

In the next section we analyze simple sequential attacks against the DPS QKD protocol
introduced above that are particularly suited for the signal states and detection methods
employed by Alice and Bob, together with the attenuation introduced by the channel. Let
us emphasize here that these attacks might not be optimal, but, as we will show below,
they already impose strong restrictions on the performance of DPS QKD schemes with weak
coherent pulses.

3. Sequential attacks against differential-phase-shift QKD

A sequential attack can be seen as a special type of intercept-resend attack. First, Eve mea-
sures every coherent state emitted by Alice with a detection apparatus located very close to
the sender. Afterwards, she transmits each measurement result through a lossless classical
channel to a source close to Bob. Whenever Eve obtains a predetermined number of consec-
utive successful measurement outcomes, this source prepares a train of new signal states that
is forwarded to Bob. Otherwise, Eve sends vacuum signals to Bob to avoid errors. Whether
a measurement result is considered to be successful or not and which type of non-vacuum
states Eve sends to Bob depends on Eve’s particular eavesdropping strategy and on her mea-
surement device. Sequential attacks transform the original quantum channel between Alice
and Bob into an entanglement breaking channel [54, 55] and, therefore, they do not allow the
distribution of quantum correlations needed to establish a secret key [45, 46].

We begin by introducing Eve’s measurement apparatus. As mentioned previously, we
shall study two possible alternatives. Each alternative provides a different sequential attack.
Moreover, in both cases, we shall consider the conservative security assumption that Eve
always has access to a local oscillator that is phase-locked to the coherent light source employed
by Alice. In experiments, the number of pulses over which the phase remains stable will be
limited, but this effect is outside of the protocol model we consider here.

In the first attack, Eve realizes USD [47, 48, 49, 50, 51] of Alice’s signal states. Whenever
Eve identifies unambiguously a signal state sent by Alice, i.e., she determines without error
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whether it is |a) or | — «), she considers this result as successful. If the measurement outcome
corresponds to an inconclusive result then she considers it a failure. The second eavesdropping
strategy can be decomposed into two steps: first, Eve performs a filtering operation on each
signal state sent by Alice with the intention to make them, with some finite probability, more
“distinguishable”. A failure refers now to those signal states for which the filtering operation
does not succeed. Afterwards, Eve measures out each successful filtered state following the
approach of MED [52, 53]. Her goal is to guess the identity of the filtered states with the
minimum probability of making an error. Notice that the first eavesdropping strategy can be
considered as a special case of the second eavesdropping strategy where the probability that
Eve makes an error in distinguishing a state |a) and | — &) is exactly zero. We shall denote
as Psuce the probability that Eve obtains a successful result whatever the measurement device
she employs.

Fig. 2. Illustration of a sequential attack. In this example the length of each block is M = 5,
the minimum number of consecutive successful results within a block is given by M,,;, = 3, and
we assume that Eve obtains m = 4 consecutive successful results within a block. A successful
outcome is represented with a vertical solid line in the classical channel, while a failure result is
denoted with a vertical dashed line.

In order to evaluate her measurement outcomes, we shall consider that Eve divides her
data into different blocks of length M, where each block contains M consecutive measure-
ment results. Moreover, we assume that Eve analyzes each block of data independently, i.e.,
without considering the data included in other blocks. As we will show later on, this eaves-
dropping strategy will necessarily create some error rate that decreases when incrementing
the block length M. In this scenario, we define the integer parameter M,,;, as the minimum
number of consecutive successful results within a block that Eve needs to obtain in order to
send Bob a new train of coherent states | Betti ). This definition of M,,;, arises from the par-
ticular eavesdropping strategies that we consider here, and the role of this parameter M,
will become clear later on. More precisely, if m denotes the total number of consecutive
successful outcomes obtained by Eve within a block, then, whenever m is bigger than M.,
Eve prepares m consecutive coherent states |3e01), |3e?2), ... |B3e?n), together with M —m
vacuum states for those unsuccessful results within the block and sends these signals to Bob.
On the other hand, if m < M,,;, Eve sends to Bob M vacuum states. The case m = M,,in
deserves a special attention. We shall consider that in this case Eve employs a probabilistic
strategy that combines the two previous ones. In particular, we assume that Eve sends to
Bob M, consecutive coherent states |3e?1), |Be?®2), ... |Be?®Mmin) with probability ¢ and,
with probability 1 — ¢, she sends to Bob M vacuum states. That is, the parameter ¢ allows
Eve to smoothly fit her eavesdropping strategy to the observed data. Moreover, for simplicity,
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we shall consider that M,,;, satisfies |M/2 4+ 1| < M, < M. This condition guarantees
that, within each block of length M, there is, at most, only one subblock containing M, x,
or more, consecutive successful results.

The angle 6; of a coherent state |Be’%:) prepared by Eve depends on her particular mea-
surement strategy. When she utilizes an USD measurement, then 6; = 0 if the state identified
by her measurement is |«), and 6; = = if the state identified is | — ). A similar criterion
can also be applied to the case where Eve performs a filtering operation followed by a MED
measurement on the successful filtered states: If the result obtained is associated with the
signal state |a) then #; = 0, otherwise 6; = 7. Fig. 2 shows a graphical representation of such
a sequential attack for the case M = 5 and M,,;,, = 3. In this example, moreover, we assume
that Eve obtains m = 4 consecutive successful results within a block.

