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1 Introduction and Overview

The notorious complexity of quantum many-body systems stems to a large extent from the
exponential growth of the underlying Hilbert space which allows for highly entangled quantum
states. Whereas this is a blessing for quantum information theory—it facilitates exponential
speed-ups in quantum simulation and quantum computing—it is often more a curse for con-
densed matter theory where the complexity of such systems make them hardly tractable by
classical means. Fortunately, physical interactions are local such that states arising for in-
stance as ground states from such interactions are not uniformly distributed in Hilbert space.
Hence, it is desirable to have a representation of quantum many-body states whose correla-
tions are generated in a ‘local’ manner. Despite the fact that it is hard to make this picture
rigorous, there is indeed a representation which comes close to this idea—the matrix product
state (MPS) representation. In fact, this representation lies at the heart of the power of the
density matrix renormalization group (DMRG) method and it is the basis for a large number
of recent developments in quantum information as well as in condensed matter theory.

This work gives a detailed investigation of the MPS representation with a particular focus
on the freedom in the representation and on canonical forms. The core of our work is a gen-
eralization of the results on finitely correlated states in [1] to finite systems with and without
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translational invariance. We will mainly discuss exact MPS representations throughout and
just briefly review results on approximations in Sec.6. In order to provide a more complete
picture of the representation and its use we will also briefly review and extend various recent
results based on MPS, their parent Hamiltonians and their generation. The following gives
an overview of the article and sketches the obtained results:

• Sec.2 will introduce the basic notions, provide some examples and give an overview
over the relations between MPS and the valence bond picture on the one hand and
frustration free Hamiltonians and finitely correlated states on the other.

• In Sec.3 we will determine the freedom in the MPS representation, derive canonical
forms and provide efficient ways for obtaining them. Cases with and without transla-
tional invariance are distinguished. In the former cases we show that there is always
a translational invariant representation and derive a canonical decompositions of states
into superpositions of ‘ergodic’ and periodic states (as in [1]).

• Sec.4 investigates a standard scheme which constructs for any MPS a local Hamiltonian,
which has the MPS as exact ground state. We prove uniqueness of the ground state (for
the generic case) without referring to the thermodynamic limit, discuss degeneracies
(spontaneous symmetry breaking) based on the canonical decomposition and review
results on uniform bounds to the energy gap.

• In Sec.5 we will review the connections between MPS and sequential generation of
multipartite entangled states. In particular we will show that MPS are feasible to
generate in a lab.

• In Sec.6 we will review the results that show how MPS efficiently approximate many
important states in nature; in particular, ground states of 1D local Hamiltonians. We
will also show how the MPS formalism is crucial to understand the need of a large
amount of entanglement in a quantum computer in order to have a exponential speed-
up with respect to a classical one.

2 Definitions and Preliminaries

2.1 MPS and the valence bond picture

We will throughout consider pure quantum states |ψ〉 ∈ C
⊗dN

characterizing a system of N
sites each of which corresponds to a d-dimensional Hilbert space. A very useful and intuitive
way of thinking about MPS is the following valence bond construction: consider the N parties
(’spins’) aligned on a ring and assign two virtual spins of dimensionD to each of them. Assume
that every pair of neighboring virtual spins which correspond to different sites are initially in
an (unnormalized) maximally entangled state |I〉 =

∑D
α=1 |α, α〉 often referred to as entangled

bond. Then apply a map

A =
d∑

i=1

D∑
α,β=1

Ai,α,β |i〉〈α, β| (1)

to each of the N sites. Here and in the following Greek indices correspond to the virtual
systems. By writing Ai for the D×D matrix with elements Ai,α,β we get that the coefficients
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of the final state when expressed in terms of a product basis are given by a matrix product
tr [Ai1Ai2 · · ·AiN ]. In general the dimension of the entangled state |I〉 and the map A can
both be site-dependent and we write A[k]

i for the Dk × Dk+1 matrix corresponding to site
k ∈ {1, . . . , N}. States obtained in this way have then the form

|ψ〉 =
d∑

i1,...,iN =1

tr
[
A

[1]
i1
A

[2]
i2

· · ·A[N ]
iN

]
|i1, i2, . . . , iN 〉 , (2)

and are called matrix product states [2]. As shown in [3] every state can be represented in this
way if only the bond dimensions Dk are sufficiently large. Hence, Eq.(2) is a representation
of states rather than the characterization of a specific class. However, typically states are
referred to as MPS if they have a MPS-representation with small D = maxk Dk which (in the
case of a sequence of states) does in particular not grow with N . Note that ψ in Eq.(2) is in
general not normalized and that its MPS representation is not unique. Normalization as well
as other expectation values of product operators can be obtained from

