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We consider an approach to deciding isomorphism of rigid n-vertex graphs (and related
isomorphism problems) by solving a nonabelian hidden shift problem on a quantum
computer using the standard method. Such an approach is arguably more natural than

viewing the problem as a hidden subgroup problem. We prove that the hidden shift ap-
proach to rigid graph isomorphism is hard in two senses. First, we prove that Ω(n) copies
of the hidden shift states are necessary to solve the problem (whereas O(n log n) copies
are sufficient). Second, we prove that if one is restricted to single-register measurements,
an exponential number of hidden shift states are required.
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1 Introduction

One of the major challenges of quantum computing is to determine whether there exists an
efficient quantum algorithm to decide if two graphs are isomorphic. An efficient quantum
algorithm for this problem would be interesting since no efficient classical algorithm is known;
the best known classical algorithm for deciding isomorphism of n-vertex graphs runs in time
O(n

√
cn/ log n) for some constant c [2]. It is well known that the graph isomorphism problem

can be reduced to a hidden subgroup problem over the symmetric group [5,7,10,20]. However,
while efficient quantum algorithms are known for hidden subgroup problems over many groups,
including arbitrary abelian groups [7,16,23,32,33] and some nonabelian ones [4,13–15,21,25],
an efficient algorithm for the symmetric group remains elusive.

Of course, it may be that the hidden subgroup problem in the symmetric group is sig-
nificantly harder than graph isomorphism. Indeed, the only results so far on the quantum
complexity of this problem consist of evidence that it might be hard (with the notable ex-
ception of the result that its query complexity is polynomial [10]). The graph isomorphism
problem can be reduced to a hidden subgroup problem in S2n where the hidden subgroups
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are generated by full support involutions. Hallgren, Russell, and Ta-Shma showed that weak
Fourier sampling, in which one performs a nonabelian Fourier transform but then only mea-
sures the name of an irreducible representation, is insufficient to solve the problem [18].
Kempe and Shalev generalized their result to show that finding other subgroups of the sym-
metric group is also hard [22]. Finally, Moore, Russell, and Schulman have obtained results
about the need to use multi-register measurements on the hidden subgroup states obtained
by Fourier sampling. In particular, if one is restricted to single-register measurements (in
the standard approach known as strong Fourier sampling), an exponential number of hidden
subgroup states is required [28]. Similarly, if one is restricted to two-register measurements,
then a superpolynomial (though possibly subexponential) number of hidden subgroup states
is required [26]. Strictly speaking, these results do not show that the hidden subgroup problem
directly relevant to graph isomorphism is hard, since the possible subgroups resulting from
the graph isomorphism reduction are not generated by arbitrary full support involutions, but
by involutions having further properties (as we will discuss further in Section 3, in connection
with the hidden subgroup problem over Sn �Z2). However, concurrently with the present work,
Moore, Russell, and Schulman have improved their result for single-register measurements to
cover the special case directly relevant to graph isomorphism [28, version 3].

In this paper, we study an alternative approach to solving graph isomorphism on a quan-
tum computer, by viewing it as an instance of a nonabelian hidden shift problem. This
approach is arguably more natural than viewing the problem as a hidden subgroup problem:
every possible hidden shift corresponds to a possible isomorphism (whereas there are many
subgroups of either S2n or Sn �Z2 that do not correspond to isomorphisms); and furthermore,
viewed as black box problems, the hidden shift problem can be reduced to the hidden sub-
group problem. The hidden shift problem can be tackled on a quantum computer using a
standard method that closely parallels the standard approach to the hidden subgroup prob-
lem. We present two hardness results for this standard approach to the hidden shift problem
over Sn.

First, we prove that Ω(n) copies of the hidden shift state are necessary to solve the
problem (whereas O(n log n) copies are sufficient). The idea behind this bound is the simple
observation that the hidden shift problem for the largest abelian subgroup of Sn is at least
as hard as for the whole group Sn. In the case where the group G is abelian, the hidden shift
problem for G is equivalent to the hidden subgroup problem over the generalized dihedral
group G� Z2, and it is straightforward to obtain a reasonably tight bound for this case using
a connection to the subset sum problem over G. Since Sn contains large abelian subgroups,
the resulting bound for the nonabelian hidden shift problem is not too bad.

Second, we present a simple proof that single-register measurements are not sufficient to
solve the hidden shift problem over Sn. In fact, this result holds for any group that has
many irreducible representations of sufficiently high degree. In particular, the only property
of Sn used in the proof is the fact that under the Plancherel distribution, an irreducible
representation of Sn with degree larger than nΘ(n) occurs with probability at least 1−n−Ω(n).

The remainder of the paper is organized as follows. In Section 2 we define the nonabelian
hidden shift problem and discuss the standard approach to solving it. In Section 3 we discuss
how isomorphism problems (including, but not limited to, graph isomorphism) can be cast as
hidden shift problems. In Section 4 we prove the linear lower bound on the required number of
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copies of hidden shift states. In Section 5 we examine the structure of the hidden shift states
for arbitrary groups and obtain some results needed for Section 6, where we show that single
register measurements are insufficient. Finally, in the Appendix, we present some additional
results on the rank of the hidden shift states.