Next, we obtain an expression for the gain of a sequential attack, i.e., the probability that
Bob obtains a click per signal state sent by Alice, as a function of the parameters M, M,in, ¢,
the probability psuc. of obtaining a successful result, and the mean photon-number pg = |3]2
of the coherent states sent by Eve. As we will show, the gain of a sequential attack is directly
related with the maximal distance achievable by a QKD scheme. Afterwards, we study the
two sequential attacks introduced above in more detail. The objective is to find an expression
for the quantum bit error rate (QBER) introduced by Eve, and for the resulting double click
rate at Bob’s side in each of these two attacks.

3.1. Gain of a sequential attack

The gain of a sequential attack is defined as Ngjicrs/IN, where Njcrs represents the average
total number of clicks obtained by Bob, and N is the total number of signal states sent by
Alice. In this definition, we consider that double clicks contribute to Ngjcxs like single clicks.
The parameter Ngjcrs can be expressed as Nejjcks = (N/M)ch\lfcks, with Néﬁcks denoting the
average total number of clicks per block of length M at Bob’s side. With this notation, the
gain of a sequential attack, that we shall denote as G, can then be written as
L m
G= MNclicks' (1)
Next, we obtain an expression for N, c%cks- We shall distinguish several cases, depending
on the number m of coherent states |3ei1), |3e?2), ... |Be?") that Eve sends to Bob inside a
given block and the position of these coherent states in the block ¢ These cases are illustrated
in Fig. 3, where we also include the a priori probabilities to be in each of these scenarios. Note,
however, that the average total number of clicks in each of these cases will also depend on
whether the last signal state of a previous block is actually a coherent state or not. To include
this boundary effect between blocks in our analysis, we shall always distinguish two possible
alternatives for each case included in Fig. 3, depending on the identity of the last signal state
contained in the previous block. The probability of this last signal being a coherent state,
that we shall denote as p, is calculated in Appendix 1 and it is given by

p= [psucc + (1 - psucc)Q} p%’&m (2)

“In order to simplify our notation, from now on we will employ the term “coherent state” only to denote those
light pulses with a mean photon number bigger than zero. A light pulse with an average photon number equal
to zero, although it is also a coherent state, will be always denoted as a “vacuum state”.
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Fig. 3. Possible blocks of M signals that Eve sends to Bob together with their a priori probabilities.
Case A: The block contains M coherent states. Case B: The first m € (Mynin, M) signals of the
block are coherent states, while the last M — m signals are vacuum states. Case C: The block
contains first M — m vacuum states followed by m € (Mpn, M) coherent states. Case D: The
block has m € (Mpn, M) coherent states and, at least, the first and the last signal of the block
are vacuum states. Case E: The first M,,;, signals of the block are coherent states, while the
last M — Mp,;n signals are vacuum states. Case F: The block contains first M — M,,;, vacuum
states together with M,,;, coherent states. Case G: The block has M,,;, coherent states and,
at least, the first and the last signal of the block are vacuum states. Case H: The block contains
only vacuum states. The a priori probability of this last scenario is given by 1 — EZ pi, with p;
representing the a priori probabilities of each of the previous cases.

Similarly, 1 — p represents the probability that the last signal in a block is a vacuum state.
Fig. 4 illustrates these two alternatives for the case where Eve sends to Bob a block of signals
containing M coherent states.

Let us now analyze the different scenarios included in Fig. 3 in more detail. When Eve
sends to Bob a block of signals containing M coherent states (Case A in Fig. 3) then: If the
last signal state of the previous block is a coherent state, then it turns out that the average
total number of clicks obtained by Bob is given by Ms, where the parameter s has the form

s=1—exp(—ug), (3)

with pg being again the mean photon-number of the coherent states |Be?:) sent by Eve.
Otherwise, the average total number of clicks at Bob’s side can be written as t + (M — 1)s,
where the parameter ¢ is given by
Hs

t—l—exp(—T). (4)
The analysis of the remaining cases is similar. If the first m € (M, M) signal states of the
block are coherent states, while the last M — m signals are vacuum states (Case B in Fig. 3)
then: If the last state of the previous block is a coherent state, the average total number of
clicks obtained by Bob is given by ¢ + ms. Otherwise, the average total number of clicks at
Bob’s side can be written as 2t + (m — 1)s. Eve can as well send to Bob a block containing
first M — m vacuum states followed by m € (Min, M) coherent states (Case C in Fig. 3).
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Fig. 4. Eve sends to Bob a block of signals containing M coherent states (Block n in the Figure).
Case A: with probability p, where p is given by Eq. (2), the last signal state of the previous block
is a coherent state. Case B: with probability 1 — p the last signal state of the previous block is a
vacuum state.

