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We study the separability of bipartite quantum systems in arbitrary dimensions using
the Bloch representation of their density matrix. This approach enables us to find an
alternative characterization of the separability problem, from which we derive a nec-
essary condition and sufficient conditions for separability. For a certain class of states
the necessary condition and a sufficient condition turn out to be equivalent, therefore
yielding a necessary and sufficient condition. The proofs of the sufficient conditions are
constructive, thus providing decompositions in pure product states for the states that
satisfy them. We provide examples that show the ability of these conditions to detect
entanglement. In particular, the necessary condition is proved to be strong enough to
detect bound entangled states.
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1 Introduction

Let ρ denote the density operator, acting on the finite-dimensional Hilbert space H = HA ⊗
HB, which describes the state of two quantum systems A and B. The state is said to be
separable if ρ can be written as a convex combination of product vectors [1], i.e.

ρ =
∑

i

pi|φi, ϕi〉〈φi, ϕi| =
∑

i

pi ρ
A
i ⊗ ρB

i , (1)

where 0 ≤ pi ≤ 1,
∑

i pi = 1, and |φi, ϕi〉 = |φi〉A ⊗ |ϕi〉B (|φ〉A ∈ HA and |ϕ〉B ∈ HB).
If ρ cannot be written as in Eq. (1), then the state is said to be entangled. Entanglement

is responsible for many of the striking features of quantum theory and, therefore, it has been
an object of special attention. Since the early years of quantum mechanics, it has been
present in many of the debates regarding the foundations and implications of the theory
(see e.g. [2]), but in the last ten years this interest has greatly increased, specially from a
practical point of view, because entanglement is an essential ingredient in the applications
of quantum information theory, such as quantum cryptography, dense coding, teleportation
and quantum computation [3, 4]. As a consequence, much effort has been devoted to the so-
called separability problem, which consists in finding mathematical conditions which provide
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a practical way to check whether a given state is entangled or not, since it is in general very
hard to verify if a decomposition according to the definition of separability (1) exists. Up to
now, a conclusive answer to the separability question can only be given when dimHA = 2
and dimHB = 2 or dimHB = 3, in which case the Peres-Horodecki criterion [5, 6] establishes
that ρ is separable if and only if its partial transpose (i.e. transpose with respect to one of the
subsystems) is positive. For higher dimensions this is just a necessary condition [6], since there
exist entangled states with positive partial transpose (PPT) which are bound entangled (i.e.
their entanglement cannot be distilled to the singlet form). Therefore the separability problem
remains open. Much subsequent work has been devoted to finding necessary conditions for
separability (see for example [7, 8, 9, 10, 11, 12, 13]), given that they can assure the presence
of entanglement in experiments and that, in principle, they might complement the strong
Peres-Horodecki criterion by detecting PPT entanglement. Nevertheless, there also exist a
great variety of sufficient conditions (such as [14, 15]), non-operational necessary and sufficient
conditions (see for instance [6, 16, 17]), or necessary and sufficient conditions which apply to
restricted sets such as low-rank density matrices [18]. Furthermore, given a generic separable
density matrix it is not known how to decompose it according to Eq. (1) save for the (2× 2)-
dimensional case [19, 20]. The (approximate) separability problem is NP-hard [21], but several
authors have devised nontrivial algorithms for it (see [22] for a survey).

In this paper we derive a necessary condition and three sufficient conditions for the sep-
arability of bipartite quantum systems of arbitrary dimensions. The proofs of the latter
conditions are constructive, so they provide decompositions in product states as in Eq. (1) for
the separable states that fulfill them. Our results are obtained using the Bloch representation
of density matrices, which has been used in previous works to characterize the separability of a
certain class of bipartite qubit states [23] and to study the separability of bipartite states near
the maximally mixed one [24, 25]. The approach presented here is different and more general.
We will also provide examples that show the usefulness of the conditions derived here. Re-
markably, the necessary condition is strong enough to detect PPT entangled states. Finally,
we will compare this condition to the so-called computable cross-norm [9] or realignment [10]
(CCNR) criterion, which exhibits a powerful PPT entanglement detection capability, showing
that for a certain class of states our condition is stronger.