〈ψ|
N⊗

k=1

Sk|ψ〉 = tr

[
N∏

k=1

E
[k]
Sk

]
, with

E
[k]
S ≡

d∑
i,j=1

〈i|S|j〉A[k]

i ⊗A
[k]
j . (3)

Fig. 1. Computing an expectation value of an MPS is equivalent to contract the tensor of the
figure, where bonds represent indices that are contracted. The matrices associated to each spin are

represented by the circles (the vertical bond of each matrix is its physical index) and observables
are represented by squares. It is trivial to see that this contraction can be done efficiently.

2.2 Finitely correlated states

The present work is inspired by the papers on finitely correlated states (FCS) which in turn
generalize the findings of Affleck, Kennedy, Lieb and Tasaki (AKLT) [4]. In fact, many of
the results we derive are extensions of the FCS formalism to finite and/or non-translational
invariant systems. For this reason we will briefly review the work on FCS. A FCS is a
translational invariant state on an infinite spin chain which is constructed from a completely
positive and trace preserving map E : B(HA) → B(HA⊗HB) and a corresponding fixed point
density operator Λ = trB[E(Λ)]. Here HB = Cd is the Hilbert space corresponding to one
site in the chain and HA = CD is an ancillary system. An n-partite reduced density matrix
ρn of the FCS is then obtained by repeated application of E to the ancillary system (initially
in Λ) followed by tracing out the ancilla, i.e.,

ρn = trA

[
E

n(Λ)
]
. (4)
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An important instance are purely generated FCS where E(x) = V †xV is given by a partial
isometry V . The latter can be easily related to the A’s in the matrix product representation
via V =

∑d
i=1

∑D
α,β=1Ai,α,β |α〉〈βi|. Expressed in terms of the matrices Ai the isometry

condition and the fixed point relation read
d∑

i=1

AiA
†
i = � ,

d∑
i=1

A†
iΛAi = Λ , (5)

which already anticipates the type of canonical forms for MPS discussed below. As shown
in [5] purely generated FCS are weakly dense within the set of all translational invariant
states on the infinite spin chain. Moreover, a FCS is ergodic, i.e., an extreme point within all
translational invariant states, iff the map E(x) =

∑
iAixA

†
i has a non-degenerate eigenvalue

1 (i.e., � and Λ are the only fixed points in Eq.(5)). Every FCS has a unique decomposition
into such ergodic FCS which in turn can be decomposed into p p-periodic states each of which
corresponds to a root of unity exp(2πi

p m), m = 0, . . . , p− 1 in the spectrum of E . A FCS is
pure iff it is purely generated and 1 is the only eigenvalue of E of modulus 1. In this case
the state is exponentially clustering, i.e., the connected two-point correlation functions decay
exponentially

〈Si ⊗ �
⊗l−1 ⊗ Si+l〉 − 〈Si〉〈Si+l〉 = O(|ν2|l−1

)
, (6)

where ν2 (|ν2| < 1) is the second largest eigenvalue of E .

2.3 Frustration free Hamiltonians

Consider a translational invariant Hamiltonian on a ring of N d-dimensional quantum systems

H =
N∑

i=1

τ i
(
h
)
, (7)

where τ is the translation operator with periodic boundary conditions, i.e., τ
(⊗N

i=1 xi

)
=⊗N

i=1 xi+1 where sites N + 1 and 1 are identified. The interaction is called L-local if h acts
non-trivially only on L neighboring sites, and it is said to be frustration free with respect to
its ground state φ0 if the latter minimizes the energy locally in the sense that 〈φ0|H |φ0〉 =
infφ〈φ|H |φ〉 = N infφ〈φ|h|φ〉. As proven in [6] all gapped Hamiltonians can be approximated
by frustration free ones if one allows for enlarging the interaction range L up to O(logN).