In this situation, if the last state of the previous block is a coherent state, the average total
number of clicks obtained by Bob is given by 2t + (m — 1)s. Otherwise, the average total
number of clicks has the form ¢ + (m — 1)s. When Eve sends to Bob a block of signals where,
at least, the first and the last signals of the block are vacuum states (Case D in Fig. 3) then:
If the last state of the previous block is a coherent state, the average total number of clicks
obtained by Bob is given by 3t + (m — 1)s. Otherwise, the average total number of clicks has
the form 2t + (m — 1)s. The cases E, F, and G, in Fig. 3 are completely analogous to the the
cases B, C, and D, respectively. The only difference arises in the a priori probabilities to be in
each of these scenarios. Now, these a priori probabilities need to be multiplied by the factor ¢
introduced in Sec. 3, i.e., by the probability that Eve actually decides to send M,,;, coherent
states in the block. Finally, when the block contains only vacuum states (Case H in Fig. 3)
then: If the last state of the previous block is a coherent state the average total number of
clicks obtained by Bob is given by t. Otherwise, the average total number of clicks is zero.

After adding all these terms, together with their a priori probabilities, we obtain that the
average total number of clicks per block of length M at Bob’s side in a sequential attack can
be expressed as

Nc%cks = pt—i—p%ccuM + Z g Mmin (1= Psuce)Parice |vm + (M —m—1)(1 _psucc)wm} )
Mmin<m<M
(5)

where 6,57, .. is equal to one if m = M,,;, and it is zero otherwise, and the parameters ua,

Um, and w,,, are given by

min

uny = (1=2p)t+ (M —1+p)s,
Um = (B3=2p)t+ (2m+p—2)s,
wy = 2t+ (m—1)s. (6)

The gain G can be related with a transmission distance [ for a given QKD scheme, i.e.,

a distance that provides an expected click rate at Bob’s side given by G. This last condition
can be written as

G =1 — exp (—Haldett), (7)

where 11, is the mean photon-number of the signal states sent by Alice, i.e., po = |a|?,
Ndet Tepresents the detection efficiency of the detectors employed by Bob, and 7; denotes the
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transmission efficiency of the quantum channel. In the case of a DPS QKD scheme, the value
of n; can be derived from the loss coefficient 7 of the optical fiber measured in dB/km, the
transmission distance ! measured in km, and the loss in Bob’s interferometer L measured in
dB as

~I+L

N = 10~ 10 ., (8)

From Eq. (7) and Eq. (8), we find that the transmission distance ! that provides a gain G is

given by
1 —1In(1—
l———{L—klOloglo <7n( G))] 9)
Yy HaTldet

4. Sequential unambiguous state discrimination attack

As already mentioned in the previous section, in this attack Eve performs unambiguous state
discrimination (USD) [47, 48, 49, 50, 51] of Alice’s signal states. Whenever Eve identifies
without error a signal state sent by Alice then she considers this result as successful. If the
identification process does not succeed, then she considers it a failure. The probability of
obtaining a successful result per signal state sent by Alice has the form [47, 48, 49, 50]

Psuce = 1= [{a] = )| =1 — exp (=2p1a). (10)

Next, we obtain an expression for the quantum bit error rate (QBER) introduced by Eve
with this attack, and also for the resulting double click rate at Bob’s side.

4.1. Quantum bit error rate

The QBER is defined as Neyrors/Neticks, where Neprors Tepresents the average total number of
errors obtained by Bob, and N ks is again the average total number of clicks at Bob’s side.
The parameter Neprops can be expressed as Neprors = (N/M)NM with NM_ denoting

the average total number of errors per block of length M. With this notation, the QBER, of
a sequential attack, that we shall denote as @), can then be expressed as

1 ]Vgg;OTS
C=w"c (11)

Next, we obtain an expression for N We shall distinguish the same cases as in the

rrors-
previous section, depending on the number m of coherent states |3e?),|Be2), ... |Betm)
inside a block and their position in the block.

Whenever the previous signal of a coherent state inside the block is a coherent state,
then no errors occur since both signals have the proper relative phase between them. On the
contrary, if the previous signal of a coherent state is a vacuum state or if the previous signal of
a vacuum state is a coherent state then it turns out that an error can happen with probability
exp (—pup/4)[1 —exp (—pg/4)]+[1 —exp (—pg/4)]?/2 = t/2, where the parameter t is given by
Eq. (4). The error term [1 — exp (—up/4)]?/2 that appears in the previous expression arises
from double clicks at Bob’s side. Here, we consider that double click events are not discarded
by Bob, but they contribute to the sifted key. Every time Bob obtains a double click, he just
decides randomly the bit value [59].
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Let us begin with Case A in Fig. 3. According to the previous paragraph, if the last
signal state of the previous block is a coherent state, then the average total number of errors
obtained by Bob is zero. Otherwise, it is given by ¢/2. When the first m € (Min, M) signal
states of the block are coherent states (Case B in Fig. 3) and the last state of the previous
block is also a coherent state, then the average total number of errors obtained by Bob is given
by t/2. Otherwise, the average total number of errors is ¢. Similarly, if Eve sends to Bob a
block containing first M —m vacuum states followed by m € (M, M) coherent states (Case
C in Fig. 3) and the last signal of the previous block is a coherent state, then the average
total number of errors is given by t. Otherwise, the average total number of errors has the
form t/2. Eve can also send a block of signals where, at least, the first and the last signals
of the block are vacuum states (Case D in Fig. 3). Then, if the last state of the previous
block is a coherent state, the average total number of errors obtained by Bob is given by 3t¢/2.
Otherwise, the average total number of errors is ¢. Like in the previous section, the results
for the cases E, F, and G, in Fig. 3 can be obtained directly from the cases B, C, and D,
respectively. One only needs to multiply the a priori probabilities to be in each of these last
three scenarios by the factor ¢. Finally, if the block contains only vacuum states (Case H
in Fig. 3) and the last state of the previous block is a coherent state, then the average total
number of errors is given by ¢/2. Otherwise, the average total number of errors is zero.