2 Bloch Representation

N -level quantum states are described by density operators, i.e. unit trace Hermitian positive
semidefinite linear operators, which act on the Hilbert space H � C

N . The Hermitian oper-
ators acting on H constitute themselves a Hilbert space, the so-called Hilbert-Schmidt space
HS(H), with inner product 〈ρ, τ〉HS = Tr(ρ†τ). Accordingly, the density operators can be
expanded by any basis of this space. In particular, we can choose to expand ρ in terms of the
identity operator IN and the traceless Hermitian generators of SU(N) λi (i = 1, 2, . . . , N2−1),

ρ =
1
N

(IN + riλi), (2)

where, as we shall do throughout this paper, we adhere to the convention of summation over
repeated indices. The generators of SU(N) satisfy the orthogonality relation

〈λi, λj〉HS = Tr(λiλj) = 2δij , (3)



626 Separability criteria based on the Bloch representation of density matrices

and they are characterized by the structure constants of the corresponding Lie algebra, fijk

and gijk, which are, respectively, completely antisymmetric and completely symmetric,

λiλj =
2
N
δijIN + ifijkλk + gijkλk. (4)

The generators can be easily constructed from any orthonormal basis {|a〉}N−1
a=0 in H [26]. Let

l, j, k be indices such that 0 ≤ l ≤ N −2 and 0 ≤ j < k ≤ N −1. Then, when i = 1, . . . , N−1

λi = wl ≡
√

2
(l + 1)(l + 2)

(
l∑

a=0

|a〉〈a| − (l + 1)|l+ 1〉〈l+ 1|
)
, (5)

while when i = N, . . . , (N + 2)(N − 1)/2

λi = ujk ≡ |j〉〈k| + |k〉〈j|, (6)

and when i = N(N + 1)/2, . . . , N2 − 1

λi = vjk ≡ −i(|j〉〈k| − |k〉〈j|). (7)

The orthogonality relation (3) implies that the coefficients in (2) are given by

ri =
N

2
Tr(ρλi). (8)

Notice that the coefficient of IN is fixed due to the unit trace condition. The vector r =
(r1r2 · · · rN2−1)t ∈ RN2−1, which completely characterizes the density operator, is called
Bloch vector or coherence vector. The representation (2) was introduced by Bloch [27] in the
N = 2 case and generalized to arbitrary dimensions in [26]. It has an interesting appeal from
the experimentalist point of view, since in this way it becomes clear how the density operator
can be constructed from the expectation values of the operators λi,

〈λi〉 = Tr(ρλi) =
2
N
ri. (9)

As we have seen, every density operator admits a representation as in Eq. (2); however,
the converse is not true. A matrix of the form (2) is of unit trace and Hermitian, but it might
not be positive semidefinite, so to guarantee this property further restrictions must be added
to the coherence vector. The set of all the Bloch vectors that constitute a density operator is
known as the Bloch-vector space B(RN2−1). It is widely known that in the case N = 2 this
space equals the unit ball in R

3 and pure states are represented by vectors on the unit sphere.
The problem of determining B(RN2−1) when N ≥ 3 is still open and a subject of current
research (see for example [28] and references therein). However, many of its properties are
known. For instance, using Eq. (4), one finds that for pure states (ρ2 = ρ) it must hold

||r||2 =

√
N(N − 1)

2
, rirjgijk = (N − 2)rk, (10)

where || · ||2 is the Euclidean norm on RN2−1.
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In the case of mixed states, the conditions that the coherence vector must satisfy in order
to represent a density operator have been recently provided in [29, 30]. Regrettably, their
mathematical expression is rather cumbersome. It is also known [31, 32] that B(RN2−1) is a

subset of the ball DR(RN2−1) of radius R =
√

N(N−1)
2 , which is the minimum ball containing

it, and that the ball Dr(RN2−1) of radius r =
√

N
2(N−1) is included in B(RN2−1). That is,

Dr(RN2−1) ⊆ B(RN2−1) ⊆ DR(RN2−1). (11)

In the case of bipartite quantum systems of dimensions M×N (H � CM ⊗CN ) composed
of subsystems A and B, we can analogously represent the density operators asa

ρ =
1

MN
(IM ⊗ IN + riλi ⊗ IN + sjIM ⊗ λ̃j + tijλi ⊗ λ̃j), (12)

where λi (λ̃j) are the generators of SU(M) (SU(N)). Notice that r ∈ RM2−1 and s ∈ RN2−1

are the coherence vectors of the subsystems, so that they can be determined locally,