Note added. After this work was completed, results were obtained showing that Ω(log |G|)-
register measurements are required to solve the hidden subgroup problem in certain groups
G, including S2n and the wreath product Sn � Z2 [17, 27]. In [17], it was observed that the
hidden subgroup state corresponding to any involutive swap in Sn �Z2 is identical to a hidden
shift state of Sn × Sn ≤ S2n (of a restricted form). Thus, Ω(n logn)-register measurements
are needed to solve the hidden shift problem in Sn, strengthening the results of the current
paper.

2 Nonabelian hidden shift problem

The (nonabelian) hidden shift problem is the following. We are given black-box access to two
functions f0 : G → S and f1 : G → S where G is a (nonabelian) group and S is a finite set.
The functions are promised to satisfy two conditions:

1. Both f0 and f1 are injective.

2. Either there exists a fixed hidden shift s ∈ G such that f0(g) = f1(gs) for all g ∈ G, or
the images of f0 and f1 are disjoint (in which case we say there is no hidden shift).

The goal is to determine whether there is a hidden shift s or not.
The case where G is an abelian group has received considerable attention [3, 9, 11, 13, 24,

30,31]. Since inversion is an automorphsim of any abelian group, the hidden shift problem in
G is a hidden subgroup problem in the generalized dihedral group G� Z2 where Z2 acts by
inversion. In particular, the case where G is cyclic is the well-known dihedral hidden subgroup
problem. However, the case where G is nonabelian, in which case the hidden shift problem is
not a hidden subgroup problem, seems not to have been studied extensively.

In this paper, we focus on a particular natural approach to solving the hidden shift problem
on a quantum computer, paralleling the standard quantum approach to the hidden subgroup
problem. First prepare a uniform superposition over i ∈ Z2 and g ∈ G, and then compute
the value of fi(g), giving the state

1√
2|G|

∑
g∈G

(|0, g, f0(g)〉 + |1, g, f1(g)〉
)
. (1)

Then measure the third register. If there is a hidden shift s, then we are left with the state

|φs,g〉 :=
1√
2
(|0, g〉 + |1, gs〉) (2)

for some uniformly random (unknown) g ∈ G. On the other hand, if there is no hidden shift,
we obtain the state |i, g〉 for some uniformly random (unknown) i ∈ Z2 and g ∈ G. Thus the
density matrix obtained by applying the procedure is either

γ1(s) :=
1
|G|

∑
g∈G

|φs,g〉〈φs,g | (3)
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if there is a hidden shift s ∈ G, or the maximally mixed state

γ2 :=
1

2|G|I2|G| (4)

if there is no hidden shift. Using the state thus obtained, we would like to decide whether
there is a hidden shift or not.

In general, we can apply the above procedure k times to obtain k copies of the hidden shift
state (or the maximally mixed state if there is no hidden shift). Clearly, these states become
more distinguishable as k is increased. Suppose that in the case where there is a hidden shift
s, it is equally likely to correspond to any element of G. Then the problem is to distinguish
the two density operators

γ
(k)
1 :=

1
|G|

∑
s∈G

γ
(k)
1 (s) (5)

γ
(k)
2 :=

1
(2|G|)k

I , (6)

where γ(k)
1 (s) := γ1(s)⊗k.

A natural generalization of the nonabelian hidden shift problem involves the case of M
injective functions, fj for j ∈ {0, 1, . . . ,M−1}, satisfying fj(g) = fj+1(gs) for a fixed s ∈ G for
all j ∈ {0, 1, . . . ,M − 2}. This problem becomes easier as M is increased, and is interesting
in the case where G is cyclic, since it has an efficient quantum algorithm provided M is
sufficiently large [8]. We will not consider the generalized nonabelian hidden shift problem
further in this paper, although it is an interesting question whether this problem has an
efficient quantum algorithm even for M sufficiently large.

3 Isomorphism problems

The nonabelian hidden shift problem for the symmetric group is especially interesting since
an efficient quantum algorithm for this problem would yield an efficient algorithm for graph
isomorphism (and more generally, for other related isomorphism problems). The usual quan-
tum approach to graph isomorphism relies on a reduction to the hidden subgroup problem
for the symmetric group, but the hidden shift problem for G = Sn presents an alternative
approach that seems to be at least as natural, and is arguably more so.

We now describe a generalized isomorphism problem that reduces to the hidden shift
problem. For each n ∈ N, let Cn be a set of objects of size n. For example, Cn could be the
set of graphs on n vertices. We assume that the objects can be uniquely represented using
poly(n) bits.

