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We analyze numerically the heating of trapped ions due to laser intensity and phase fluc-
tuations when implementing Grover’s algorithm and the Quantum Fourier Transform.
For a simpler analysis we assume that the stochastic processes are white noise processes
and average over each noise as in [Phys. Rev. A. 57, 3748, (1998)]. We investigate the
fidelity and the heating rate for these algorithms using parameters estimated from exper-
iments, and we can see the order of magnitude difference in the heating rate depending
on the quantum algorithms.
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1 INTRODUCTION

Intense theoretical and experimental research in quantum computation has been performed
since Shor discovered the fast algorithm for factorization[1]. Quantum computation exploits
quantum-mechanical two-level systems (qubits) for information processing and several phys-
ical systems for implementing a quantum computer (QC) have been suggested up to date.
Especially the ion-trap quantum computation scheme, which was first proposed by Cirac and
Zoller in 1995[2], is promising because the superposition of quantum states has long coher-
ence time and there is the possibility of expanding the number of qubits. Other types of
ion-trap quantum computation schemes have been suggested [3, 4, 5, 6, 7] and in parallel
many experiments have also been realized: the Deutsch-Jozsa algorithm[8], the Cirac-Zoller
controlled-NOT gate[9, 10], the robust high-fidelity geometric two ion-qubit phase gate[11].
The ultimate challenge now is the development of scalable ion-trap QC for practical calcula-
tions.

However, we need to overcome the problem of decoherence for implementing a reliable QC
[12]. Laser and magnetic- field fluctuations are known to be large sources of decoherence in
recent experiments[13, 14]. Moreover, a considerable amount of research has been dedicated
to analyzing the decoherence, especially heating of ions: analysis of (i) the Hamiltonian which
includes the fluctuating terms[15, 16], (ii) the interaction between the ion-trap system and
the surrounding environment[17, 18, 19, 20, 21, 22, 23, 24, 25], (iii) the estimation of the
accuracy of quantum algorithms[26, 27, 28, 29], and (iv) the relation between experimental
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and theoretical data [12, 30, 31, 32, 33]. In general the maintenance of the trapped ions at
very low temperature is very important for accurate quantum computation. Heating mainly
occurs due to the coupling between noisy classical electromagnetic fields and ions. However,
the imperfect transfer between the internal states is also leading to the heating of ions when
implementing quantum algorithms through sideband transitions.

The simulation of quantum algorithms taking into consideration decoherence has been
performed in [34, 35]. The authors proposed a general method for implementing a practi-
cal controlled-Z gate by adjusting the laser phase based on the Cirac-Zoller proposal and
simulated Grover’s algorithm with the laser fluctuations in [36]. In real experiments there
are limitations not only due to the inevitable physical process but also due to the technical
problems. Thus the reduction of the latter effect is critical for realizing reliable quantum
computation in future experiments.

In this paper we focus on an inevitable source of decoherence, laser intensity and phase
fluctuations and present a numerical analysis of the heating of trapped ions due to these
fluctuations when implementing benchmark algorithms, like Grover’s algorithm[39] and the
Quantum Fourier Transform (QFT) using parameters estimated from experiments[9]. When
comparing the results of the fidelity and the distribution of the collective motion of ions
between these different algorithms, we set the same number of qubits in the quantum networks.
Finally we make the comparison of the normalized heating rate. For the simple analysis, we
assume that the stochastic processes are white noise processes and take the average over each
noise as in [15, 16].

In Sec.II we first present important transitions in ion-trap QC, and the way of implement-
ing Grover’s algorithm and the QFT in the ion-trap system. In Sec. III we show the derivation
of the master equation including the effects of both laser intensity and phase fluctuations and
Sec.IV is devoted to the investigation of these effects when implementing Grover’s algorithm
and the QFT. In Sec.V we discuss the results and finally draw the conclusions in Sec.VI.