ρA = TrBρ =
1
M

(IM + riλi), ρB = TrAρ =
1
N

(IN + siλ̃i). (13)

The coefficients tij , responsible for the possible correlations, form the real matrix T ∈
R(M2−1)×(N2−1), and, as before, they can be easily obtained by

tij =
MN

4
Tr(ρλi ⊗ λ̃j) =

MN

4
〈λi ⊗ λ̃j〉. (14)

3 Separability Conditions from the Bloch Representation

The Bloch representation of bipartite quantum systems (12) allows us to find a simple char-
acterization of separability for pure states.

Proposition 1: A pure bipartite quantum state with Bloch representation (12) is separable
if and only if

T = r st (15)

holds.

Proof: Simply notice that Eq. (12) can be rewritten as

ρ = ρA ⊗ ρB +
1

MN
[(tij − risj)λi ⊗ λ̃j ]. (16)

Since the λi ⊗ λ̃j are linearly independent, (tij − risj)λi ⊗ λ̃j = 0 if and only if tij − risj = 0
∀ i, j. �

Remark 1: In the case of mixed states, Eq. (15) provides a sufficient condition for separa-
bility, since then ρ = ρA ⊗ ρB.

Attending to Proposition 1, we can characterize separability from the Bloch representation
point of view in the following terms:
aThis representation is sometimes referred in the literature as Fano form (see e. g. [33]), since this author was
the first to consider it [34].
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A bipartite quantum state with Bloch representation (12) is separable if and only if there
exist vectors ui ∈ RM2−1 and vi ∈ RN2−1 satisfying Eq. (10) and weights pi satisfying
0 ≤ pi ≤ 1,

∑
i pi = 1 such that

T = piui vt
i, r = piui, s = pivi . (17)

This allows us to derive the two theorems below, which provide, respectively, a necessary
condition and a sufficient condition for separability. We will make use of the Ky Fan norm
|| · ||KF , which is commonly used in Matrix Analysis (the reader who is not familiarized with
this issue can consult for example [35]). We recall that the singular value decomposition
theorem ensures that every matrix A ∈ Cm×n admits a factorization of the form A = UΣV †

such that Σ = (σij) ∈ R
m×n
+ with σij = 0 whenever i �= j, and U ∈ Cm×m, V ∈ Cn×n

are unitary matrices. The Ky Fan matrix norm is defined as the sum of the singular values
σi ≡ σii,

||A||KF =
min{m,n}∑

i=1

σi = Tr
√
A†A. (18)

This norm has previously been used in the context of the separability problem, though in a
different way, in the CCNR criterion.

Theorem 1: If a bipartite state of M × N dimensions with Bloch representation (12) is
separable, then

||T ||KF ≤
√
MN(M − 1)(N − 1)

4
(19)

must hold.

Proof: Since T has to admit a decomposition of the form (17) with

||ui||2 =

√
M(M − 1)

2
, ||vi||2 =

√
N(N − 1)

2
, (20)

we must have

||T ||KF ≤ pi||ui vt
i||KF = pi

√
MN(M − 1)(N − 1)

4
||ni ñt

i||KF , (21)

where ni, ñi are unit vectors. Thus, ||ni ñt
i||KF = 1 ∀i and the result follows. �

As said before, T contains all the information about the correlations, so that ||T ||KF

measures in a certain sense the size of these correlations. In this way, Theorem 1 has a clear
physical meaning: there is an upper bound to the correlations contained in a separable state.
||T ||KF is a consistent measure of the correlations since it is left invariant local changes of
basis, i.e. it is invariant under local unitary transformations of the density operator. This
fact was mentioned in [23] when M = N = 2; in the next proposition we give a general proof.

Proposition 2: Let UA (UB) denote a unitary transformation acting on subsystem A (B).
If

ρ′ =
(
UA ⊗ UB

)
ρ
(
U †

A ⊗ U †
B

)
, (22)
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then ||T ′||KF = ||T ||KF .

Proof: Let ρA and ρ′A denote density operators acting onHA � C
M such that ρ′A = UAρAU

†
A.