Let Gn be a family of (finite) groups such that each Gn acts on Cn. For g ∈ Gn and
C ∈ Cn, let g(C) denote the element of Cn given by the action of g on C. We call two objects
A,B ∈ Cn isomorphic if there is some g ∈ Gn such that g(A) = B. We call an object C ∈ Cn

rigid if it has no automorphisms, i.e., if there is no g ∈ Gn − {1} such that g(C) = C.
The C-isomorphism problem is the following. Given two rigid objects C0, C1 ∈ Cn, de-

termine whether they are isomorphic or nonisomorphic. It is straightforward to reduce this
isomorphism problem to a corresponding hidden shift problem: simply let fi(g) := g(Ci).
(The assumption of rigidity is required to ensure that f0, f1 are injective.)
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Graph isomorphism is the special case of the C-isomorphism problem for Gn = Sn where
Cn is the set of graphs on n vertices, and the action of Gn is to permute the vertices. Thus, a
solution to the generalized hidden shift problem for Gn = Sn would give an efficient algorithm
for testing isomorphism of rigid graphs. But such an algorithm could also be applied to other
isomorphism problems. For example, if we let Cn be the set of all binary linear codes of
length n, where Gn = Sn acts to permute the bits of the code words, then we obtain the code
equivalence problem discussed in [10], which is at least as hard as graph isomorphism [29].

As mentioned in the introduction, the usual approach to solving graph isomorphism on
a quantum computer is based not on the hidden shift problem, but on the hidden subgroup
problem. Graph isomorphism can be cast as a hidden subgroup problem over S2n where the
hidden subgroups are generated by full support involutions. A more careful inspection of the
hidden subgroups that occur in this reduction shows that it is sufficient work with a subgroup
of S2n: as proposed by Ettinger and Høyer, one can cast graph isomorphism as a hidden
subgroup problem over the wreath product Sn � Z2 < S2n where the hidden subgroups are
generated by so-called involutive swaps [10].

How are the hidden subgroup and hidden shift approaches to graph isomorphism related?
In general, one can show that the hidden shift problem in a group G can be reduced to the
hidden subgroup problem in G � Z2. In particular, the hidden shift problem in Sn reduces
to the hidden subgroup problem in Sn � Z2 (and in fact, using the results of [35], one can
also show that it reduces to the hidden subgroup problem in S2n). Since the hidden shift
problem is no harder than the corresponding hidden subgroup problem, this suggests that the
hidden shift problem might present a more natural quantum approach to graph isomorphism.
However, we emphasize that our hardness results about measurements of hidden shift states
do not imply corresponding results about hidden subgroup states, since the reduction does not
necessarily still hold when we assume the use of the standard method to produce particular
quantum states.

4 Lower bound on the number of copies

In this section, we show that Ω(n) copies of the hidden shift states are needed to successfully
determine whether there is a hidden shift. We do this by showing that the optimal POVM is
unlikely to produce the correct answer unless k = Ω(n).

Consider the general problem of distinguishing a pair of (possibly mixed, a priori equiprob-
able) quantum states. The optimal measurement for this problem (in the sense that it max-
imizes the probability of successfully identifying the state) was discovered by Helstrom [19],
and is as follows. Suppose we wish to distinguish the quantum states ρ1, ρ2. Then let E1 be
the projector onto the eigenvectors of ρ1 − ρ2 corresponding to positive eigenvalues, and let
E2 be the projector onto the eigenvectors of ρ1 − ρ2 corresponding to negative eigenvalues.
(Eigenvectors in the nullspace of ρ1−ρ2 can be associated to either E1 or E2 without affecting
the success probability.)

In principle, Helstrom’s result tells us the optimal measurement to distinguish γ
(k)
1 and

γ
(k)
2 . Unfortunately, since we do not have a good understanding of the spectrum of γ(k)

1 for
nonabelian groups, we do not know how to estimate the success probability of the Helstrom
measurement in such cases. However, we can obtain a good estimate of the success probability
for abelian groups, and we can obtain a bound for arbitrary groups since a bound for a
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subgroup implies a bound for the full group. Specifically, we have
Lemma 1. The number of copies needed to solve the hidden shift problem in the group G

(with a probability of success bounded above 1/2 by a constant) is at least as great as the
number of copies needed to solve the hidden shift problem in any subgroup H ≤ G.

Proof. Clearly, if the possible hidden shifts are restricted to be from a subgroup H ≤ G,
the problem is at least as hard as when the hidden shift may be arbitrary. For a uniformly
random hidden shift s ∈ H , the density matrix when there is a hidden shift is

1
|H |

∑
h∈H

|φs,h〉〈φs,h| , (7)

which can be written as the tensor product of the unrestricted hidden shift state in H and a
maximally mixed state of dimension |G|/|H |. Since the maximally mixed state provides no
information about the hidden shift, the restricted problem in G is equivalent to the hidden
shift problem for H .

Now we give a general lower bound on the number of copies needed to solve an arbitrary
abelian hidden shift problem. In the abelian case, we can give fairly tight bounds using the
close connection between the hidden shift problem and the subset sum problem [3]. Specif-
ically, after performing a Fourier transform on the group register, we can write the abelian
hidden shift states as

γ̃
(k)
1 (s) =

1
(2|G|)k

∑
x∈Gk

∑
w,v∈G

χw(s)χ̄v(s)
√
ηx

wη
x
v |Sx

w, x〉〈Sx
v , x| (8)

where
Sx

w := {b ∈ Z
k
2 : b · x = w} (9)

is the set of solutions of the subset sum problem over G, ηx
w := |Sx

w| is the number of such
solutions, and

|Sx
w〉 :=

1√
ηx

w

∑
b∈Sx

w

|b〉 (10)

is the normalized uniform superposition over those solutions (where we define |Sx
w〉 := 0 in

the event that ηx
w = 0). Thus, with a uniformly random hidden shift, we have the state