2 ION-TRAP QC AND QUANTUM ALGORITHMS

We consider the situation that n two-level ions (the mass of each ion is m and the atomic
transition frequency is ωA) are bound in a harmonic trap and constrained to move in one
direction of the trap axis at harmonic frequency ν. The ground and excited states are de-
scribed as |0〉 and |1〉. We assume that a single laser with wave vector kL and frequency ωL

irradiates the kth (k = 1, 2, · · · , n) ion for causing the laser-ion interaction. In this condition,
the interaction Hamiltonian in rotating-wave approximation is

Hk = h̄(
Ω0

2
)|1k〉〈0k| exp(iη(ae−iνt + a†eiνt) +

i(φ0 − δt)) + H.c., (1)

where the subscript k refers to the target ion, Ω0 is the Rabi frequency, η = kL(h̄/2mν)1/2

is the Lamb-Dicke parameter, a and a† are the annihilation and creation operators of the
collective motion, φ0 is the laser phase, and δ = ωA − ωL is the detuning. Moreover, we
can expand the interaction Hamiltonian to the lowest order of η when assuming that the
amplitude of the ions’ motion in the direction of the laser field is much less than a wavelength
as in [15, 16].
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Fig. 1. Three kinds of transitions, (a) carrier: |0〉|n〉 ↔ |1〉|n〉, (b) red sideband: |0〉|n+1〉 ↔ |1〉|n〉,
and (c) blue sideband: |0〉|n〉 ↔ |1〉|n + 1〉.

In the Cirac-Zoller proposal[2] and the controlled-NOT gate experiment[9, 10], one needs
the following three kinds of transitions (Fig.1), carrier (δ = 0), red sideband (δ = −ν) and
blue sideband (δ = ν):

H
(c)
k = h̄(

Ω0

2
)(1 − η2a†a)(|1k〉〈0k|eiφ0 + H.c.), (2)

H
(r)
k = h̄(

Ω0

2
)(

η√
n

)(a|1k〉〈0k|eiφ0 + H.c.), (3)

H
(b)
k = h̄(

Ω0

2
)(

η√
n

)(a†|1k〉〈0k|eiφ0 + H.c.). (4)

The initial condition of the collective motion needs to be cooled down to |v = 0〉 (the Lamb-
Dicke region is satisfied). Then we can derive the time-evolution operator of the carrier, red
and blue sideband transitions from Eq.(2), (3) and (4) by ignoring the η terms :

V̂
σ+
k (θ, φ) = exp[−i θ

2
(|1k〉〈0k|eiφ0 + H.c.

)
], (5)

Û
σ+
k (θ, φ) = exp[−i θ

2
(
a|1k〉〈0k|aeiφ0 + H.c.

)
], (6)

R̂
σ+
k (θ, φ) = exp[−i θ

2
(
a†|1k〉〈0k|aeiφ0 + H.c.

)
], (7)

where θ = lπ with l depending on the laser radiation time t (carrier: t = lπ/Ω0 and red
and blue sideband: t = lπ/ (Ω0η/

√
n)), and σ+ is the laser polarization. One can utilize an

auxiliary state |aux〉 (degenerated from |1〉) by using the σ− laser polarization instead of the
normal σ+ polarization in order to create a new transition between |0〉 and |aux〉. One can
implement any quantum gate with the proper combination of the above transitions and the
radiation time of the lasers.

Next, we briefly review Grover’s algorithm and the QFT, and their implementation method
in the ion-trap QC. Grover’s algorithm is a fast database-search algorithm utilizing the
amplitude amplification. The steps of this algorithm consist of three kinds of operations:
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(i)preparation of a superposition of quantum states with equal amplitude, (ii)repetition of the
following two operations: (a)inversion of the amplitude of the desired state and (b)inversion
about average of the amplitude of all states , and at last (iii)measurement of the quantum
state. When simulating Grover’s algorithm, we use the same method as in [36].

