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In this paper, we present a new approach to study genuine tripartite entanglement
existing in (2 × 2 × n)−dimensional quantum pure states. By utilizing the approach,
we introduce a particular quantity to measure genuine tripartite entanglement. The
quantity is shown to be an entanglement monotone in 2-dimensional subsystems (semi-
monotone) and reaches zero for separable states and (2 × 2 × 2)−dimensional W states,
hence is a good criterion to characterize genuine tripartite entanglement. Furthermore,
the formulation for pure states can be conveniently extended to the case of mixed states
by utilizing the kronecker product approximation technique. As applications, we give
the analytic approximation for weakly mixed states, and study the genuine tripartite
entanglement of two given weakly mixed states.
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1 Introduction

Entanglement is a valuable physical resource for many quantum information processing, such
as quantum computation [1], quantum cryptography [2], quantum teleportation [3], quantum
dense coding [4] and so on. The understanding of entanglement is at the very heart of quantum
information theory. Recently, many efforts have been made to characterize quantitatively
the entanglement properties of a quantum system[5-8], however, the good understanding is
only restricted in low-dimensional systems. The quantification of entanglement for higher
dimensional systems and multipartite quantum systems remains to be an open question.

Since the remarkable concurrence was presented [5], it has been shown to be a useful en-
tanglement measure for the systems of qubits. Based on the concurrence, V. Coffman et al [9]
introduced the so called residual entanglement for tripartite systems of qubits and shew that
the residual entanglement can be employed to measure genuine tripartite entanglement, which
opens the path to studying multipartite entanglement. However, unlike the entanglement in
low-dimensional systems, the entanglement in high-dimensional or multipartite systems is
much more complicated. E.g. Dür et al [10] have shown that three qubits can be entangled in
two inequivalent ways; Miyake [11,12] has shown that the multipartite entanglement can be
divided into more classes based on the hyperdeterminant. These inequivalent entanglement
classes tell us that a single quantity can not effectively and thoroughly measure entanglement
of a high-dimensional or multipartite systems. However, for some particular purpose, one can
still characterize entanglement by only a single quantity. For example: The most naturally,
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one can measure entanglement of a certain class by only a single quantity [11-14]; One can
employ only a quantity to study the separable property of a given quantum system [15,16];
One can also collect the contributions of some different entanglements as a whole to study
the correlations between subsystems [17-20]; And so on.

In this paper, again a single quantity denoted by τ is presented in terms of a new approach
to characterize the genuine tripartite entanglement for (2×2×n)−dimensional quantum sys-
tems. The distinct advantage of τ is that it can not only characterize the properties of
genuine tripartite entanglement existing in a given quantum pure state and be conveniently
extended to mixed states by kronecker product approximation technique, but it is a entangle-
ment semi-monotone, i.e. it is an entanglement monotone considering the two 2-dimensional
subsystems and invariant under local unitary transformations in the higher-dimensional sub-
system. In this sense, if the usual Positive Operation-Valued Measures (POVM’s) on the
higher-dimensional subsystem is not considered, τ is even a good entanglement measure.
Furthermore, one will also find that the initial residual entanglement introduced in Ref. [9]
can be obtained by our approach. In this sense, we also consider that τ is a generalization
of the initial residual entanglement. As applications, we give the analytic approximation of τ
for weakly mixed tripartite quantum states (quasi pure states) and consider the genuine tri-
partite entanglement of some quasi pure states, which shows the sufficiency of our measure as
a criterion to test entanglement and the workability as an indicator of entanglement in these
cases. Note that even though there are other results [12,21,22] for (2 × 2 × n)−dimensional
quantum systems, they are essentially different from ours. For example, Ref. [21-22] studied
the entanglement of assistance which is some kind of bipartite entanglement in fact. Ref. [12]
mainly focused on the classification of multipartite entanglement and so far it seemed difficult
to obtain an operational entanglement evaluation for mixed states. The paper is organized as
follows. First, we give τ for pure states by a new approach and prove that τ is a entanglement
semi-monotone and can characterize genuine tripartite entanglement; and then we extend it
to mixed states and discuss the genuine tripartite entanglement of some quasi pure states;
the conclusions are drawn in the end.