γ̃
(k)
1 =

1
(2|G|)k

∑
x∈Gk

∑
w∈G

ηx
w|x, Sx

w〉〈x, Sx
w | . (11)

In the standard approach to the abelian hidden shift problem, our goal is to distinguish
this state from the maximally mixed state. An optimal measurement for doing so is the
measurement that projects onto the support of γ̃(k)

1 . Since the eigenvalues of γ̃(k)
1 are integer

multiples of 1/(2|G|)k, the operator γ̃(k)
1 − γ̃

(k)
2 is nonnegative precisely on the support of

γ̃
(k)
1 . Therefore, the projection onto that support is a Helstrom measurement, and hence is

optimal.
Having identified an optimal measurement, we can now show
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Lemma 2. For any abelian group G, k = Ω(log |G|) copies of the hidden shift states are
needed to decide whether there is a hidden shift (with a probability of success bounded above
1/2 by a constant).

Proof. The success probability of the optimal measurement (in which E1 projects onto the
support of γ̃(k)

1 and E2 projects onto its complement) is

Pr(success) :=
1
2

(
trE1γ̃

(k)
1 + trE2γ̃

(k)
2

)
(12)

= 1 − rank γ̃(k)
1

2(2|G|)k
. (13)

Now

rank γ̃(k)
1 =

∑
x,w

δ[ηx
w > 0] (14)

= |G|k+1 −
∑
x,w

δ[ηx
w = 0] . (15)

(For the case G = ZN , the rank is given by the integer sequence [34, A098966]. For a
discussion of the rank in the general (not necessarily abelian) case, see the Appendix.) To
evaluate this expression, we need to understand the typical behavior of ηx

w. In particular, it
is helpful to know the first and second moments of ηx

w for uniformly random x ∈ Gk, w ∈ G.
For an arbitrary group G, the first moment is

μ := E
x,w

ηx
w =

2k

|G| . (16)

For the second moment, we have

E
x,w

(ηx
w)2 :=

1
|G|k+1

∑
x,w

(ηx
w)2 (17)

=
1

|G|k+1

∑
x,w

(
∑

b

δb·x,w)2 (18)

= μ+
1

|G|k+1

∑
x,w

∑
b�=c

δb·x,c·x δb·x,w (19)

= μ+
1

|G|k+1

∑
x

∑
b�=c

δb·x,c·x (20)

= μ+
2k(2k − 1)

|G|2 . (21)

Here in the final step we used the fact that for fixed b 	= c (with bk 	= ck without loss of
generality), and for fixed x1, . . . , xk−1 ∈ G, there is exactly one xk ∈ G such that b·x = c·x. In
terms of the variance σ2 := Ex,w(ηx

w)2−μ2 we have the inequality Pr(ηx
w = 0) ≤ σ2/(μ2 +σ2)
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[1], giving

rankγ(k)
1 ≥ |G|k+1 μ2

μ2 + σ2
(22)

= |G|k+1

(
μ+ 1 − 1

|G|
)−1

(23)

≥ (2|G|)k − |G|k+1 . (24)

Thus, we find

Pr(success) ≤ 1
2

(
1 +

|G|
2k

)
. (25)

For the success probability to be bounded above 1/2 by a constant, we need k = Ω(log |G|)
as claimed.

Putting these lemmas together, we have
Theorem 3. To solve the hidden shift problem in Sn, Ω(n) copies of the hidden shift states
are necessary.

Proof. The largest abelian subgroup of Sn has size 3Θ(n) [6] (see also [34, A000792]). Com-
bining Lemmas 1 and 2 gives the result.

This result is not too far from the best possible, since O(log |G|) copies are sufficient to
solve the hidden shift problem for any group G. This follows easily from (13) and the fact that
rank γ̃(k)

1 ≤ |G|k+1, and is analogous to the well-known result that O(log |G|) copies of hidden
subgroup states are sufficient to solve the hidden subgroup problem [12]. However, there is
a logarithmic gap between these lower and upper bounds. We suspect that the lower bound
could be improved, since it only uses information about abelian subgroups, but without a
better understanding of the structure of the hidden shift states for large k, it seems difficult
to establish a bound.

It is worth noting that while the projection onto the support of γ(k)
1 is an optimal mea-

surement in the abelian case, it is not an optimal measurement in general. For example, for
G = S4, γ

(3)
1 has eigenvalues between 0 and 1/(2|G|)3, so that the projection onto the support

is not a Helstrom measurement.