The QFT is the quantum circuit which performs the discrete Fourier transform. For an
orthonormal state vector |a〉(a = 0, 1, · · · , 2n − 1), we have

QFT(|a〉) =
1√
2n

exp(2πac/2n)|c〉. (8)

The QFT circuit consists of two kinds of quantum gates: the Hadamard gate and the con-
ditional phase-shift gate. This conditional rotation of α is implemented by the following
sequence of the laser manipulations:

Û
σ+
c (π, 0) Û

σ−
t (π, 0) Û

σ−
t (π,−(π + α)) Û

σ+
c (π,−(π + α)) , (9)

where c denotes the control bit and t denotes the target bit.

3 LASER FLUCTUATIONS

In this paper we consider the decoherence due to the laser intensity and phase fluctuations
because they cause large errors in the controlled-NOT gate experiment[9]. We need to change
Ωo and φo in Eq.(2), (3) and (4) to Ω(t) and φ(t) depending on time t and describe these
fluctuations using white-noise as in [15]:

Ωo → Ω(t)dt = Ωo[dt+
√

ΓdW (t)], (10)

φo → φ(t) = φo +
√
γW (t), (11)

whereW (t) is a Wiener process, dW (t) is its increment, and the parameters Γ and γ scales the
intensity and phase noise. The physical meaning of these parameters is explained in [15, 40];
Γ is the ratio of the rms fluctuations in the pulse area to the deterministic pulse area and γ
is the band-width (HWHM).

We first use the stochastic Liouville-von Neumann equation with considering the effect of
laser intensity fluctuations. We thus set γ = 0 and average over the noise terms, therefore
obtaining the following master equation:

dρ(t)
dt

= − i

h̄
[H, ρ] − Γ

2h̄2 [H, [H, ρ]], (12)

with H as described in Eqs.(5),(6), and (7).
Next, we consider the phase fluctuations, however this case includes some difficulties in

deriving the master equation. Therefore, we take the same process as in [15] and obtain the
following equations:

dρ̃(t)
dt

= − i

h̄
[H, ρ̃] − γ

h̄2 [σ+σ−, [σ+σ−, ρ̃]], (13)

where

φ(t) → φ̃(t) = φ(t) − φ0 (14)

ρ → ρ̃ = exp[−iφ̃(t)σ+σ−] ρ exp[iφ̃σ+σ−], (15)

H → H0 = H − φ̃(t)σ+σ−/2. (16)
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The time evolution of the populations in three types of transitions in the instantaneous trans-
formed frame are the same as those in the original frame. Therefore, it is valid to calculate
the fidelity and the distribution of the collective motion of ions when implementing quantum
algorithms by using Eq.(15).

In addition, we can derive the following equation for the case in which both intensity and
phase fluctuations exist at the same time by using the frame ρ̃:

dρ̃(t)
dt

= − i

h̄
[H, ρ̃] − Γ

2h̄2 [H, [H, ρ̃]] − γ

h̄2 [σ+σ−, [σ+σ−, ρ̃]], (17)

Here we ignore the correlation between the intensity and phase fluctuations, which means
that the product of the increment of a Weiner process for the intensity and phase fluctuations
is equal to zero.

4 Results

In our simulation we set the Lamb-Dicke parameter as η = 0.052, the experimental value
used in [9, 10]. Next, we take into consideration the gate operation time and obtain the
Rabi frequency as Ω0 = 121.3[kHz]. Moreover, for simulating the quantum algorithms with
decoherence, we estimate the parameters Γ and γ with respect to the error budget in [9].
Concretely speaking, the effect of the laser intensity fluctuations contributes to the error
budget by 1%, and the contribution of the laser phase noise is 10%. We simulate the controlled-
NOT gate by solving Eqs.(12) and (17) with the fourth-order Runge Kutta and set Γ =
5.3× 10−8 and γ = 9.7× 102. Here we assume that the laser radiation time is well controlled
and the perfect initialization and measurement are realized. Moreover, we ignore the effects
of spontaneous emissions because the coherence time in an ion-trap QC with small number
of qubits is long. Thus, we simulate the quantum networks for Grover’s algorithm and the
QFT taking into consideration the effects of the intensity and phase fluctuations by solving
Eq.(12) and (17).