For every MPS and FCS ψ one can easily find frustration free Hamiltonians such that
ψ is their exact ground state. Moreover, these parent Hamiltonains are L-local with L ∼
2 logD/ log d and they allow for a detailed analysis of the ground state degeneracy (Sec.4.1)
and the energy gap above the ground state (Sec.4.2). Typically, these Hamiltonians are,
however, not exactly solvable, i.e., information about the excitations might be hard to obtain.

2.4 Examples

1. AKLT: The father of all matrix product states is the ground state of the AKLT-
Hamiltonian

H =
∑

i

	Si
	Si+1 +

1
3

(
	Si
	Si+1

)2

, (8)

where 	S is the vector of spin-1 operators (i.e., d=3). Its MPS representation is given
by {Ai} =

{
σz,

√
2σ+,−√

2σ−} where the σ’s are the Pauli matrices.



D. Perez-Garcia, F. Verstraete, M.M. Wolf, and J.I. Cirac 405

2. Majumdar-Gosh: The Hamiltonian

H =
∑

i

2	σi	σi+1 + 	σi	σi+2 (9)

is such that every ground state is a superposition of two 2-periodic states given by
products of singlets on neighboring sites. The equal weight superposition of these states
is translational invariant and has an MPS representation

A1 =

⎛⎝ 0 1 0
0 0 −1
0 0 0

⎞⎠ , A2 =

⎛⎝ 0 0 0
1 0 0
0 1 0

⎞⎠ . (10)

3. GHZ states of the form |ψ〉 = | + + . . .+〉 + | − − . . .−〉 have an MPS representation
A± = �± σz . Anti-ferromagnetic GHZ states would correspond to A± = σ±.

4. Cluster states are unique ground states of the three-body interactions
∑

i σ
z
i σ

x
i+1σ

z
i+2

and represented by the matrices

A1 =
(

0 0
1 1

)
, A2 =

(
1 −1
0 0

)
.

5. W-states can for instance appear as ground states of the ferromagnetic XX model with
strong transversal magnetic field. A W-state is an equal superposition of all translates
of |100 . . .00〉. For a simple MPS representation choose {A[k]

1 , A
[k]
2 } equal to {σ+,�} for

all k < N and {σ+σx, σx} for k = N . Although the state itself is translational invariant
there is no MPS representation with D = 2 having this symmetry.

3 The canonical form

The general aim of this section will be to answer the following questions about the MPS
representation of a given pure state:

Question 1 Which is the freedom in the representation?
Question 2 Is there any canonical representation?
Question 3 If so, how to get it?
We will distinguish two cases. The general case, or the case of open boundary conditions

(OBC) and the case in which one has the additional properties of translational invariance
(TI) and periodic boundary conditions (PBC).

3.1 Open boundary conditions

A MPS is said to be written with open boundary conditions (OBC) if the first and last
matrices are vectors, that is, if it has the form

|ψ〉 =
∑

i1,...,iN

A
[1]
i1
A

[2]
i2

· · ·A[N−1]
iN−1

A
[N ]
iN

|i1 · · · iN〉, (11)

where A[m]
i are Dm ×Dm+1 matrices with D1 = DN+1 = 1. Moreover, if D = maxmDm we

say that the MPS has (bond) dimension D. The following is shown in [3]:
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Theorem 1 (Completeness and canonical form) Any state ψ ∈ Cd⊗N has an OBC-
MPS representation of the form Eq.(11) with bond dimension D ≤ d�N/2� and

1.
∑

iA
[m]
i A

[m]†
i = �Dm for all 1 ≤ m ≤ N .

2.
∑

iA
[m]†
i Λ[m−1]A

[m]
i = Λ[m], for all 1 ≤ m ≤ N ,

3. Λ[0] = Λ[N ] = 1 and each Λ[m] is a Dm+1 × Dm+1 diagonal matrix which is positive,
full rank and with tr Λ[m] = 1.