Since || · ||HS is unitarily invariant we have that ||ρA||HS = ||ρ′A||HS . But using the orthogo-
nality relation (3) and Eq. (8) we find that

||ρA||2HS =
1
M

(
1 +

2
M

||r||22
)
, (23)

hence ||r||2 = ||r′||2. This implies that the coherence vectors of different realizations of the
same state are related by a rotation, i.e. there exists a rotation OA acting on RM2−1 such
that r′ = OAr. This means that

UAriλiU
†
A = (OAr)i λi. (24)

Now, when a bipartite state ρ is subjected to a product unitary transformation (22) there
will be rotations OA acting on RM2−1 and OB acting on RN2−1 such that

r′ = OAr, s′ = OBs, T ′ = OATO
†
B. (25)

Thus, the result follows taking into account that || · ||KF is unitarily invariant. �

The characterization of the separability problem given in Eq. (17) suggests the possibil-
ity of obtaining a sufficient condition for separability using a constructive proof. One such
condition is stated in the following proposition.

Proposition 3: If a bipartite state of M × N dimensions with Bloch representation (12)
satisfies √

2(M − 1)
M

||r||2 +

√
2(N − 1)

N
||s||2 +

√
4(M − 1)(N − 1)

MN
||T ||KF ≤ 1, (26)

then it is a separable state.

Proof: Let T have the singular value decomposition T = σiui vt
i, with ||ui||2 = ||vi||2 = 1.

If we define

ũi =

√
M

2(M − 1)
ui, ṽi =

√
N

2(N − 1)
vi, (27)

we can rewrite

T =

√
4(M − 1)(N − 1)

MN
σiũi ṽ

t
i. (28)

Then, if condition (26) holds, we can decompose ρ as the following convex combination of the
density matrices 	i, 	′i, ρr, ρs and 1

MN IMN ,

ρ =

√
4(M − 1)(N − 1)

MN

1
2
σi(	i + 	′i) +

√
2(M − 1)

M
||r||2ρr +

√
2(N − 1)

N
||s||2ρs

+

(
1 −

√
2(M − 1)

M
||r||2 −

√
2(N − 1)

N
||s||2 −

√
4(M − 1)(N − 1)

MN
||T ||KF

)
1

MN
IMN , (29)
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where 	i, 	′i, ρr and ρs are such that

ri = ũi, si = ṽi, Ti = ũi ṽ
t
i,

r′i = −ũi, s′i = −ṽi, T ′
i = ũi ṽ

t
i,

rr =

√
M

2(M − 1)
r

||r||2 , sr = 0, Tr = 0,

rs = 0, ss =

√
N

2(N − 1)
s

||s||2 , Ts = 0.

Notice that by virtue of Eq. (11) all the above coherence vectors belong to the corresponding
Bloch spaces and, therefore, the reductions of 	i, 	′i, ρr and ρs constitute density matrices.
Moreover, all these matrices satisfy condition (15), hence they are equal to the tensor product
of their reductions. Therefore, they constitute density matrices and they are separable, and
so must be ρ. �

One could ask whether Proposition 3 can be strengthened using a condition more involved
than Eq. (26). As we shall see in the following theorem, the answer is positive.

Theorem 2: Let

c = max

{√
2(M − 1)

M
||r||2,

√
2(N − 1)

N
||s||2

}
. (30)

If a bipartite state of M × N dimensions with Bloch representation (12) such that c �= 0
satisfies

c+

√
4(M − 1)(N − 1)

MN

∣∣∣∣∣∣∣∣T − r st

c

∣∣∣∣∣∣∣∣
KF

≤ 1, (31)

then it is a separable state.

Proof: On the analogy of the proof of Proposition 3, let T − r st

c have the singular value
decomposition σ′

ixi yt
i, where ||xi||2 = ||yi||2 = 1. If we define

x̃i =

√
M

2(M − 1)
xi, ỹi =

√
N

2(N − 1)
yi, (32)

we can rewrite

T − r st

c
=

√
4(M − 1)(N − 1)

MN
σ′

ix̃i ỹ
t
i. (33)

Now, if condition (31) holds we can decompose ρ in separable states as

ρ =

√
4(M − 1)(N − 1)

MN

1
2
σ′

i(	i + 	′i) + cρrs

+

(
1 − c−

√
4(M − 1)(N − 1)

MN

∣∣∣∣∣∣∣∣T − r st

c

∣∣∣∣∣∣∣∣
KF

)
1

MN
IMN , (34)
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where 	i, 	′i and ρrs are such that

ri = x̃i, si = ỹi, Ti = x̃i ỹ
t
i,

r′i = −x̃i, s′i = −ỹi, T ′
i = x̃i ỹ

t
i,

rrs =
r
c
, srs =

s
c
, Trs =

r st

c2
.