After adding all the terms together, and taking into account the a priori probabilities
of each case, we obtain that the average total number of errors per block of length M in a
sequential USD attack has the following form

NM =18, (12)

Eerrors

where the parameter S is given by

D 1 v 3
S = 5 +p%ce (5 —p) + Z qémM"”" (1 _psucc)p;?wc |:(§ —P> + (M_m_ 1)(1 _psucc) .
M,

min <SM<M

(13)

4.2. Double click rate

The double click rate at Bob’s side, that we shall denote as D., is typically defined as D, =
Np,./N, where Np_ refers to the average total number of double clicks obtained by Bob, and
N is again the total number of signal states sent by Alice. Np, is given by Np,_ = (N/M)NJID‘/[C7
with NV fj‘{ denoting the average total number of double clicks per block sent by Eve at Bob’s
side. The D, can be written as
D, = %Ng{ . (14)
In order to obtain an expression for N g{ , we can again distinguish the same different cases
included in Fig. 3. Double clicks can only occur when the previous signal of a coherent state
is a vacuum state or when the previous signal of a vacuum state is a coherent state. The
probability to obtain a double click in each of these two scenarios, that we shall denote as d,
is given by

d=[1—exp(-E)2 (15)
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Otherwise, the probability to have a double click is always zero. The analysis is then com-
pletely equivalent to the one included in Sec. 4.1, one only needs to substitute the parameter
t/2 by d. We obtain, therefore, that the average total number of double clicks per block sent
by Eve in a sequential USD attack can be written as

NP = 2dS, (16)

with S given by Eq. (13).

4.3. FEwvaluation

We have seen above that a sequential USD attack can be parameterized by the block size M,
the minimum number M,,;, of consecutive successful results within a block that Eve needs
to obtain in order to send Bob a new train of coherent states, the mean photon-number pg of
these coherent states sent by Eve, and the value of the probability g, i.e., the probability that
Eve actually decides to send M,,;, coherent states in a block instead of only vacuum states.

Fig. 5 shows a graphical representation of the gain versus the QBER in this attack for
different values of the maximum tolerable double click rate at Bob’s side. It states that no key
distillation protocol can provide a secret key from the correlations established by the users
above the curves, i.e., the secret key rate in that region is zero. In this example we consider
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M=11. ' /
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Fig. 5. Gain (G) versus QBER (Q) in a sequential USD attack for different values of the maximum
tolerable double click rate at Bob’s side: D, < 108 (solid), D < 10710 (dashed), and D, < 10712
(dotted). The mean photon number of Alice’s signal states is po = 0.16. The triangle represents
experimental data from Ref. [40].

that the mean photon number of Alice’s signal states is given by p, = 0.16. Moreover, we
fix the value of My, as My = |M/2 4 1| and, for each given values of the parameters
M, q € ]0,1], and the maximum tolerable double click rate obtained by Bob, we perform a
numerical optimization to find the optimal mean photon number 114 for each case, i.e., the one
that provides a lower QBER for a given value of the gain. Fig. 5 also includes experimental
data from Ref. [40]. According to these results we find that, if Alice and Bob do not reject
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a double click rate as low as 1078, the DPS QKD experiment reported in Ref. [40] would be
insecure against a sequential USD attack. More precisely, our analysis suggest that in this
kind of QKD protocols is not enough for Alice and Bob to include the effect of the double
clicks obtained by Bob in the QBER [59], but it might be very useful for the legitimate users
to monitor also the double click rate to guarantee security against a sequential attack. The
authors of Ref. [40] already noticed in Ref. [41] that their experiment is not covered by the
existing initial security analysis provided in Ref. [39]. Our result is strong as it also shows that
when the double click rate at Bob’s side is above 108 no improved classical communication
protocol or improved security analysis might allow the data of Ref. [40] to be turned into
secret key.

Fig. 6 shows a graphical representation for the case where Alice and Bob do not monitor
separately the double click rate and Eve can optimize the mean photon number pg for each
given values of M, M,,;, = | M/2+ 1], and the parameter ¢, without any restriction on the
maximum tolerable double click rate at Bob’s side.
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Fig. 6. Gain (G) versus QBER (Q) in a sequential USD attack. The solid line corresponds to a
maximum tolerable double click rate at Bob’s side of D, < 10~8. The dashed line represents the
case where Alice and Bob do not monitor separately the double click rate obtained by Bob. The
mean photon number of Alice’s signal states is po = 0.16. The triangle represents experimental
data from Ref. [40].