5 Structure of hidden shift states

To show that single-register measurements are not sufficient to solve the hidden shift problem,
we need to understand the structure of the states γ(k)

1 (s), γ(k)
1 , and γ(k)

2 . Here we determine
their block structure and use it to compute the spectrum of γ(k)

1 for k = 1 and 2.
Observe that γ1(s) has the following form:

γ1(s) =
1

2|G|
∑
g∈G

|0, g〉〈0, g|+ |1, gs〉〈1, gs|+ |0, g〉〈1, gs| + |1, gs〉〈0, g| (26)

=
1

2|G|
(

I R(s)
R(s−1) I

)
, (27)
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where R is the right regular representation of G, defined by

R(s)|g〉 = |gs−1〉 (28)

for all s, g ∈ G. Recall that the regular representation contains all irreducible representations
of G with multiplicities given by their dimensions. More precisely, we have

F R(s)F † =
⊕
ρ∈Ĝ

Idρ ⊗ ρ(s) (29)

for all s ∈ G, where F is the Fourier transform over G and Ĝ is a complete set of irre-
ducible representations of G. In other words, the Fourier transform decomposes the regular
representation into its irreducible constituents.

Using the Fourier transform, the states γ(k)
1 (s), γ(k)

1 , and γ
(k)
2 can be simultaneously

block diagonalized for any k ∈ N. The blocks are enumerated by k-tuples of irreducible
representations. In particular, in the Fourier basis we have

γ̃
(k)
1 (s) =

1
(2|G|)k

⊕
(ρ1,...,ρk)∈Ĝk

Idρ1 ···dρk
⊗Bρ1,...,ρk(s) (30)

γ̃
(k)
1 =

1
(2|G|)k

⊕
(ρ1,...,ρk)∈Ĝk

Idρ1 ···dρk
⊗Bρ1,...,ρk (31)

γ̃
(k)
2 =

1
(2|G|)k

⊕
(ρ1,...,ρk)∈Ĝk

Idρ1 ···dρk
⊗ I2dρ1 ···2dρk

(32)

where

Bρ1,...,ρk(s) :=
k⊗

j=1

(
Idρj

ρj(s)
ρj(s−1) Idρj

)
(33)

Bρ1,...,ρk :=
1
|G|

∑
s∈G

Bρ1,...,ρk(s) . (34)

Here the factor dρ1 · · · dρk
accounts for the multiplicity of (ρ1, . . . , ρk) in k copies of the regular

representation of G.
It is straightforward to check that the blocks Bρ1,...,ρk(s) and Bρ1,...,ρk can be expressed

as

Bρ1,...,ρk(s) =
∑

x,y∈{0,1}k

|x〉〈y| ⊗Aρ1,...,ρk

y1−x1,...,yk−xk
(s) (35)

Bρ1,...,ρk =
∑

x,y∈{0,1}k

|x〉〈y| ⊗Aρ1,...,ρk
y1−x1,...,yk−xk

, (36)

where

Aρ1,...,ρk
z1,...,zk

(s) := ρ1(sz1) ⊗ ρ2(sz2) ⊗ · · · ⊗ ρk(szk) (37)

Aρ1,...,ρk
z1,...,zk

:=
1
|G|

∑
s∈G

Aρ1,...,ρk
z1,...,zk

(s) (38)
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for all z ∈ {−1, 0, 1}k. Clearly, the matrices Aρ1,...,ρk
z1,...,zk

are hermitian, that is, Aρ1,...,ρk
z1,...,zk

=
Aρ1,...,ρk

−z1,...,−zk
.

To understand the form of these matrices, we must carry out the sum in (38) for various
choices of the irreducible representations ρ1, . . . , ρk ∈ Ĝ and the indices z1, . . . , zk ∈ {−1, 0, 1}.
If all zj have the same sign, then such a calculation is straightforward, using the following
well-known result:
Lemma 4. Let π be any representation of the group G. Then the matrix

A :=
1
|G|

∑
g∈G

π(g) (39)

is a projection operator whose rank is the number of times the trivial representation appears
in π.

Proof. Decompose the representation π into irreducible representations. Let σ be any ir-
reducible representation occurring in π. The sum B = 1

|G|
∑

g∈G σ(g) is a multiple of the
identity matrix because B commutes with all σ(h) for h ∈ G. The trace of B is the inner
product of the trivial character and the character of σ. Therefore, B = 1 if σ is the trivial
representation and B is the zero matrix if σ is not the trivial representation.

In general, we will have zj ’s of both signs. In this case we may say that A includes both
representations and antirepresentations of G, since g �→ ρ(g−1) is a group antihomomorphism.
Fortunately, this case can be dealt with using the following:
Lemma 5. Let ρ and σ be two irreducible representations of G. Then the entries of the
matrix

A :=
1
|G|

∑
g∈G

ρ(g) ⊗ σ(g−1) (40)

are given by

Ai,j;k,l = δρ,σ
1
dρ
δi,l δj,k (41)

where i, j are the row and column indices of the first tensor component and k, l are the row
and column indices of the second tensor component.

Proof. The entries are given by

Ai,j;k,l =
1
|G|

∑
g∈G

ρij(g) ⊗ σlk(g) ; (42)

then (41) follows directly from the Schur orthogonality relations.

Now we are ready to investigate the blocks Bρ for k = 1 and the blocks Bρ,ρ for k = 2.
Lemma 6 (Spectrum for k = 1). The block B1̂ has eigenvalues 2 and 0. For ρ 	= 1̂, Bρ = I2dρ .