As in the previous proof, and since

r
c
≤
√

M

2(M − 1)
r

||r||2 ,
s
c
≤
√

N

2(N − 1)
s

||s||2 ,

all these coherence vectors belong to the corresponding Bloch spaces, and 	i, 	′i and ρrs satisfy
(15). �

Notice that the use of the triangle inequality in Eq. (31) clearly shows that Theorem
2 is stronger than Proposition 3. Nevertheless, Proposition 3 provides the right way to
understand the limit c → 0 in Theorem 2. The proof of these two results is constructive,
so for the states that fulfill Eqs. (26) and/or (31) they provide a decomposition in separable
states. These states are in general not pure, but they are equal to the tensor product of their
reductions, so to obtain a decomposition in product states as in Eq. (1) simply apply the
spectral decomposition to the reductions of 	i, 	′i, ρr, ρs and/or ρrs.

Remark 2: The conditions of Proposition 3 and Theorem 2 depend only on r, s and T .
However, there can also be obtained sufficient conditions for separability which include more
parameters. For example, one can derive the following sufficient condition, which also depends
on the singular value decomposition of T ,∣∣∣∣∣
∣∣∣∣∣
√

N

2(N − 1)
r− σiui

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
√

M

2(M − 1)
s− σivi

∣∣∣∣∣
∣∣∣∣∣
2

+ ||T ||KF ≤
√

MN

4(M − 1)(N − 1)
, (35)

since in this case ρ admits a decomposition in separable states as in Eq. (29) but with 	′i = 	i,

rr =

√
M

2(M − 1)

r−
√

2(N−1)
N σiui∣∣∣∣∣∣∣∣r −√ 2(N−1)
N σiui

∣∣∣∣∣∣∣∣
2

and ss =

√
N

2(N − 1)

s−
√

2(M−1)
M σivi∣∣∣∣∣∣∣∣s−√ 2(M−1)
M σivi

∣∣∣∣∣∣∣∣
2

.

However, it seems reasonable to expect that condition (35) will be stronger than those of
Proposition 3 and Theorem 2 in few cases.

For a restricted class of states the conditions of Theorem 1 and Proposition 3 take the
same form, thus providing a necessary and sufficient condition which is equivalent to that of
[23]:

Corollary 1: A bipartite state of qubits (M = N = 2) with maximally mixed subsystems
(i.e. r = s = 0) is separable if and only if ||T ||KF ≤ 1.
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4 Efficacy of the New Criteria

4.1 Examples

In what follows we provide examples of the usefulness of the criteria derived in the previous
section to detect entanglement. We start by showing that Theorem 1 is strong enough to
detect bound entanglement.

Example 1: Consider the following 3 × 3 PPT entangled state found in [36]:

ρ =
1
4

(
I9 −

4∑
i=0

|ψi〉〈ψi|
)
, (36)

where |ψ0〉 = |0〉(|0〉 − |1〉)/√2, |ψ1〉 = (|0〉 − |1〉)|2〉/√2, |ψ2〉 = |2〉(|1〉 − |2〉)/√2, |ψ3〉 =
(|1〉 − |2〉)|0〉/√2 and |ψ4〉 = (|0〉 + |1〉 + |2〉)(|0〉 + |1〉 + |2〉)/3. To construct the Bloch
representation of this state we use as generators of SU(3) the Gell-Mann operators, which
are a reordering of those of Eqs. (5)-(7),

λ1 = u01, λ2 = v01, λ3 = w0, λ4 = u02, λ5 = v02, λ6 = u12, λ7 = v12, λ8 = w1. (37)

Then, for the state (36) one readily finds

T = −1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 0
√

27
2

0 0 0 0 0 0 0 0
− 9

4 0 − 9
8 0 0 0 0

√
27
8

1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0
1 0 − 9

4 1 0 1 0 −
√

27
4

0 0 0 0 0 0 0 0
−

√
27
4 0

√
27
8 0 0

√
27
2 0 − 3

8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (38)

so that ||T ||KF � 3.1603, which violates condition (19). Thus, using Theorem 1 we know that
the state is entangled.