2 The genuine tripartite entanglement semi-monotone for pure states

At first, let us introduce the concept of ”tilde inner products”. The concept was presented by
Wootters to introduce the remarkable concurrence in Ref. [5]. Considering any two bipartite
state vectors of qubits |x〉 and |y〉, the tilde inner product of |x〉 and |y〉 is defined by

〈x| ỹ〉 = 〈x| σy ⊗ σy |y∗〉 , (1)

where |ỹ〉 = σy ⊗ σy |y∗〉 with |y∗〉 is the complex conjugate of |y〉 and σy =
(

0 −i
i 0

)
.

However, for convenience, whenever the tilde inner product is mentioned, we refer to

(〈x| ỹ〉)∗ = 〈x∗|σy ⊗ σy |y〉 . (2)

Now, let us focus on (2 × 2 × n)−dimensional tripartite quantum pure state |ψABC〉 defined
in the Hilbert space H1 ×H2 ×H3, which can be written in the standard basis by

|ψABC〉 =
1∑

i,j=0

n−1∑
k=0

aijk |i〉A |j〉B |k〉C =
n−1∑
k=0

|ϕk〉 |k〉 , (3)
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where |ϕk〉 =
∑1

i,j=0 aijk |i〉A |j〉B corresponds to |k〉 (= |k〉C) of the party C. For any a
group of basis {|φl〉} , l = 0, 1, · · ·, n − 1, defined in H3, one can always project |ψABC〉 onto
them, and obtain correspondingly an unnormalized bipartite pure state of qubits defined in
H1 ×H2. Without loss of generality, here we choose {|φl〉} = {|k〉}, therefore one can obtain
a corresponding set of unnormalized bipartite pure states {|ϕk〉}. Arranging these bipartite
states in terms of the order of |k〉, we can construct a matrix Φ given by

Φ = [|ϕ0〉 , |ϕ1〉 , · · ·, |ϕn−1〉], (4)

where it is implied that |ϕk〉 have been considered as column vectors. Hence, on the basis of
the tilde inner product, we can obtain a new matrix M given by

M = ΦTσy ⊗ σyΦ, (5)

where each element Mij denotes the tilde inner product of two bipartite pure states |ϕi〉
and |ϕj〉. Furthermore, one will find that M includes important information: First, because
each column of Φ is not normalized, Φ includes the information of probabilities with which
one can obtain the column vectors from |ψABC〉; Second, due to the tilde inner product,
M, in particular its diagonal elements, includes the separability information of the columns
of Φ. Since M is a matrix defined in (n× n)−dimensional Hilbert space, we can always
consider M as a (n× n)−dimensional bipartite quantum pure state of qudits, which is given
in matrix form. Therefore, it is natural to consider the entanglement measure of such an
abstract bipartite pure state a.

As we know, I-concurrence [23,8] CI(|Ψ〉) is a good measure for bipartite quantum pure
state |Ψ〉 defined in arbitrary dimension, which has been shown to be the length of the
concurrence vector [7] by W. K. Wootters [24]. We can describe them by an equation as

CI(|Ψ〉) =
√

2[|〈Ψ| Ψ〉|2 − tr(ρ2
r)] =

√√√√n(n−1)/2∑
α,β=1

|Cαβ |2, (6)

where ρr denotes the reduced density matrix by tracing over one of the two systems, Cαβ =
〈Ψ∗| sα ⊗ sβ |Ψ〉 with sα and sβ the generators of SO(n). Applying the measure to the state
M, we can obtain