First, we show the relationship between the number of amplitude amplifications in Grover’s
algorithm (four-qubit case) and the fidelity in Fig.2(a), and the probability of finding the
desired state in Fig.2(b). We set the desired state as |2n−1〉 in the n-qubit case and investigate
the effects of laser intensity and phase fluctuations. We obtain the fidelity from the following
equation:

F =
√
〈ψideal|ρ|ψideal〉, (18)

where |ψideal〉 is the ideal quantum state and ρ is the density matrix in the case of considering
the effect of the decoherence.

As Fig.2(a) and (b) show, the intensity fluctuations are dominant factors in the decay
of the fidelity and probability of finding the desired state. From Fig.2(b) we can see that
the optimal number of amplitude amplifications is one because both effects exist at the same
time in a real laser and this result is the same as in [36]. This optimal number is always
one in the case of the different number of qubits. Therefore, the accurate control of the
intensity fluctuations is necessary for overcoming the decay of the fidelity and the probability
of searching the desired state.

In Fig.3(a) we show the relationship between the number of qubits in Grover’s algorithm
and the fidelity. The desired state is |2n −1〉 in each n-qubit case. Fig.3(b) describes the case
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Fig. 2. (a)The relationship between the number of amplitude amplifications in Grover’s algo-
rithm (four-qubit case) and the fidelity. (b)The relationship between the number of amplitude
amplifications and the probability of finding the desired state |15〉.

of the QFT networks and we set the initial condition as |0〉. In Grover’s case we utilize the
results after one iteration of Grover’s operation.

Fig. 3. (a)The relationship between the number of qubits and the fidelity after implementing
Grover’s algorithm (one iteration of Grover’s operation). The desired state is |2n − 1〉 in each n-
qubit case. (b)The relationship between the number of qubits and the fidelity after implementing
the QFT networks. The initial condition is |0〉 in each n-qubit case.

From this result we can see that intensity fluctuations strongly affect the decay of the
fidelity in both results, and the effect of laser fluctuations in Grover’s algorithm is much
larger than in the QFT networks.

In order to calculate the heating rate, we also obtain the distribution of the collective
motion of ions after implementing Grover’s algorithm and the QFT. In this analysis the
probability remaining in |v = 0〉 is almost one even when considering both types of fluctuations
in the QFT networks. Moreover, we can see that the intensity fluctuations cause slightly
larger effects to the leakage of the probability from |v = 0〉. We need to treat the distribution
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quantitatively and then show the total heating after implementing (a)Grover’s algorithm
and (b)the QFT networks as in Fig.4. The value of the heating d〈n〉 is obtained from the
probability of the distribution of the collective motion |v〉 and the number of the collective
motions. In the case of Grover’s algorithm, we utilize the distribution after one iteration of
Grover’s operation. It is indicated that the result considering both the intensity and phase
fluctuations is larger than the sum of that of each effect from Fig.4. Especially this tendency
appears most clearly in the QFT result (Fig.4 (b)). This is not because the algorithms are
different but because the effects of decoherence are different in these algorithms.

Fig. 4. (a)The total heating of ions (d〈n〉) after implementing Grover’s algorithm and (b)after
implementing the QFT networks.

Fig. 5. (a)The heating rate of ions (d〈n〉/dt(/ms)) after implementing Grover’s algorithm and
(b)after implementing the QFT networks.

Figure 5 shows the heating rate after implementing (a)Grover’s algorithm and (b)the QFT
networks. The heating rate is d〈n〉/dt and we obtain this value from dividing d〈n〉 (the value
in Fig.4) by the gate operation time of each qubit case. From Fig.5 we can see the different
tendencies in Grover’s algorithm and the QFT networks. We consider that the reason is as
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follows: the effect of the laser fluctuations on the total heating is slightly larger in Grover’s
case even if the number of qubits is small, therefore this leading to a smaller increase rate of
the total heating in Grover’s algorithm than that in the QFT as in Fig.4. Additionally we
can see the order of magnitude difference in the heating rate between Grover’s algorithm and
the QFT: O(10−2) and O(10−4). As far as the results for each effect, the order for Grover
and the QFT is O(10−2) and O(10−6) respectively, and in Fig.5 there is the same tendency
as in Fig.4.