The above example proves that there exist cases in which Theorem 1 is stronger than the
PPT criterion. One can see that this is not true in general, not even for the 2 × 2 case.

Example 2: Consider the following bipartite qubit state,

ρ± = p|ψ±〉〈ψ±| + (1 − p)|00〉〈00| , (39)

where p ∈ [0, 1] and

|ψ±〉 =
1√
2

(|01〉 ± |10〉). (40)

The Peres-Horodecki criterion establishes that state (39) is separable iff p = 0 [5]. For its
Bloch representation we use as generators of SU(2) the standard Pauli matrices σx = u01,
σy = v01 and σz = w0, thus finding that

ρ± =
1
4
(I2⊗I2 +(1−p)σz ⊗I2 +(1−p)I2⊗σz ±p σx⊗σx±p σy ⊗σy +(1−2p)σz ⊗σz). (41)
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Therefore, ||T ||KF = 2p+ |1−2p|, which implies that ||T ||KF ≤ 1 if p ≤ 1/2, so entanglement
is detected only if p > 1/2.

Example 3: Werner states [1] in arbitrary dimensions (M = N = D) are those whose density
matrices are invariant under transformations of the form

(
U ⊗ U

)
ρ
(
U † ⊗ U †). They can be

written as
ρW =

1
D3 −D

[(D − φ)ID ⊗ ID + (Dφ− 1)V ], (42)

where −1 ≤ φ ≤ 1 and V is the “flip” or “swap” operator defined by V ϕ⊗ ϕ̃ = ϕ̃⊗ϕ. These
states are separable iff φ ≥ 0 [1]. Using Eq. (14) or inverting Eqs. (5)-(7) we find that

V =
∑
i,j

|ij〉〈ji| =
1
D
ID ⊗ ID +

1
2

∑
l

wl ⊗ wl +
1
2

∑
j<k

(ujk ⊗ ujk + vjk ⊗ vjk), (43)

so that

ρW =
1
D2

(
ID ⊗ ID +

D(Dφ− 1)
2(D2 − 1)

λi ⊗ λi

)
, (44)

where λi are the generators of SU(D) defined as in Eqs. (5)-(7). Then, ||T ||KF = D|Dφ−1|/2,
so that Theorem 1 only recognizes entanglement when φ ≤ (2 −D)/D, while Proposition 3
guarantees that the state is separable if (D − 2)/[D(D − 1)] ≤ φ ≤ 1/(D − 1). When the
latter condition holds, we can provide the decomposition in product states. To illustrate
the procedure, consider the Werner state in, for simplicity, 2 × 2 dimensions. In this case
V = I2 ⊗ I2 − 2|ψ−〉〈ψ−|, and defining p = (1 − 2φ)/3 the state takes the simple form

ρ =
1 − p

4
I2 ⊗ I2 + p|ψ−〉〈ψ−| =

1
4
(I2 ⊗ I2 − p σx ⊗ σx − p σy ⊗ σy − p σz ⊗ σz). (45)

From Corollary 1 we obtain that ρ is separable iff p ≤ 1/3 as expected. From Proposition 3
we find that

ρ =
∑

i=x,y,z

2∑
j=1

p

2
ρ
(i)
j + (1 − 3p)

1
4
(I2 ⊗ I2), (46)

where

ρ
(i)
1 =

1
4
(I2⊗I2+σi⊗I2−I2⊗σi−σi⊗σi), ρ

(i)
2 =

1
4
(I2⊗I2−σi⊗I2+I2⊗σi−σi⊗σi). (47)

In this case we can reduce the number of product states in the decomposition to 8 by noticing
that ρ(i)

1 = |01〉i〈01| and ρ
(i)
2 = |10〉i〈10|, where {|0〉i, |1〉i} denote the eigenvectors of σi, so

that, for instance,

ρ =
∑

i=x,y

p

2
(|01〉i〈01|+ |10〉i〈10|)+

1 − p

4
(|01〉z〈01|+ |10〉z〈10|)+

1 − 3p
4

(|00〉z〈00|+ |11〉z〈11|).