CI(M) =
√

2
{
[tr (MM†)]2 − tr

[
(MM†)2

]}
, (7)

where tr denotes trace operation.
As a consequence, we can summarize all above and obtain a following formal expression.
Theorem 1. The genuine tripartite entanglement semi- monotone τ for the given pure

state |ψABC〉 can be obtained by

τ = τ (|ψABC〉) = [CI(M)]
1
2 , (8)

aIf M is considered as an unnormalized pure state separately, it will make no sense to measure the entanglement
because there will exist a undetermined constant (the normalization constant). However, M is not separated
here, but closely related to the normalized |ψABC〉. That is to say, although the constant is not determined
for M, it is determined for |ψABC〉 which is what we care for. Furthermore, the normalization constant of M
also includes valuable information mentioned in the text and has its real value. Therefore, M should not be
normalized.
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where the corresponding parameters have been given above.
What’s more, consider the expression of the second ”=” in eq. (6), we can expand τ by

τ =

⎡
⎣ ∑

i�=l,j �=k

|〈ψ∗
ABC |σy ⊗ σy ⊗ eij |ψABC〉 × 〈ψ∗

ABC |σy ⊗ σy ⊗ elk |ψABC〉

− 〈ψ∗
ABC |σy ⊗ σy ⊗ eik |ψABC〉 × 〈ψ∗

ABC |σy ⊗ σy ⊗ elj |ψABC〉|2
] 1

4
, (9)

where eij = |i〉 〈j| with |i〉 denoting the standard basis of party C.
Proof. First of all, one can easily justify the following

Remark: τ given in above procedure can be reduced to the (2 × 2 × 2)-dimensional case given
in Ref. [9]. Noting that a constant difference is neglectable.

Next, we will prove the theorem by two steps. At first, we will prove that τ is an en-
tanglement semi-monotone, and then we will show that τ can characterize genuine tripartite
entanglement for (2 × 2 × n)−dimensional pure state |ψABC〉 .

Entanglement semi-monotone. We first note that τ is invariant under permutations of the
two parties A and B of |ψABC〉 defined in 2-dimensional Hilbert space respectively, hence we
employ the method given in Ref. [10] to prove that τ is non-increasing under local operations
assisted with classical communication (LOCC) in party A only. Due to the same reason
mentioned in Ref. [10], we also consider a sequence of two-outcome POVM’s. Let A1 and A2

be the two POVM elements such that A†
1A1 + A†

2A2 = 12, with 1δ denoting δ-dimensional
identity matrix, then Ai = UiDiV , where Ui and V are unitary matrices and Di are diagonal
matrices with entries (a, b) and [

√
1 − a2,

√
1 − b2], respectively. For some tripartite initial

state |Ψ〉, let |Θi〉 = (Ai ⊗ 12 ⊗ 1n) |Ψ〉 be the unnormalized states obtained after the POVM
operations. The corresponding normalized states can be given by |Ψ′

i〉 = |Θi〉 /√pi, where
pi = 〈Θi| Θi〉. Then

〈τ〉 = p1τ(|Ψ′
1〉) + p2τ(|Ψ′

2〉). (10)

Considering the expression of a tripartite quantum state given in eq. (3), |Ψ′
i〉 can also be

rewritten by

|Ψ′
i〉 =

n−1∑
k=0

(
(Ai ⊗ 12) |ϕk〉√

pi

)
|k〉 . (11)

Hence, after operation A1, M′ corresponding to the tilde inner products can be constructed
by

M′
jk =

1
p1

〈
ϕ∗

j

∣∣ [(V TD1U
T
1

)⊗ 12

]
σy ⊗ σy [(U1D1V ) ⊗ 12] |ϕk〉

= ±ab
p1

〈
ϕ∗

j

∣∣ σy ⊗ σy |ϕk〉 = ±ab
p1

Mjk. (12)

Namely,

M′ = ±ab
p1

M. (13)
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Analogously, M′′ corresponding to A2 can be given by

M′′ = ±
√

(1 − a2) (1 − b2)
p2

M. (14)

On the basis of eq. (7) and eq. (8), one can obtain

τ(|Ψ′
1〉) =

ab

p1
τ(|Ψ〉), τ(|Ψ′

2〉) =

√
(1 − a2) (1 − b2)

p2
τ(|Ψ〉). (15)

Substituting eq. (15) into eq. (10), according to Ref. [10], one can obtain that 〈τ〉 ≤ τ(|Ψ〉).
What’s more, eq. (12) implies that there may be an overall phase difference for M if a local
unitary transformation on party A is considered. That is to say, τ(|Ψ〉) will be invariant under
such local unitary transformations.