Thm.1 is proven by successive singular value decompositions (SVD), i.e., Schmidt decomposi-
tions in ψ, and the gauge conditions 1.-3. can be imposed by exploiting the simple observation
that A[m]

i A
[m+1]
j = (A[m]

i X)(X−1A
[m+1]
j ). If 1.-3. are satisfied for a MPS representation, then

we say that the MPS with OBC is in the canonical form. From the way it has been obtained
one immediately sees that:

• it is unique (up to permutations and degeneracies in the Schmidt Decomposition),

• Λ[m] is the diagonal matrix of the non-zero eigenvalues of the reduced density operator
ρm = trm+1,...,N |ψ〉〈ψ|,

• any state for which maxm rank(ρm) ≤ D can be written as a MPS of bond dimension
D.

This answers questions 2 and 3. Question 1 will be answered with the next theorem which
shows that the entire freedom in any OBC-MPS representation is given by ‘local’ matrix
multiplications.

Theorem 2 (Freedom in the choice of the matrices) Let us take a OBC-MPS rep-
resentation

|ψ〉 =
∑

i1,...,iN

B
[1]
i1
B

[2]
i2

· · ·B[N−1]
iN−1

B
[N ]
iN

|i1 · · · iN 〉 .

Then, there exist (in general non-square) matrices Yj, Zj with YjZj = � such that, if we
define

A
[1]
i = B

[1]
i Z1, A

[N ]
i = YN−1B

[N ]
i

A
[m]
i = Ym−1B

[m]
i Zm, for 1 < m < N (12)

the canonical form is given by

|ψ〉 =
∑

i1,...,iN

A
[1]
i1
A

[2]
i2

· · ·A[N−1]
iN−1

A
[N ]
iN

|i1 · · · iN〉. (13)

Proof. We will prove the theorem in three steps.
STEP 1. First we will find the matrices A[j]

i verifying relation (12) but just with the
property

∑
iA

[j]
i A

[j]†
i = �.

To this end we start from the right by doing SVD: B[N ]
α,i =

∑
β U

[N−1]
α,β Δ[N−1]

β A
[N ]
β,i , with

U [N−1], A[N ] unitaries and Δ[N−1] diagonal. That is B
[N ]
i = ZN−1A

[N ]
i , with ZN−1 =
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U [N−1]Δ[N−1]. Clearly
∑

i A
[N ]
i A

[N ]†
i = � and ZN−1 has a left inverse. Now we call B̃[N−1]

i =
B

[N−1]
i ZN−1 and make another SVD: B̃[N−1]

α,i,β =
∑

γ U
[N−2]
α,γ Δ[N−2]

γ A
[N−1]
γ,i,β . That is

B
[N−1]
i ZN−1 = B̃

[N−1]
i = ZN−2A

[N−1]
i ,

where
∑

iA
[N−1]
i A

[N−1]†
i = � and ZN−2 = U [N−2]Δ[N−2] has left inverse.

We can go on getting relations (12) to the last step, where one simply defines A[1]
i = B

[1]
i Z1.

From the construction one gets Eq.(13) and that
∑

iA
[j]
i A

[j]†
i = � for every 1 < j ≤ N . The

case j = 1 comes simply from the normalization of the state:

1 = 〈ψ|ψ〉 =
∑

i1,...,iN

A
[1]
i1

· · ·A[N ]
iN
A

[N ]†
iN

· · ·A[1]†
i1

=
∑
i1

A
[1]
i1
A

[1]†
i1
,

where in the last equality we have used that
∑

ij
A

[j]
ij
A

[j]†
i1

= � for 1 < j ≤ N .

STEP 2. Now we can assume that the B’s verify
∑

iB
[j]
i B

[j]†
i = �. Diagonalizing∑

i B
[1]†
i B

[1]
i we get a unitary V [1] and a positive diagonal matrix Λ[1] such that

∑
i B

[1]†
i B

[1]
i =

V [1]Λ[1]V [1]†. Calling A[1]
i = B

[1]
i V [1] we have both

∑
iA

[1]
i A

[1]†
i = � and

∑
i A

[1]†
i A

[1]
i = Λ[1].