(48)
It is known, however, that a separable bipartite qubit state admits a decomposition in a
number of product states less than or equal to 4 [19, 20].

Example 4: Isotropic states [7] in arbitrary dimensions (M = N = D) are invariant under
transformations of the form

(
U ⊗ U∗)ρ (U † ⊗ U∗†). They can be written as mixtures of the
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maximally mixed state and the maximally entangled state

|Ψ〉 =
1√
D

D−1∑
a=0

|aa〉, (49)

so they readb

ρ =
1 − p

D2
ID ⊗ ID + p|Ψ〉〈Ψ|. (50)

These states are known to be separable iff p ≤ (D + 1)−1 [7] (see also [25, 37]). Their Bloch
representation can be easily found as in the Werner case, and it is given by

ρ =
1
D2

⎛⎝ID ⊗ ID +
pD

2

(D+2)(D−1)/2∑
i=1

λi ⊗ λi − pD

2

D2−1∑
i=D(D+1)/2

λi ⊗ λi

⎞⎠ , (51)

where, as before, λi are the generators of SU(D) defined in Eqs. (5)-(7). Now, ||T ||KF =
pD(D2−1)/2. Thus, Theorem 1 is strong enough to detect all the entangled states (||T ||KF ≤
D(D−1)/2 ⇔ p ≤ (D+1)−1), while Proposition 3 ensures that the states are separable when
p ≤ (D + 1)−1(D − 1)−2.

4.2 Comparison with the CCNR criterion

Let ρ be written in terms of the canonical basis {Eij ⊗ Ekl} of HS(HA ⊗HB) as

ρ = cijklEij ⊗ Ekl. (52)

The computable cross-norm criterion, proposed by O. Rudolph (see [9, 38] and references
therein), states that for all separable states the operator U(ρ) acting on HS(HA ⊗ HB)
defined by

U(ρ) ≡ cijkl |Eij〉〈Ekl|, (53)

where |Emn〉 denotes the ket vector with respect to the inner product in HS(HA) or HS(HB),
is such that ||U(ρ)||KF ≤ 1. Soon after, K. Chen and L.-A. Wu derived the realignment
method [10], which yields the same results as the cross-norm criterion from simple matrix
analysis. Basically, it states that a certain realigned version of a separable density matrix
cannot have Ky Fan norm greater than one, thus providing a simple way to compute this
condition. This is why we refer to it as the CCNR criterion. Like Theorem 1, it is able
to detect all entangled isotropic states and recognizes entanglement for the same range of
Werner states [9]. Although being weaker than the PPT criterion in 2 × 2 dimensions, it
is also capable of detecting bound entangled states. However, the CCNR criterion detects
optimally the entanglement of the state of Example 2 [9], so one could think that it is stronger
than Theorem 1. To check this possibility and to evaluate the ability of bound entanglement
detection of Theorem 1, we have programmed a routine that generates 106 random 3 × 3
PPT entangled states following [39]. Our theorem detected entanglement in about 4% of the
states while the CCNR criterion recognized 18% of the states as entangled. Moreover, every
bIn the two-qubit case the Werner (U ⊗ U invariant) states (45) and isotropic (U ⊗ U∗ invariant) states (50)
are identical up to a local unitary transformation. For this reason some authors refer to the isotropic states
as generalized Werner states, which might lead to confusion.
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state detected by Theorem 1 was also detected by the CCNR criterion. This suggests that
the CCNR criterion is stronger than Theorem 1 when M = N . We will show that this is
indeed the case, but we will also see that this is not true when M �= N . First we will prove
the following lemma:

Lemma 1: ∣∣∣∣∣∣∣∣( A B
C D

)∣∣∣∣∣∣∣∣
KF

≥ ||A||KF + ||D||KF ,

where A,B,C,D are complex matrices of adequate dimensions.