Now, let us focus on the third party C. Any a given n × n matrix Q operated on party
C of |ψABC〉 can be described by (12 ⊗ 12 ⊗Q) |ψABC〉 denoted by |ψ′

ABC〉. Based on the
tilde inner products, one can always construct the corresponding matrix M̃ following above
procedure. Consider the standard basis {|k〉} of party C in H3, M̃ can be written by

M̃ij =
n−1∑

l,m=0

〈ϕ∗
l |σy ⊗ σy |ϕm〉QilQjm, (16)

where |ϕj〉 are defined the same to those in eq. (3). If we operate Q on M by QTMQ,
considering the same basis {|k〉}, one can obtain

[
QTMQ

]
lm

=
n−1∑
i,j=0

〈ϕ∗
i |σy ⊗ σy |ϕj〉QilQjm, (17)

where [·]lm denote the entries of the corresponding matrix. Hence, from eq. (16) and eq. (17),
one can get

M̃ =QTMTQ. (18)

Since M can be regarded as a bipartite pure state in matrix form, we can assume that M
is defined in the Hilbert space H3 ⊗ H ′

3 and denotes an entangled state of parties C and
C′. According to eq. (18), we can draw a conclusion that for the matrix M of the tilde
inner products, operating a transformation Q on party C of |ψABC〉 is equivalent to operating
QT ⊗QT on the abstract state MT which is defined in H ′

3 ⊗H3. In other words, considering
the local operations on party C of |ψABC〉 is equivalent to considering the local operations
on MT . If Q is a unitary transformation, one can easily find that the entanglement of M
measured by eq. (7) is invariant, i.e. τ is invariant under local unitary transformation. If Q
is a usual POVM, one will not ensure that τ is not always increasing. That is to say, τ is an
entanglement semi-monotone. This completes the first step.

Characterizing genuine tripartite entanglement. Let us first show that τ = 0 for semisep-
arable pure states and low-local-rank W states [11]. Considering the invariant permutation
of A and B, any semiseparable pure state |ψABC〉 can be given by

|ψABC〉 = |ϕAB〉 ⊗ |χC〉 (19)
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or
|ψ′

ABC〉 = |χA〉 ⊗ |ϕBC〉 , (20)

where |χi〉 denote the quantum pure states for the ith single party and |ϕpq〉 denote the
bipartite pure states for the pth and the qth parties. If projecting the state |ψABC〉 given by
eq. (19) onto any a group of basis of H3 corresponding to party C, one can obtain that the
corresponding matrix M of the tilde inner products has the entries given by

Mij = 〈i |χC〉 〈j |χC〉 〈ϕ∗
AB |σy ⊗ σy |ϕAB〉 . (21)

According to eq. (7) and eq. (8), it is obvious that τ = 0 in this case. If projecting the
state |ψ′

ABC〉 given by eq. (20) onto any a group of basis {|φl〉} of H3, one can obtain the
corresponding matrix

M′
ij = (〈χ∗

A| ⊗ 〈κ∗Bi|)σy ⊗ σy (|χA〉 ⊗ |κBj〉) = 0, (22)

where |κBj〉 = (12 ⊗ 〈φj |) |ϕBC〉. Therefore, one can easily obtain that τ = 0 for |ψ′
ABC〉.