5 DISCUSSION

First, we discuss the relationship between our calculation and experimental results. Grover’s
algorithm was implemented in [41] with the fidelity 0.6. In this scheme the conditional-phase
shift gate was realized with the entangled gate([5]), however approximately the same fidelity
will be implemented in the two-qubit case if using our conditional-phase shift gate. In our
scheme we utilize combinations of sideband transitions, therefore the reduction of the fidelity
will be proportional to the number of these transitions. It is natural that the reduction of the
fidelity in the experimental realization of the entangled gate of [5] occurs when the number
of ions increases.

Next, we investigate the heating rate which we obtained numerically by comparing it with
the value estimated from the experiment[30]. In [30], the heating (motional decoherence)
is investigated as the following processes: after sideband cooling, the system is left alone
to interact with the environment for a delay time t. After that, the measurement is done
by looking at the Rabi-flopping signal with the blue sideband laser. From this experiment
the heating rate is estimated as d〈n〉/dt = 0.0053ms−1, but this is caused mainly by the
interaction with the environment. However, we consider the heating by the laser intensity
and phase fluctuations during the operation of quantum algorithms. We indicated that the
imperfect transitions between the internal states of the ions due to the laser fluctuations lead
to heating during the operations of some quantum algorithms, therefore, we should take into
consideration the magnitude of this heating in a real experiment.

We also consider the rapid decrease of the fidelity in Grover’s algorithm. From Fig.2 we
can see the dramatic reduction of the fidelity after the one amplitude amplification, and this
value becomes lower than 0.5. However, we can confirm that the leakage probability from
|v = 0〉 is about 0.15, the remaining probability in the auxiliary states is approximately 0.38
as in [36]. Therefore, we can say that these low fidelity values are valid. Moreover, from
Fig.2(a) the effect of the intensity fluctuations in the Hadamard gate is much larger than that
of the phase fluctuations. This might be the reason for the fact that the intensity fluctuations
cause the dramatic decrease of the fidelity in Grover’s algorithm.

Finally, we discuss the range in which the parameters Γ and γ should be found so that the
quantum algorithms are realized with high fidelity. This is very important for experimentalists
who wish to compare to their available laser capabilities. Also of great use would be a
prediction of how narrow a laser is required to be for the benchmark algorithms with different
numbers of qubits. From Fig.3.(b) the effect of the fluctuations of the laser phase is much
smaller than that of the laser intensity in the fidelity result, therefore, in Fig.6 we show
the relationship between the scale of Γ and the fidelity for the QFT case. Moreover, from
the analysis of the heating rate, we found that the heating rate is decreased to O(10−3) by
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Fig. 6. The relationship between the scale of Γ and the fidelity in the QFT case.

reducing the order of Γ and γ by O(10−1) . On the other hand, we also calculate the case
of Grover’s algorithm with five qubits for the specific case: Γ = 0.05 × 10−8 and γ = 10 (we
reduce orders by O(10−2) from the estimated value). Consequently, the number of iterations
for the Grover operator comes to be same as in the ideal case. The searching probability,
fidelity and heating rate become 0.946, 0.973 and 3.75×10−3(/ms), for intensity fluctuations,
and 0.988, 0.994 and 4.14×10−4(/ms) for phase fluctuations. Therefore, we can show that the
implementation of the QFT with the high fidelity is comparatively easier than that of Grover
by improving the laser fluctuations.

6 CONCLUSION

In summary, we analyzed the heating of trapped ions due to the laser intensity and phase
fluctuations using the parameters which are estimated from experiments. Moreover, we inves-
tigated the effects of each decoherence when implementing Grover’s algorithm and Quantum
Fourier Transform. As result, we can see the different characteristics of the fidelity, distri-
bution of the collective motion, and heating rate between these two algorithms. We think
that further analysis of many kinds of decoherence in each quantum algorithm and in each
physical system is needed for implementing reliable QC.
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