Proof: Let A and D have the singular value decompositions A = UAΣAV
†
A and D =

UDΣDV
†
D. It is clear from the definition that the Ky Fan norm is unitarily invariant. There-

fore, we have that∣∣∣∣∣∣∣∣( A B
C D

)∣∣∣∣∣∣∣∣
KF

=
∣∣∣∣∣∣∣∣( U †

A 0
0 U †

D

)(
A B
C D

)(
VA 0
0 VD

)∣∣∣∣∣∣∣∣
KF

≥ Tr ΣA +Tr ΣD, (54)

where we have used that ||X ||KF ≥ Tr X , which is a direct consequence of the following
characterization of the Ky Fan norm (see Eq. (3.4.7) in [35]):

||X ||KF = max{|Tr XU | : U is unitary}. (55)

�

Proposition 4: In the case of states with maximally mixed subsystems Theorem 1 is stronger
than the CCNR criterion when M �= N , while when M = N they are equivalent.

Proof: When r = s = 0 we have that

U(ρ) =
1

MN
(|IM 〉〈IN | + tij |λi〉〈λ̃j |). (56)

Since the matrix associated to the operator U(ρ) is in this case block-diagonal we find that

||U(ρ)||KF =
1√
MN

∣∣∣∣∣∣∣∣ |IM 〉√
M

〈IN |√
N

∣∣∣∣∣∣∣∣
KF

+
2

MN

∣∣∣∣∣
∣∣∣∣∣tij |λi〉√

2
〈λ̃j |√

2

∣∣∣∣∣
∣∣∣∣∣
KF

=
1√
MN

+
2

MN
||T ||KF .

(57)
Thus, for states with maximally mixed subsystems the CCNR criterion is equivalent to

||T ||KF ≤
√
MN(

√
MN − 1)
2

, (58)

from which the statement readily follows. �

Proposition 5: The CCNR criterion is stronger than Theorem 1 when M = N .

Proof: Since in this case in general r, s �= 0, the matrix associated to the operator U(ρ) is
no longer block-diagonal. Hence, using Lemma 1, we now have that

||U(ρ)||KF ≥ 1
N

+
2
N2

||T ||KF , (59)
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which proves the result considering that in the M = N case the condition of Theorem 1 can
be written as

1
N

+
2
N2

||T ||KF ≤ 1. (60)

�

Proposition 4 explains why both criteria yield the same results for Werner and isotropic
states. However, since T is diagonal in these cases, the computations are much simpler in our
formalism than in that of the CCNR criterion. Furthermore, when M �= N we have explicitly
constructed entangled states which are detected by Theorem 1 but not by the CCNR criterion.
Regrettably, Theorem 1 is not able to detect the PPT entangled states in 2 × 4 dimensions
constructed by P. Horodecki in [40].

5 Summary and Conclusions

We have used the Bloch representation of density matrices of bipartite quantum systems in
arbitrary dimensions M×N , which relies on two coherence vectors r ∈ RM2−1, s ∈ RN2−1 and
a correlation matrix T ∈ R(M2−1)×(N2−1), to study their separability. This approach has led
to an alternative formulation of the separability problem, which has allowed us to characterize
entangled pure states (Proposition 1), and to derive a necessary condition (Theorem 1) and
three sufficient conditions (Proposition 3, Theorem 2 and Remark 2) for the separability of
general states. In the case of bipartite systems of qubits with maximally mixed subsystems
Theorem 1 and Proposition 3 take the same form, thus yielding a necessary and sufficient
condition for separability. We have shown that, despite being weaker than the PPT criterion
in 2×2 dimensions, Theorem 1 is strong enough to detect PPT entangled states. We have also
shown that it is capable of recognizing all entangled isotropic states in arbitrary dimensions
but not all Werner states, like the CCNR criterion. Although the CCNR criterion turns
out to be stronger than Theorem 1 when M = N , we have also proved that our theorem
is stronger than the CCNR criterion for states with maximally disordered subsystems when
M �= N . Therefore, although Theorem 1 does not fully characterize separability, we believe
that in combination with the above criteria it can improve our ability to understand and
detect entanglement. Theorem 2, together with Proposition 3 (which is weaker save for the
limiting case c = 0) and the result of Remark 2 (which is more involved), offers a sufficiency
test of separability, which, as a by-product, provides a decomposition in product states of
the states that satisfy its hypothesis. ||T ||KF acts as a measure of the correlations inside
a bipartite state and it is left invariant under local unitary transformations of the density
matrix. This suggests the possibility of considering it as a rough measure of entanglement, as
in the case of the realignment method [10]. We think that this subject deserves further study.
We also believe that a deeper understanding of the geometrical character of the Bloch-vector
space could lead to an improvement of the separability conditions presented here.
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