The W states, the local rank of which being (2, 2, 2) is required, can always be reduced to a
(2×2×2)-dimensional subspace of H1⊗H2⊗H3 and be considered as tripartite pure states of
qubits. According to the Remark made in the proof of theorem 1, one can have τ = 0 for such
W states. It should be noted that for the W states with high local rank, we believe they own
genuine tripartite entanglement [25]. It is reasonable. As we know, Ref. [11] has introduced
the onionlike classification of multipartite quantum states. The classification shows that the
quantum states in the outer class can always be converted irreversibly into those in the inner
class. Hence, we can say the outer classes ”include” the inner ones. GHZ class with local
rank (2, 2, 2) as the innermost class to characterize genuine tripartite entanglement is hence
”included” by outer class. In this sense, we can safely say that τ �= 0 for the W states with
high local rank. It is also in this sense that τ can be believed to be the generalization of the
initial residual entanglement.

Next, we will show that τ �= 0 for any quantum state with genuine tripartite entanglement.
According to the tensor treatment of |ψABC〉 [15], |ψABC〉 can be regarded as a tensor grid,
whose units can be considered to be tensor cubic. If there exist genuine tripartite entangle-
ments in |ψABC〉, there must exist at least such a tensor cubic of the grid as has genuine
tripartite entanglement. In other words, based on eq. (6), there must exist some integers
α∗ and β∗, such that |Cα∗β∗ |2 �= 0. Hence, we can draw the conclusion that τ = 0 means
that there does not exist any genuine tripartite entanglement in |ψABC〉. This completes the
second step.

3 Extension to mixed states

Consider τ (|ψABC〉) of pure states, the corresponding quantity of mixed states ρ is then given
as the convex roof

τ(ρ) = inf
∑

i

piτ(|γi〉) (23)

of all possible decompositions into pure states |γi〉 with

ρ =
∑

i

pi |γi〉 〈γi| , pi ≥ 0. (24)
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τ(ρ) vanishes if and only if ρ does not include any genuine tripartite entanglement. According
to the matrix notation [7] of equation (24), one can obtain ρ = ΓWΓ†, where W is a diagonal
matrix with Wii = pi, the columns of the matrix Γ correspond to the vectors |γi〉. Due to the
eigenvalue decomposition: ρ = ΦMΦ†, whereM is a diagonal matrix whose diagonal elements
are the eigenvalues of ρ, and Φ is a unitary matrix whose columns are the eigenvectors of ρ,
one can obtain ΓW 1/2 = ΦM1/2U , where U ∈ Cr×N is a Right-unitary matrix, with N and
r being the column number of Γ and the rank of ρ. Therefore, based on the matrix notation
and eq. (9), eq. (23) can be directly rewritten in a twice-doubled Hilbert space as

τ(ρ) = inf
U

N∑
i=1

{
[
(
UT ⊗ U † ⊗ UT ⊗ U †) × A (U ⊗ U∗ ⊗ U ⊗ U∗)]ii,iiii,ii

} 1
4
, (25)

where
A =

(
�1/2

)T ∑
i�=l,j �=k

Aijkl

(
�1/2

)
(26)

with
�1/2 =

(
ΦM1/2

)T

⊗
(
ΦM1/2

)†
⊗
(
ΦM1/2

)T

⊗
(
ΦM1/2

)†
, (27)

Aijkl = Σij ⊗ Σij ⊗ Σlk ⊗ Σlk + Σik ⊗ Σik ⊗ Σlj ⊗ Σlj

−Σij ⊗ Σik ⊗ Σlk ⊗ Σlj − Σik ⊗ Σij ⊗ Σlj ⊗ Σlk,
(28)

and
Σij = σy ⊗ σy ⊗ eij . (29)

If ρ is defined in Cd×d, A is then defined in Cd×d ⊗ Cd×d ⊗ Cd×d ⊗ Cd×d. If the former two
subspaces and the latter two ones are regarded as a doubled subspace, respectively. A can
be considered to be defined in Cd2×d2 ⊗ Cd2×d2 . It is easy to find that A is invariant under
the exchange of two doubled subspaces. It is also obvious that A will be converted to A∗,
if the former two subspaces and the latter two ones are exchanged simultaneously. Due to
the symmetry, following the analogous procedure to that in Ref. [16], we have the following
relations by means of kronecker approximation technique [16,26,27].