A similar representation is plotted in Fig. 7, but now for the case u, = 0.2 and for different
values of the maximum double click rate at Bob’s side. In this figure we also include data
from a recent experiment reported in Ref. [41], where the QBER was reduced to a value of
only 3.4%. The scenario where Alice and Bob do not monitor separately the double click rate
obtained by Bob is illustrated in Fig. 8. In both cases, our results are consistent with the
possibility to create secret keys.

According to the figures presented in this section, whenever Eve tries to increase the gain of
this attack by reducing, for instance, the size M of her blocks, she also increases the resulting
QBER obtained by Bob. The maximum value of the gain that Eve can achieve, however, is
actually limited by the probability psyce = 1—exp (—2p4) of obtaining a successful result when
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Fig. 7. Gain (G) versus QBER (Q) in a sequential USD attack for different values of the maximum
tolerable double click rate at Bob’s side: D, < 10710 (solid), D. < 10712 (dashed), and D. <
10~14 (dotted). The mean photon number of Alice’s signal states is o = 0.2. The triangle
represents experimental data from Ref. [41].
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Fig. 8. Gain (G) versus QBER (Q) in a sequential USD attack. The solid line corresponds to a
maximum tolerable double click rate at Bob’s side of D. < 10719, The dashed line represents the
case where Alice and Bob do not monitor separately the double click rate obtained by Bob. The
mean photon number of Alice’s signal states is puo = 0.2. The triangle represents experimental

data from Ref. [41].
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distinguishing unambiguously the states | £ a). Since, by definition, | M/2+1] < My < M,
the minimum value of a valid block size M is given by M = 3. This means, in particular,
that in order to maximize the gain of a sequential USD attack the best choice for Eve is to
select M = 3 and M,,;, = 2. Moreover, we can assume that Eve always sends to Bob M,,;,
coherent states |3e?1),[Be2),. .., |BeMmin) when she obtains M,,;, successful results (i.e.,
g = 1), and that these coherent states have a really high mean photon number such as she
increases Bob’s probability of obtaining a click (i.e., ug > 1 and, therefore, s = 1, t ~ 1, and
d =~ 1). Using these values in Eq. (1) and Eq. (5) we obtain that the maximum value of the
gain in this attack is given by

1
Gmax ~ 5(6 - ZpSU«CC - pgucc)pgucc' (17)

In this case the QBER, and the double click rate at Bob’s side are, respectively, given by
Q ~ (2 — Psuce — piucc)/(6 - 2psucc - qucc) and Dc ~ 2(2 — Psuce — piucc)piucc/g'

On the contrary, the minimum value of the gain occurs when Eve treats the total number of
signals NV sent by Alice as a single block, i.e., M = N, and she further imposes M,,,;, = M —1,
q =0, and s ~ 1. In this case, the minimum gain is given by pY ., and the QBER and
double click rate at Bob’s side are both zero. This scenario corresponds to the situation
where Eve only sends N coherent states |3e1), |3e?2), ... |3e?*~) to Bob when she succeeds
discriminating without error all the signal states sent by Alice.

As mentioned previously in e.g. Eq.(9), the gain G of a sequential attack is directly related
with a transmission distance for a given QKD scheme. Therefore, the figures presented in
this section could as well be straightforwardly rescaled according to Eq.(9) to represent the
maximal distance achievable by the QKD protocol as a function of the QBER for given values
of the parameters 74et, v, and L. For instance, if we use the experimental data provided in
Ref. [40] (nget = 0.009, v = 0.2 dB/km, and L = 2.5 dB) we find that the values log;((G) = =5
and log;((G) = —9 in Fig. 5 correspond to a transmission distance of I ~ 95 km and | ~ 295
km, respectively.

Finally, let us mention that, instead of using an USD measurement on each signal state
sent by Alice, Eve could as well employ the same detection device like Bob. This sequential
attack was very briefly introduced in Ref. [39]. In this case, a successful result is associated
with obtaining a click in Eve’s apparatus, while a failure corresponds to the absence of a click.
The train of coherent states [3e1), |3e?2), ... |B3e?") that Eve sends to Bob is now selected
such as the relative phase between consecutive signals agree with Eve’s measurement results.
If we assume that Eve does not analyze each block of data independently, but she also includes
a proper relative phase between blocks when the last signal of a previous block and the first
signal of the following one are coherent states, then the results included in this section also
apply to that case. Otherwise, the QBER in such kind of attack will be always higher than
in a sequential USD attack. However, since Alice’s signal states are typically coherent pulses
with small average photon number (i.e., pu, < 1), Eve observes click events only occasionally.
In particular, when she uses the same detection apparatus like Bob then the probability of
obtaining a successful result will be always smaller than the one of a sequential USD attack.
More precisely, this success probability has now the form pgyee = 1 —exp (—piq), and is smaller
than the success probability given by Eq. (10). Fig. 9 shows a graphical representation of the
gain versus the QBER for a sequential USD attack together with a sequential attack where
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Fig. 9. Gain (G) versus QBER (Q) for a sequential USD attack (solid) and for a sequential attack
where Eve employs the same detection device like Bob (dashed). The maximum tolerable double
click rate at Bob’s side is D, < 10~8 and the mean photon number of Alice’s signal states is
ta = 0.16. The triangle represents experimental data from Ref. [40].