Proof. Since ρ1̂(s) = 1 for all s,

B1̂ =
(

1 1
1 1

)
, (43)

which has eigenvalues 2 and 0. For ρ 	= 1̂,
∑

s∈G ρ(s) = 0 by the orthogonality of ρ and 1̂, so
that Bρ = I2dρ as claimed.
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Lemma 7 (Spectrum for k = 2). For any ρ ∈ Ĝ − {1̂}, either Bρ,ρ has the spectrum 1
(multiplicity 2d2

ρ) and 1 ± 1/dρ (multiplicity d2
ρ each); or the spectrum 2 (multiplicity 1), 0

(multiplicity 1), 1 (multiplicity 2d2
ρ − 2), and 1 ± 1/dρ (multiplicity d2

ρ each).

Proof. For simplicity, we omit the label ρ, ρ. The block of interest has the form

B =

⎛
⎜⎜⎝

I A0,1 A1,0 A1,1

A0,1 I A1,−1 A1,0

A1,0 A1,−1 I A0,1

A1,1 A1,0 A0,1 I

⎞
⎟⎟⎠ . (44)

Recall that the blocks of B are enumerated by x, y ∈ {0, 1}2. The matrix at position (x, y) is
given by Ay−x, where the A matrices are defined by

Az :=
1
|G|

∑
g∈G

ρ(gz1) ⊗ ρ(gz2) (45)

for z ∈ {−1, 0, 1}2. We have simplified (44) to minimize the number of −1’s using the fact
that Az is hermitian, so Az = A−z.

Since ρ 	= 1̂ by assumption, A0,1 = A1,0 = 0 by the calculation in Lemma 6. Thus

B =

⎛
⎜⎜⎝

I 0 0 A1,1

0 I A1,−1 0
0 A1,−1 I 0

A1,1 0 0 I

⎞
⎟⎟⎠ ∼=

(
I A1,1

A1,1 I

)
⊕
(

I A1,−1

A1,−1 I

)
. (46)

Hence it remains to understand the operators A1,1 and A1,−1.
Since ρ (and hence also ρ̄) is irreducible, the trivial representation appears at most once

in ρ⊗ ρ, so by Lemma 4, A1,1 is either zero or a projector of rank one. Hence the matrix(
I A1,1

A1,1 I

)
(47)

is either the identity, or has the eigenvalues 2 and 0 with multiplicity 1, and 1 with multiplicity
2d2

ρ − 1. By Lemma 5, A1,−1 has eigenvalues ±1/dρ, so that(
I A1,−1

A1,−1 I

)
(48)

has the eigenvalues 1 ± 1/dρ each with multiplicity d2
ρ.

6 Single-register measurements do not suffice

In this section we show that single-register measurements do not suffice to efficiently solve
the hidden shift problem for G = Sn.

Let us first explain in more detail what is meant by an algorithm restricted to single-
register measurements. A POVM E with a set of possible outcomes J is a collection of
positive operators E = {Ej : j ∈ J} satisfying the completeness condition∑

j

Ej = I . (49)
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An efficient algorithm consists of a polynomial number of POVMs E1, . . . , Et, each acting on
a single copy of the hidden shift state. After obtaining the measurement outcomes j1, . . . , jt,
a final computation is performed to decide whether there is a hidden shift or not. Note that
the individual outcomes ji need not directly correspond to one situation or the other. Also,
let us stress out that the POVMs E1, . . . , Et may be chosen adaptively, that is, Er may depend
on all previous outcomes j1, . . . , jr−1 for 2 ≤ r ≤ t.

To simplify the analysis, we can refine any POVM E so that each Ej = aj |ψj〉〈ψj | where
each |ψj〉 is a unit vector and aj > 0 without loss of generality. This is because any positive
operator can be written as a weighted sum of projection operators, where the weights corre-
spond to the eigenvalues and the projection operators to the eigenspaces. The result of this
measurement on the state γ is a random variable, where we obtain j ∈ J with probability

p(j) = aj〈ψj |γ|ψj〉 . (50)

In our case, the POVM can be further simplified because the states γ(k)
1 (s), γ(k)

1 , and γ(k)
2

can be simultaneously block-diagonalized as described in Section 5. The blocks are labeled
by irreducible representations of G. Therefore, as in the hidden subgroup problem, we may
assume without loss of generality that we first perform a Fourier transform on the group
register and then measure the representation name (so-called weak Fourier sampling). Next,
we perform a measurement within the subspace corresponding to the observed representation.

From the block decomposition of the states described in Section 5, it is clear that the
various irreducible representations of G occur independently according to the Plancherel dis-
tribution, i.e.,

Pr(ρ) =
d2

ρ

|G| , (51)

regardless of whether or not there is a hidden shift. This is analogous to the fact that weak
Fourier sampling is insufficient to distinguish between the trivial subgroup and the subgroups
generated by full support involutions in the symmetric group [18].

Suppose we measure the representation name and observe a particular ρ ∈ Ĝ. Then
consider an arbitrary POVM E = {a1|ψ1〉〈ψ1|, . . . , ar|ψr〉〈ψr |} acting on the subspace of
dimension 2dρ corresponding to the observed representation.