A =
r′∑

i=1

Bi ⊗Bi (30)

with Bi defined in Cd×d ⊗ Cd×d, and

Bi =
r′′∑

j=1

(σi)j (Ci)j ⊗ (Ci)
∗
j (31)

with (Ci)j defined in Cd×d, and (σi)j being the corresponding singular values [28]. Substitute
above relations into eq. (25), one can obtain that

τ(ρ) = inf
U

N∑
i=1

⎛
⎜⎝

r′∑
j=1

⎛
⎝ r′′∑

m

∣∣(UT (Cj)m U
)
ii

∣∣2
⎞
⎠

2
⎞
⎟⎠

1/4

. (32)
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Following the procedure of Ref. [16] again, one can also obtain three lower bounds, which
have the same form to those in Ref. [16]. Therefore, we do not give these bounds here.

Similarly, one can also find that the numerical realization to calculate the bounds for a
mixed state ρ faces the same problem mentioned in Ref. [16], i.e. the lower efficiency of
calculation. To avoid the problem, again we employ the method given in Ref. [29] to present
an analytic approximation of eq. (32) for weakly mixed states-quasi pure states. In this way,
we can conveniently demonstrate the applications of our measure to some quasi pure states.

Analogous to Ref. [29], the tensor A can be obtained by

Apm,nq
p′m′,n′q′ =

∑
i�=l,j �=k

√
upumunuqup′um′un′uq′ × [〈γ∗p∣∣ σy ⊗ σy ⊗ eij |γp′〉

× 〈γ∗m|σy ⊗ σy ⊗ elk |γm′〉 − 〈γ∗p∣∣ σy ⊗ σy ⊗ eik |γp′〉 × 〈γ∗m|σy ⊗ σy ⊗ elj |γm′〉]
× [〈γn|σy ⊗ σy ⊗ eij |γ∗n′〉 × 〈γq|σy ⊗ σy ⊗ elk

∣∣γ∗q′
〉

−〈γn|σy ⊗ σy ⊗ eik |γ∗n′〉 × 〈γq|σy ⊗ σy ⊗ elj

∣∣γ∗q′
〉]
, (33)

where |γα〉 and uα denote the αth eigenvector and eigenvalue of ρ respectively and all the
other quantities are defined similar to those in eq. (9). According to the symmetry of A and
the kronecker product approximation technique in above section, A can be formally written
as

Apm,nq
p′m′,n′q′ =

∑
α

Tα
pm

(
Tα

p′m′
)∗
Tα

nq

(
Tα

n′q′
)∗
. (34)

The density matrix of quasi pure states has one single eigenvalue μ1 that is much larger than
all the others, which induces a natural order in terms of the small eigenvalues μi, i > 1. Due
to the same reasons to those in Ref. [29], here we consider the second order elements of type
Apm,11

11,11 . Therefore, one can have the approximation

Apm,nq
p′m′,n′q′ 
 κpmκ

∗
p′m′κnqκ

∗
n′q′ with κpm =

Apm,11
11,11

4

√(
A11,11

11,11

)3
. (35)

In this sense, eq. (32) can be simplified significantly:

τ(ρ) 
 τa(ρ) = inf
U

∑
i

∣∣UTκU
∣∣
ii
. (36)

τa(ρ) can be given by
τa(ρ) = max{λ1 −

∑
i>1

λi, 0}, (37)

where λi is the singular value of κ in decreasing order.
As applications, let us consider two (2 × 2 × 3)−dimensional quasi pure states constructed

respectively by
ρ1(x) = x |GHZ ′〉 〈GHZ ′| + (1 − x)112 (38)

and
ρ2(x) = x |W ′〉 〈W ′| + (1 − x)112, (39)
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where
|GHZ ′〉 =