Now we diagonalize
∑

iB
[2]†
i V [1]Λ[1]V [1]†B[2]

i = V [2]Λ[2]V [2]† and defineA[2]
i = V [1]†B[2]

i V [2]

to have both
∑

iA
[2]
i A

[2]†
i = � and

∑
i A

[2]†
i Λ[1]A

[2]
i = Λ[2]. We keep on with this procedure to

the very last step where we simply define A[N ]
i = V [N−1]†B[N ]

i .
∑

i A
[N ]
i A

[N ]†
i = � is trivially

verified and
∑

iA
[N ]†
i Λ[N−1]A

[N ]
i = Λ[N ] = 1 comes, as above, from the normalization of the

state. Moreover, by construction we have the relation (12) and Eq.(13).
STEP 3. At this point we have matrices Yj , Zj with YjZj = � such that, if we define A[j]

i

by (12), we get Dj × Dj+1 matrices verifying the conditions 1, 2 and 3 of Theorem 1 with
the possible exception that the matrices Λ[j] are not full rank. Now we will show that we can
redefine Yj , Zj (and hence Dj , A

[j]
i ) to guarantee also this full rank condition.

We do it by induction. Let us assume that Λ[j−1] is full rank and the Dj+1×Dj+1 positive
diagonal matrix Λ[j] is not. Then, calling

D̃j+1 = rank(Λ[j]) , Pj =
(
�

eDj+1

∣∣0Dj+1− eDj+1

)
,

we are finished if we update Zj as ZjP
†
j , Yj as PjYj (and hence Dj+1 as D̃j+1, A

[j]
i as

A
[j]
i P †

j , A[j+1]
i as PjA

[j+1]
i and Λ[j] as PjΛ[j]P †

j ). The only non-trivial part is to prove that

A
[j]
ij
A

[j+1]
ij+1

= A
[j]
ij
P †

j PjA
[j+1]
ij+1

. For that, calling C = �Dj+1 − P †
j Pj , it is enough to show that

A
[j]
i C = 0. Since

�Dj+1 − P †
j Pj =

(
0

eDj+1
0

0 �Dj+1− eDj+1

)
,

we have
0 = CΛ[j]C =

∑
i

CA
[j]†
i Λ[j−1]A

[j]
i C.

Since Λ[j−1] is positive and full rank we get A[j]
i C = 0. .
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3.2 Periodic boundary conditions and translational invariance

Clearly, if the A′s in the MPS in Eq.(2) are the same, i.e., site-independent (A[m]
i = Ai),

then the state is translationally invariant (TI) with periodic boundary conditions (PBC). We
will in the following first show that the converse is also true, i.e., that every TI state has a
TI MPS representation. Then we will derive canonical forms having this symmetry, discuss
their properties and show how to obtain them. An important point along these lines will
be a canonical decomposition of TI states into superpositions of TI MPS states which may
in turn be written as superpositions of periodic states. This decomposition closely follows
the ideas of [1] and will later, when constructing parent Hamiltonians, give rise to discrete
symmetry-breaking.

3.2.1 Site independent matrices

Before starting with the questions 1, 2 and 3, we will see that we can use TI and PBC to
assume the matrices in the MPS representation to be site independent. That is, if the state
is TI, then there is also a TI representation as MPS.

Theorem 3 (Site-independent matrices) Every TI pure state with PBC on a finite
chain has a MPS representation with site-independent matrices A[m]

i = Ai, i.e.,

|ψ〉 =
∑

i1,...,iN

tr(Ai1 · · ·AiN )|i1 · · · iN 〉 . (14)

If we start from an OBC MPS representation, to get site-independent matrices one has (in
general) to increase the bond dimension from D to ND (note the N -dependence).

Proof. We start with an OBC representation of the state with site-dependent A[m]
i and

consider the matrices (for 0 ≤ i ≤ d− 1)

Bi = N− 1
N

⎛⎜⎜⎜⎜⎜⎝
0 A

[1]
i

0 A
[2]
i

· · ·
0 A

[N−1]
i

A
[N ]
i 0

⎞⎟⎟⎟⎟⎟⎠ .