If there is no hidden shift (that is, if the state is γ(1)
2 ), then the post-measurement state

is I2dρ/(2dρ), and the probability of obtaining the outcome j is

p2(j) =
aj

2dρ
〈ψj |I2dρ |ψj〉 =

aj

2dρ
. (52)

We denote this probability distribution by P2. On the other hand, if there is a hidden shift s,
then the post-measurement state is Bρ(s)/(2dρ), and the probability of obtaining the outcome
j is

p1(j|s) :=
aj

2dρ
〈ψj |Bρ(s)|ψj〉 ; (53)

we denote this distribution by P1,s. We will also be interested in the distribution P1 obtained
by averaging over s ∈ G, i.e., with the probabilities

p1(j) :=
1
|G|

∑
s∈G

p1(j|s) . (54)
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Following [26, 28], the strategy for proving that single-register measurements are not suf-
ficient is to show that with high probability (over the hidden shift s and the observed repre-
sentation ρ), the statistics of the measurement results when there is a hidden shift s are close
to those when there is no hidden shift. More precisely, we will prove
Theorem 8.

Pr
s∈G,ρ∈Ĝ

(‖P1,s − P2‖1 ≥ e−Θ(n)) ≤ e−Θ(n) (55)

To prove this theorem, we first show that with high probability (over a uniformly random
choice of s ∈ G and the Plancherel distribution of irreducible representations ρ ∈ Ĝ), the
distribution P1,s is close to the distribution P1. Then it suffices to show that P1 and P2 are
typically close, which is straightforward (since in fact, they are typically identical).

Because P1 is the average of P1,s over s ∈ G, we can show that the distributions are
likely to be close by showing that the variance of p1(j|s) is small (so that we can apply the
Chebyshev inequality). More precisely, we will use the following:
Lemma 9 (Upper bound on the sum of weighted variances). Assume we have measured the
irreducible representation ρ 	= 1̂, and we perform an arbitrary measurement E = {aj|ψj〉〈ψj | :
j ∈ J}. Then ∑

j∈J

σ2
j

aj
≤ 1
d2

ρ

(56)

where σ2
j is the variance of p1(j|s) when s is chosen uniformly from G.

Proof. For any fixed j the variance σ2
j is given by

σ2
j :=

1
|G|

∑
s∈G

p1(j|s)2 − p1(j)2 . (57)

Recall that we have p1(j) = aj/(2dρ) for all j. This is because we have Bρ = I2dρ for all
ρ 	= 1̂ as shown in Lemma 6.

The second moment can be expressed in terms of the block Bρ,ρ. We have

1
|G|

∑
s∈G

p1(j|s)2 =
a2

j

(2dρ)2
1
|G|

∑
s∈G

(〈ψj |Bρ(s)|ψj〉
)2 (58)

=
a2

j

(2dρ)2
1
|G|

∑
s∈G

〈ψj |〈ψj |Bρ(s) ⊗Bρ(s)|ψj〉|ψj〉 (59)

=
a2

j

(2dρ)2
1
|G|

∑
s∈G

〈ψj |〈ψj |Bρ,ρ(s)|ψj〉|ψj〉 (60)

=
a2

j

(2dρ)2
〈ψj |〈ψj |Bρ,ρ|ψj〉|ψj〉 . (61)

Set Δ := |Bρ,ρ − I|. Then we have for the variance the upper bound

σ2
j ≤ a2

j

(2dρ)2
〈ψj |〈ψj |Δ|ψj〉|ψj〉 . (62)
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The operator Δ has the eigenvalue 1 occurring with multiplicity either 0 or 2 and the eigen-
value 1/dρ occurring with multiplicity 2d2

ρ. This follows from Lemma 7 where we have de-
termined the spectrum of blocks of the form Bρ,ρ. Denote the spectral decomposition of Δ
by

Δ = P +
1
dρ
Q (63)

where P,Q are projectors. We bound the sum of the weighted variances by looking at P and
Q/dρ separately. We have

∑
j∈J

aj〈ψj |〈ψj |Q/dρ|ψj〉|ψj〉 ≤
∑
j∈J

aj

dρ
= 2 . (64)

We also have ∑
j∈J

aj〈ψj |〈ψj |P |ψj〉|ψj〉 ≤ rankP ≤ 2 (65)

where the first inequality follows by Lemma 12 in [28]. Putting these two bounds together
and multiplying by 1/(2dρ)2, we obtain the desired result.

Now we can use this result to show that P1,s and P1 are probably close:
Lemma 10.