Eve employs the same detection apparatus like Bob. In this example the maximum tolerable
double click rate at Bob’s side is given by D, < 1078 and the mean photon number of Alice’s
signal states is uo, = 0.16. Moreover, we fix again the value of M,,;,, as M = | M/241] and,
for each given values of the parameters M and ¢ € [0, 1], we perform a numerical optimization
to find the optimal pp for each case like before. From the results included in Fig. 9 we see
that a sequential USD attack can provide tighter upper bounds on the performance of DPS
QKD schemes than a sequential attack with Eve employing the same detection device like
Bob.

5. Sequential minimum error discrimination attack

In this eavesdropping strategy Eve performs first a filtering operation on each signal state sent
by Alice with the intention to make them, with some finite probability, more “distinguishable”.
Afterwards, Eve measures out each successful filtered state with a measurement device that
gives her the minimum value of the error probability when identifying the states [52, 53]. Her
goal is to try to determine whether the filtered states originate from |a) or from | — «).
The coherent states sent by Alice can be expressed in some orthogonal basis {|0), |1)} as
follows
| + &) = al0) £ b|1), (18)

where we assume, without of generality, that the coefficients a and b are given by

0 = \2[+ew (-2 (19)

b= a1 e (-2, (20)
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(21)

that is, they satisfy, a € R, b € R, a2 + b2 = 1, and a > b when p, # 0.
We shall consider that Eve uses a filtering operation defined by the following two Kraus
operators [60]:

Asuee(A) = A0){0] + [1)(1], (22)
Aran(A) = V1=220)(0], (23)

where the coefficient A satisfies A € [b/a,1]. This parameter allows Eve to increase the
probability of obtaining a successful result and, therefore, she can increase the gain of her
attack. On the other hand, Eve can introduce also more errors at Bob’s side.

Suppose that the filtering operation receives as input the state | & o). The probability of
getting a successful result can be calculated as psyce = pliee = Tr[| £ @) (Fa| Al,..(N) Aguce(N)].
This quantity is given by

Phee = A2NE + b2, (24)

If the filtering operation succeeded, the resulting normalized filtered state, that we shall denote
as | £ @suce), can be calculated as | + asyce) = (1/1/P2yee) Asuce(A)] £ ). We obtain

| £ Q) = (Aal0) £ b1)). (25)

1
Vv pg\ucc
As already mentioned previously, in order to decide which signal state was used by Alice,
we consider that Eve follows the approach of MED. That is, she employs a measurement
strategy that guesses the identity of the signals | & asyce) with the minimum probability of
making an error. For the case of two pure states with equal a priori probabilities, like it is the

case that we have here, the optimal value of the error probability, that we shall denote as pe-,
is given by peqr = [1 — /1 — [{(—suce|@suce) ] /2 [52]. From Eq. (25) we obtain, therefore,

1 (aX —b)?

2a2)2 + b2 (26)

Perr =
The von Neumann measurement which can be used to attain this error probability is given
by the optimum detector states |+) = 1/v/2(|0) +|1)).

Note that the sequential USD attack introduced in Sec. 4 can then be seen as a special case
of this sequential MED attack. When A = b/a, the success probability in a sequential MED
attack is given by p,.. = 2b®> = 1 — exp (=24 ), which coincides with the success probability
given by Eq. (10). Moreover, in this case the error probability pe,, is zero.

Next, we obtain an expression for the QBER introduced by Eve with this attack, and also
for the resulting double click rate at Bob’s side.

5.1. Quantum bit error rate

From Eq. (11) we learn that in order to obtain an expression for the QBER in a sequential
attack we only need to find the average total number of errors NM per block of length M.

ETTOoTSs
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Now, however, the analysis is slightly different from that considered in Sec. 4.1 since two
consecutive coherent states in a block can also produce errors. This arises from the fact that
sometimes Eve does not identify correctly the signal states | + «) sent by Alice. In particular,
whenever the previous signal of a coherent state inside a block is also a coherent state, then an
error can occur with probability [perr(1—perr ) +Perr (L —Derr )]s, where pe,.. is given by Eq. (26)
and s is given by Eq. (3). This is the probability that only one of the two coherent states is
wrongly identify by Eve and Bob detects the error by means of a click in his apparatus. We
shall denote this error probability as pe,.. Using Eq. (26), we can write pe,, as

S N
o =3 (272 * 27

If the previous signal of a coherent state is a vacuum state or if the previous signal of a vacuum
state is a coherent state then the error probability is the same as in Sec. 4.1, i.e., it has the
form ¢/2 with ¢ given by Eq. (4).