1
2
(|000〉+ |101〉+ |011〉 + |112〉), (40)

and
|W ′〉 =

1√
3

(|000〉+ |011〉 + |112〉) . (41)

Note that |GHZ ′〉 and |W ′〉 given in Ref. [11] correspond to GHZ class andW class with high
local rank, respectively. The two states can be considered as quasi pure states for x ≥ 0.3. τa
for ρ1(x) and ρ2(x) are both shown in Fig. 1, where the solid line corresponds to τa(ρ1) and
the dotted line corresponds to τa(ρ2). Fig. 1 shows the sufficiency to test genuine tripartite
entanglement for such quasi pure states. In this sense, the measure presented in the paper can
characterize the properties of genuine tripartite entanglement and can serve as an effective
indicator of genuine tripartite entanglement.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

x

τ a

Fig. 1. τa (dimensionless) for quasi pure states ρ1(x) = x |GHZ′〉 〈GHZ′|+ (1− x)112 (solid line)
and ρ2(x) = x |W ′〉 〈W ′| + (1 − x)112 (dotted line) vs x, x ∈ [0.3, 1].

4 Conclusion and Discussion

In summary, we have introduced an entanglement semi-monotone τ by a new approach to mea-
sure the genuine tripartite entanglement existing in a given tripartite (2×2×n)−dimensional
quantum pure states. For (2 × 2 × 2)−dimensional systems, τ can be reduced to the initial
residual entanglement given in Ref. [9], but there exists a neglectable constant difference
between them. In particular, it does not vanish for W states with high local rank. In this
sense, τ can be considered as a generalization of the initial residual entanglement. What’s
more, τ can conveniently extended to the case of mixed states by utilizing the kronecker
product approximation technique. For the weakly mixed states, i.e. quasi pure states, we
have provided an analytic approximation, by which we have investigated the genuine tripar-
tite entanglement of two quasi pure states. Numerical results show that τ obtained from the
analytic approximation can serve as an effective indicator of genuine tripartite entanglement
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for quasi pure states. Our result can be generalized to (d× d× n)−dimensional systems, but
many details are quite different and the property of entanglement monotone might be lost.
We would like to study the generalization in detail elsewhere. What’s more, it will be more
valuable that τ for pure states can be employed to signal the phase transition of some spin
interaction systems by considering tripartite entanglement, which is our forthcoming work.
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8. Florian Mintert, Marek Kuś, and Andreas Buchleitner, Phys. Rev. Lett. 92, 167902 (2004).
9. Valerie Coffman, Joydip Kundu, and William K. Wootters, Phys. Rev. A 61, 052306 (2000).

10. W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).
11. A. Miyake, Phys. Rev. A 67, 012108 (2003).
12. A. Miyake, F. Verstraete, Phys. Rev. A 69, 012101 (2004).
13. Andreas Osterloh, Jens Siewert, Phys. Rev. A 72, 012337 (2005).
14. Alexander Wong and Nelson Christensen, Phys. Rev. A 63, 044301 (2001).
15. Chang-shui Yu, He-shan Song, Phys. Rev. A 72, 022333 (2005).
16. Chang-shui Yu, He-shan Song, Phys. Rev. A 73, 032322 (2006).
17. A. R. R. Carvalho, F. Mintert, A. Buchleitner, Phys. Rev. Lett. 93, 230501 (2004);
18. Chang-shui Yu, He-shan Song, Phys. Rev. A 73, 022325 (2006).
19. D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273 (2002).
20. G. K. Brennen, Quant. Inf. Comp. 3, 619 (2003).
21. G. Gour, D. A. Meyer, and B. C. Sanders, Phys. Rev. A 72, 042329 (2005).
22. G. Gour, Phys. Rev. A 72, 042318 (2005).
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