Pr
s∈G,ρ∈Ĝ

(‖P1,s − P1‖1 ≥ e−Θ(n)) ≤ e−Θ(n) (66)

Proof. For any fixed representation ρ ∈ Ĝ, according to Chebyshev’s inequality,

Pr
s∈G

(∣∣p1(j|s) − p1(j)
∣∣ ≥ ajc

) ≤ σ2
j

a2
jc

2
(67)

for any c > 0. Now define

Js
bad :=

{
j ∈ J :

∣∣p1(j|s) − p1(j)
∣∣ ≥ ajc

}
, (68)

and define Js
good := J − Js

bad. The total variation distance can be decomposed into contribu-
tions from good and bad j’s. For the good j’s, we have∑

j∈Js
good

∣∣p1(j|s) − p1(j)
∣∣ ≤ ∑

j∈Js
good

ajc (69)

≤ 2dρc . (70)

Now for any j ∈ J (and in particular, for j ∈ Js
bad), we have

∣∣p1(j|s) − p1(j)
∣∣ =

aj

2dρ

∣∣〈ψj |Bρ(s) −Bρ|ψj〉
∣∣ (71)

≤ aj

2dρ
‖Bρ(s) −Bρ‖ (72)

≤ aj

dρ
. (73)
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Thus it suffices to show that
∑

j∈Js
bad

aj is small. The expectation of this quantity is

E
s∈G

∑
j∈Js

bad

aj =
1
|G|

∑
s∈G

∑
j∈J

aj δ[j ∈ Js
bad] (74)

=
∑
j∈J

aj Pr
s∈G

(j ∈ Js
bad) (75)

≤
∑
j∈J

σ2
j

ajc2
(76)

≤ 1
d2

ρc
2

(77)

where in the last line we have used Lemma 9 (assuming ρ 	= 1̂, which we will later ensure).
Hence by Markov’s inequality,

Pr
( ∑

j∈Js
bad

aj ≥ c′
)

≤ 1
d2

ρc
2c′

(78)

for any c′ > 0. Conditioning on this event, we have

‖P1,s − P1‖1 =
∑

j∈Js
good

∣∣p1(j|s) − p1(j)
∣∣+ ∑

j∈Js
bad

∣∣p1(j|s) − p1(j)
∣∣ (79)

≤ 2dρc+
c′

dρ
(80)

with probability at least

1 − 1
d2

ρc
2c′

. (81)

Hence if we choose

c =
e−αn

dρ
(82)

c′ = e3αn (83)

for some fixed α > 0, we find

‖P1,s − P1‖1 ≤ 2e−αn +
e3αn

dρ
(84)

with probability at least
1 − e−αn . (85)

For P1,s and P1 to be close with high probability, it suffices that dρ is large with high proba-
bility, so that the second term of (84) is small. Thus we condition on the event that dρ > nc′′n

for some constant c′′, which occurs with probability at least 1 − n−Ω(n) [28, Lemma 6]. This
completes the proof.

Finally, we must show that the probability distributions P1 and P2 are close in total
variation distance:
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Lemma 11. For an arbitrary POVM acting on a single copy of the hidden shift state,

‖P ρ
1 − P ρ

2 ‖ = 0 (86)

for ρ 	= 1̂ and

‖P 1̂
1 − P 1̂

2 ‖ ≤ 1
2

(87)

for the trivial representation 1̂.

Proof. Let B be the block corresponding to the measured representation. Let Δ := |I − B|.
Then we have

‖P1 − P2‖ =
1

2dρ

∑
j

aj |〈ψj |Idρ |ψj〉 − 〈ψj |B|ψj〉| (88)

≤ 1
2dρ

∑
j

aj〈ψj |Δ|ψj〉 (89)

=
1

2dρ

∑
j

tr(aj |ψj〉〈ψj |Δ) (90)

=
1

2dρ
tr(Δ) . (91)

We have determined the spectrum of B in Lemma 6, from which the lemma follows.

Putting these results together, we can now prove the main result:

Proof of Theorem 8. Since the trivial representation only appears with probability 1/n!, we
can simply condition on not obtaining the trivial representation, and the result follows from
Lemmas 10 and 11.

Acknowledgments

We thank Dorit Aharonov, Sean Hallgren, Martin Rötteler, and Pranab Sen for helpful dis-
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Appendix: Rank calculations

Although the measurement that projects on the support of γ(k)
1 need not be optimal in general,

it is nevertheless a natural measurement to consider—for example, an analogous measurement
was used in [10] to show that O(n log n) hidden subgroup states are sufficient to solve a hidden
subgroup problem relevant to graph isomorphism. Since we are trying to distinguish γ(k)

1 from
the maximally mixed state, the success probability of the measurement that projects onto the
support depends only on the rank of γ(k)

1 (see (13)). Here we summarize some results on the
rank for k = 1 and 2.

For the case k = 1, Lemma 6 immediately gives

rank γ(1)
1 = 2|G| − 1 . (A.1)

For the case k = 2, Lemma 7 gives the contribution to the rank from the cases where
the same irreducible representation ρ 	= 1̂ occurs twice. It is straightforward to calculate the
contribution from the other cases, giving the final result

rank γ(2)
1 = 4|G|2 − 6|G| + 3 +

∑
ρ∈Ĝ, dρ>1

d2
ρ (A.2)

= 4|G|2 − 5|G| + 3 − |{ρ ∈ Ĝ : dρ = 1}| . (A.3)

In particular, for G = Sn, we have |G| = n! and only two one-dimensional representations
(the trivial and sign representations), so

rank γ(2)
1 = 4(n!)2 − 5n! + 1 . (A.4)

Calculations of the rank for larger k would seem to require a better understanding of the
structure of γ(k)

1 .