We can now address the different cases contained in Fig. 3 like in the previous sections and
obtain an expression for N as a function of these two error probabilities. The analysis

is included in Appendix B. We find that N

rrors CaIl be written as

pt . _ . .
Nc{\r/’lrors = 5 +p%ccuM + Z q&nM?m" (1 _psuCC)p;ch Um + (M_m_ 1)(1 _psucc)wm:| ’

My in<m<M

(28)
where the parameters s, U, and w,,, are given by
- 1—2p)t -
upm = % + (M -1 +p)per7"a
_ 3—2p)t .
Um = % + (2m +p— 2)perr’7
Wy, = t+ (m—1)Perr, (29)

and with p given by Eq. (2).

5.2. Double click rate

Like in the case of a sequential USD attack, also in this attack double clicks can happen only
when the previous signal of a coherent state is a vacuum state or when the previous signal
of a vacuum state is a coherent state. The probability to obtain a double click in each of
these two scenarios does not depend on the value of the phase ; of the coherent state |3e®%)
involved, but it depends only on the mean photon-number pg. This means that the analysis
included in Sec. 4.2 also applies here, and the average total number of double clicks per block
sent by Eve in a sequential MED attack is also given by Eq. (16).

5.3. Evaluation

In Fig. 10 we plot the gain versus the QBER in a sequential MED attack for a fix value
of the maximum tolerable double click rate at Bob’s side (D. < 10~%) and for different
values of the parameter \. As before, it states that the secret key rate above the curves is
zero. Like in Sec. 4.3, we fix the value of My, as My = |M/2 + 1], and we perform a
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numerical optimization to find the optimal mean photon number g for each given values of
the parameters M, ¢, and A\. Moreover, in this example, we consider that the mean photon
number of Alice’s signal states is given by p, = 0.16 and we also include the experimental
data obtained in Ref. [40].

0.3 ‘

s S
0.25¢ 7\’5 | I;’/"
0.2+ ’//‘};”/

7\'_4 _______________ -'r"
Q 0.15¢ »\»,»,/
0.1f /7
}Eg,,, ,,,,, B "?/
0.05t 7\‘1: kla'///
e T U
Log(G)

Fig. 10. Gain (G) versus QBER (Q) in a sequential MED attack for a fix value of the maximum
tolerable double click rate at Bob’s side (D. < 10~8), and for different values of the parameter
A: A1 = b/a (solid), A2 = b/a + (1 — b/a)/5 (dashed), A3 = b/a + 2(1 — b/a)/5 (dotted), Ay =
b/a + 3(1 — b/a)/5 (dashed-dotted), As = b/a + 4(1 — b/a)/5 (thick solid), and A¢ = 1 (thick
dashed). The mean photon number of Alice’s signal states is po = 0.16. The triangle represents
experimental data from Ref. [40].

A similar graphical representation is included in Fig. 11, but now for the case where Alice
and Bob do not monitor separately the double click rate and Eve can optimize the mean
photon number pg for each given values of M, My, = |M/2+ 1], ¢, and the parameter A,
without any restriction on the maximum tolerable double click rate at Bob’s side.

While in a sequential USD attack the maximum value of the gain is given by Eq. (17),
in a sequential MED attack Eve can always increase the value of the gain at the expense of
also increasing the resulting QBER at Bob’s side, just by incrementing the parameter A. In
particular, in the limit case of A = 1, i.e., the filtering operation is just the identity operation,
we have that p = 1 and p)-L = 1. In this situation, the gain, the QBER, and the double
clock rate at Bob’s side are, respectively, given by G = 1 —exp(—pug), Q = exp(—4uq)/2, and
D. = 0. That is, by selecting a proper mean photon number pg Eve can always access any
high value of the gain.

6. Conclusion

In this paper we have quantitatively analyzed limitations on the performance of differential-
phase-shift (DPS) quantum key distribution (QKD) protocols based on weak coherent pulses.
For that, we have investigated simple eavesdropping strategies based on sequential attacks:
Eve measures out every coherent state emitted by Alice and prepares new signal states,
depending on the results obtained, that are given to Bob. Whenever Eve obtains a predeter-
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Fig. 11. Gain (G) versus QBER (Q) in a sequential MED attack for the case where Alice and Bob
do not monitor separately the double click rate obtained by Bob, and for different values of the
parameter X\: A\1 = b/a (solid), A2 =b/a+ (1 —b/a)/5 (dashed), A3 = b/a+2(1 —b/a)/5 (dotted),
A =b/a+3(1—b/a)/5 (dashed-dotted), \s = b/a +4(1 —b/a)/5 (thick solid), and A\¢ = 1 (thick
dashed). The mean photon number of Alice’s signal states is po = 0.16. The triangle represents
experimental data from Ref. [40].

mined number of consecutive successful measurement outcomes, then she prepares a train of
new coherent pulses that is forwarded to Bob. Otherwise, Eve sends vacuum signals to Bob
to avoid errors. Sequential attacks transform the original quantum channel between Alice and
Bob into an entanglement breaking channel and, therefore, they do not allow the distribution
of quantum correlations needed to establish a secret key.