This leads to
d−1∑

i1,...,iN =0

tr(Bi1 · · ·BiN )|i1, . . . , iN〉 =

=
1
N

N−1∑
j=0

d−1∑
i1,...,iN =0

tr(A[1]
i1+j

· · ·A[N ]
iN+j

)|i1, . . . , iN 〉,

where ij = ij−N if j > N . Due to TI of ψ this yields exactly Eq.(14). .
To explicitly show the N -dependence of the above construction we consider the particular

case of the W -state |10 . . .0〉 + |01 . . . 0〉 + · · · + |0 . . . 01〉. In this case the minimal bond
dimension is 2 as a MPS with OBC. However, if we want site-independent matrices, it is not
difficult to show that one needs bigger matrices. In fact, we conjecture that the size of the
matrices has to grow with N (Appendix 1).
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From now on we suppose that we are dealing with a MPS of the form in Eq.(14) with the
matrices Ai of size D×D. In cases where we want to emphasize the site-independence of the
matrices, we say the state is TI represented or simply a TI MPS.

3.2.2 MPS and CP maps

There is a close relation (and we will repeatedly use it) between a TI MPS and the completely
positive map E acting on the space of D ×D matrices given by

E(X) =
∑

i

AiXA
†
i . (15)

One can always assume without loss of generality that the cp map E has spectral radius equal
to 1 which implies by [7, Theorem 2.5] that E has a positive fixed point. As in the FCS case
stated in Eq.(6) the second largest eigenvalue of E determines the correlation length of the
state and as we will see below the eigenvalues of magnitude one are closely related to the
terms in the canonical decomposition of the state. Note that E and E� =

∑
iAi ⊗ Āi have

the same spectrum as they are related via

〈β1|E(|α1〉〈α2|)|β2〉 = 〈β1, β2|E�|α1, α2〉 . (16)

Since the Kraus operators of the cp map E are uniquely determined up to unitaries, it
implies that E uniquely determines the MPS up to local unitaries in the physical system.
This is used in [8] to find the fixed points of a renormalization group procedure on quantum
states. There it is made explicit in the case of qubits, where a complete classification of
the cp-maps is known. To be able to characterize the fixed points in the general case one
has to find the reverse relation between MPS and cp maps. That is, given a MPS, which
are the possible E that can arise from different matrices in the MPS representation? It is
clear that a complete solution to question 1 will give us the answer. However, though we
will below provide the answer in the generic case, this is far from being completely general.
As a simple example of how different the cp-maps E can be for the same MPS, let us take
an arbitrary cp-map E(X) =

∑
iAiXA

†
i and consider the associate MPS for the case of 2

particles: |ψ〉 =
∑

i1,i2
tr(Ai1Ai2)|i1i2〉. Now translational invariance means permutational

invariance and hence it is not difficult to show that there exist diagonal matrices Di such that
|ψ〉 =

∑
i1,i2

tr(Di1Di2)|i1i2〉. This defines a new cp-map Ẽ(X) =
∑

i DiXD
†
i with diagonal

Kraus operators, for which e.g many of the additivity conjectures are true [9].

3.2.3 The canonical representation

In this section we will show that one can always decompose the matrices of a TI-MPS to a
canonical form. Subsequently we will discuss a generic condition based on which the next
section will answer question 2 concerning the uniqueness of the canonical form.

Theorem 4 (TI canonical form) Given a TI state on a finite ring, we can always de-
compose the matrices Ai of any of its TI MPS representations as

Ai =

⎛⎝ λ1A
1
i 0 0

0 λ2A
2
i 0

0 0 · · ·

⎞⎠ ,
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where 1 ≥ λj > 0 for every j and the matrices Aj
i in each block verify the conditions:

1.
∑

iA
j
iA

j†
i = �.

2.
∑

iA
j†
i ΛjAj

i = Λj, for some diagonal positive and full-rank matrices Λj.

3. � is the only fixed point of the operator Ej(X) =
∑

i A
j
iXA

j†
i .

If we start with a TI MPS representation with bond dimension D, the bond dimension of
the above canonical form is ≤ D.

Proof. We assume w.l.o.g. that the spectral radius of E is 1 (this is where the λj appear)
and we denote byX a positive fixed point of E . IfX is invertible, then calling Bi = X− 1

2AiX
1
2

we have
∑

i BiB
†
i = � and hence condition 1.