Specifically, we have considered two possible sequential attacks. In the first one, Eve re-
alizes unambiguous state discrimination (USD) of Alice’s signal states. When Eve identifies
unambiguously a signal state sent by Alice, then she considers this result as successful. Oth-
erwise, she considers it a failure. In the second attack, Eve performs first a filtering operation
on each signal emitted by Alice and, afterwards, she measures out each successful filtered
state following the approach of minimum error discrimination, i.e., she guesses the identity of
the filtered state with the minimum probability of making an error. As a result, we obtained
upper bounds on the maximal distance achievable by differential-phase-shift quantum key
distribution schemes as a function of the error rate in the sifted key, the double click rate at
Bob’s side, and the mean photon-number of the signals sent by Alice. It states that no key
distillation protocol can provide a secret key from the correlations established by the users.

Instead of using an USD measurement on each signal state sent by Alice, like in the first
eavesdropping strategy that we considered, Eve could as well employ the same detection device
like Bob [39]. A successful result is now associated with obtaining a click in Eve’s apparatus,
while a failure corresponds to the absence of a click. However, since Alice’s signal states are
typically coherent pulses with small average photon number, the probability of obtaining a
successful result in this scenario is always smaller than the one of a sequential USD attack.
Therefore, a sequential USD attack can provide tighter upper bounds on the performance of
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DPS QKD protocols than those derived from a sequential attack where Eve uses the same
measurement apparatus like Bob.

While in the standard Bennett-Brassard 1984 (BB84) QKD protocol with phase random-
ized weak coherent state sources it generally suffices that the legitimate users monitor the
error rate and gain of the scheme to guarantee unconditional security, our analysis suggest
that, in DPS QKD, it might be very useful for the legitimate users to monitor also the double
click rate or the correlations of detection probabilities between adjacent time-slots ® This fact
might increase Alice and Bob’s ability in defeating sequential attacks. Therefore, it might
be advantageous for a security proof of DPS QKD to include also Alice and Bob’s knowl-
edge of double click rates and correlations of detection events. Such a security proof would
be rather different from existing security proofs of the standard BB84 protocol which often
involves random permutation and random sampling arguments and it is beyond the scope of
this paper.
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Appendix A: Probability p

In this Appendix we obtain an expression for the probability p that the last signal in a given
block is a coherent state |3e?s).

Let p,, be the probability of Eve sending to Bob m consecutive coherent states within a
block of length M such that the last signal of the block is a coherent state. This probability
is given by

0 if m < Mpin

(I(]- - psucc)p%?cm if m= Mmin (A 1)
" (1 - psucc)pgwc if Mopin <m< M ’

.. if m= M.

For each given block of signals that Eve sends to Bob we have, therefore, that p can be written
as

M
p= Z Pm = [psucc + (]- - psucc)q}pi\{lggn' (AQ)
m=Mpin
Similarly, 1 — p represents the probability that the last signal in a block is a vacuum state.

Appendix B: NY in a sequential minimum error discrimination attack

In this Appendix we obtain an expression for the average total number of errors NM  per
block of length M sent by Eve in a sequential MED attack.

We shall distinguish the different cases included in Fig. 3, i.e., as a function of the number
m of coherent states inside a block and their position in the block.

Let us begin with Case A in Fig. 3. According to Sec. 5.1, whenever the last signal state of
the previous block is a coherent state then the average total number of errors obtained by Bob
is given by Mpe,. Otherwise, it is given by (M — 1)perr + t/2. If the first m € (Myin, M)
signal states of the block are coherent states (Case B in Fig. 3) and the last state of the
previous block is also a coherent state, then the average total number of errors obtained by
Bob is given mpe,, + t/2. Otherwise, the average total number of errors is (m — 1)perr + t.
Similarly, if Eve sends to Bob a block containing first M — m vacuum states followed by
m € (Mpn, M) coherent states (Case C in Fig. 3) and the last signal of the previous block is
a coherent state, then the average total number of errors is given by (m—1)perr+t. Otherwise,
the average total number of errors has the form (m — 1)pe, + t/2. Eve can also send to Bob
a block of signals where, at least, the first and the last signals of the block are vacuum states
(Case D in Fig. 3). Then, if the last state of the previous block is a coherent state, the average
total number of errors obtained by Bob is given by (m — 1)pe, + 3t/2. Otherwise, the average
total number of errors is (m — 1)perr + t.

The results for the cases E, F, and G, in Fig. 3 can be obtained directly from the cases B,
C, and D, respectively. One only needs to multiply the a priori probabilities to be in each of
these last three scenarios by the factor q.



688  Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states

Finally, whenever the block that Eve sends to Bob contains only vacuum states (Case H
in Fig. 3) and the last signal of the previous block is a coherent state, then the average total
number of errors is given by ¢/2. Otherwise, the average total number of clicks is zero.

After including all the a priori probabilities to be in each of the different cases discussed
above, we obtain that the average total number of errors per block of length M in a sequential
MED attack is given by Eq. (28).