If X is not invertible and we write X =
∑

α λα|α〉〈α|, and we call PR the projection onto
the subspace R spanned by the |α〉’s, then we have that AiPR = PRAiPR for every i. To see
this, it is enough to show that Ai|α〉 ∈ R for every i, |α〉. If this does not happen for some j, |β〉,
then

∑
α λα|α〉〈α| − λβAj |β〉〈β|A†

j �≥ 0. But, since
∑

α λα|α〉〈α| =
∑

i

∑
α λαAi|α〉〈α|A†

i , we
have obtained that ∑

(i,α) �=(j,β)

λαAi|α〉〈α|A†
i �≥ 0,

which is the desired contradiction.
If we call R⊥ the orthogonal subspace of R, we can decompose our state as

|ψ〉 =
∑

i1,...,iN

trR(Ai1 · · ·AiN )|i1 · · · iN 〉 +

+
∑

i1,...,iN

trR⊥(Ai1 · · ·AiN )|i1 · · · iN〉.

On the one hand trR(Ai1 · · ·AiN ) is given by

tr(PRAi1 · · ·AiNPR) = tr(PRAi1PR · · ·PRAiNPR)

which corresponds to a MPS with matrices Bi = PRAiPR of size dim(R) × dim(R). On the
other hand

trR⊥(Ai1 · · ·AiN ) = tr(PR⊥Ai1 · · ·AiNPR⊥)

= tr(PR⊥Ai1PR⊥ · · ·PR⊥AiNPR⊥)

since AiPR⊥ = PRAiNPR⊥ + PR⊥AiNPR⊥ and the PR in the first summand goes through all
the matrices Aij to finally cancel with PR⊥ . Then we have also matrices Ci = PR⊥AiNPR⊥ of
size dim(R⊥) × dim(R⊥) such that we can write out original state with the following D ×D

matrices (
Bi 0
0 Ci

)
.

For each one of these blocks we reason similarly and we end up with block-shaped matrices
with the property that each block satisfies 1 in the Theorem. Let us now assume that for one
of the blocks, the map X 
→ ∑

i BiXB
†
i has a fixed point X �= �. We can suppose X self-

adjoint and then diagonalize it X =
∑

α λα|α〉〈α| with λ1 ≥ · · · ≥ λn. Obviously, �− 1
λ1
X is a
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positive fixed point that is not full rank, and this allows us (reasoning as above) to decompose
further the block Bi in subblocks until finally every block satisfies both properties 1 and 3
in the Theorem. By the same arguments we can ensure that the only fixed point of the dual
map X 
→ ∑

iB
†
iXBi of each block is also positive and full rank, and so, by choosing an

adequate unitary U and changing Bi to UBiU
†, we can diagonalize this fixed point to make

it a diagonal positive full-rank matrix Λ, which finishes the proof of the Theorem. .

Note that Thm.4 gives rise to a decomposition of the state into a superposition of TI MPS
each of which has only one block in its canonical form and a respective cp-map Ej with a non-
degenerate eigenvalue 1 (due to the uniqueness of the fixed point). The following argument
shows that in cases where Ej has other eigenvalues of magnitude one further decomposition
into a superposition of periodic states is possible.

Examples of states with such periodic decompositions (for p = 2) are the anti-ferromagnetic
GHZ state and the Majumdar-Gosh state.

Theorem 5 (Periodic decomposition) Consider any TI state ψ ∈ C
d⊗Nwhich has

only one block in its canonical TI MPS representation (Thm.4) with respective D×D matrices
{Ai}. If E(X) =

∑
i AiXA

†
i has p eigenvalues of modulus one, then if p is a factor of N

the state can be written as a superposition of p p-periodic states each of which has a MPS
representation with bond dimension D. If p is no factor, then ψ = 0.

Proof. The theorem is a consequence of the spectral properties of the cp map E , which
were proven in [1]. There it is shown that if the identity is the only fixed point of E , then there
exists a p ∈ N such that {ωk}k=1...p with ω = exp 2πi

p are all eigenvalues of E with modulus
1. Moreover, there is a unitary U =

∑p
k=1 ω

kPk, where {Pk} is a set of orthogonal projectors
with

∑
k Pk = � such that E(XPk) = E(X)Pk−1 for all D ×D matrixes X (and cyclic index

k). It is straightforward to show that the latter implies that

∀j, k : AjPk = Pk−1Aj . (17)

Exploiting this together with the decomposition of the trace tr[. . .] =
∑

k tr[Pk . . . Pk] leads to
a decomposition of the state |ψ〉 =

∑p
k=1 |ψk〉 where each of the states |ψk〉 in the superposition

has a MPS representation with site-dependent matrices Aij = Pk+j−1AijPk+j . Hence, each
|ψk〉 is p-periodic and, since PkPl = δk,lPk, non-zero only if p is a factor of N . .

3.2.4 Generic cases

Before proceeding we have to introduce two generic conditions on which many of the following
results are based on. The first condition is related to injectivity of the map

ΓL : X 
→
d∑

i1,...,iL=1

tr
[
XAi1 · · ·AiL

] |i1 . . . iL〉. (18)

Note that ΓL is injective iff the set of matrices {Ai1 · · ·AiL : 1 ≤ i1, . . . , iL ≤ d} spans the
entire space of D ×D matrices. Moreover, if

∑
i AiA

†
i = � then evidently injectivity of ΓL

implies injectivity of ΓL′ for all L′ ≥ L. To see the relation to ‘generic’ cases consider d
randomly chosen matrices Ai. The dimension of the span of their products Ai1 · · ·AiL is
expected to grow as dL up to the point where it reaches D2. That is, for generic cases we
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expect to have injectivity for L ≥ 2 lnD
ln d . This intuition can easily be verified numerically and

rigorously proven at least for d = D = 2. However, in order not to rely on the vague notion
of ‘generic’ cases we introduce the following:

Condition C1: There is a finite number L0 ∈ N such that ΓL0 is injective.

We continue by deriving some of the implications of condition C1 on the TI canonical form:
Proposition 1 Consider a TI state represented in canonical MPS form (Thm.4). If

condition C1 is satisfied for L0 < N , then

1. we have only one block in the canonical representation.

2. if we divide the chain in two blocks of consecutive spins [1 . . . R], [R + 1 . . .N ], both of
them with at least L0 spins, then the rank of the reduced density operator ρ[1..R] is exactly
D2.

Proof. The first assert is evident, since any X which has only entries in the off-diagonal
blocks would lead to ΓL0(X) = 0. To see the other implication we take our D-MPS

|ψ〉 =
∑

i1,...,iN

tr(Ai1 · · ·AiN )|i1 · · · iN 〉,

and introduce a resolution of the identity

D∑
α,β=1

∑
i1,...,iN

〈α|Ai1 · · ·AiR |β〉〈β|AiR+1 · · ·AiN |α〉|i1 · · · iN 〉 =

=
D∑

α,β=1

|Φα,β〉|Ψα,β〉, where

|Φα,β〉 =
∑

i1,...,iR

〈α|Ai1 · · ·AiR |β〉|i1 · · · iR〉,

|Ψα,β〉 =
∑

i1,...,iR

〈β|AiR · · ·AiN |α〉|iR+11 · · · iN 〉.

It is then sufficient to prove that both {|Φα,β〉} and {|Ψα,β〉} are sets of linearly independent
vectors. But this is a consequence of C1: Let us take complex numbers cα,β such that∑

α,β cα,β |Φα,β〉 = 0 (the same reasoning for the |Ψα,β〉). This is exactly

ΓR

⎡⎣∑
α,β

cα,β|β〉〈α|
⎤⎦ = 0.

By C1 we have that
∑

α,β cα,β |β〉〈α| = 0 and hence cα,β = 0 for every α, β. .

Now we will introduce a second condition for which we assume w.l.o.g. the spectral radius
of E to be one:

Condition C2: The map E has only one eigenvalue of magnitude one.

Again this is satisfied for ‘generic’ cases as the set of cp maps with eigenvalues which are
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degenerated in magnitude is certainly of measure zero. It is shown in [1] that this con-
dition is essentially equivalent (Appendix 1) to condition C1. In particular C2 also im-
plies that there is just one block in the TI canonical representation (Thm.4) of the MPS
|ψ〉 =

∑
i1,...,iN

tr(Ai1 · · ·AiN )|i1 · · · iN〉.
Moreover, condition C2 implies that, for sufficiently large N , we can approximate EN

�

(which corresponds to EN via Eq.(16)) by |R〉〈L|; where |R〉 corresponds to the fixed point
of E (that is, the identity), and 〈L| to the fixed point Λ of the dual map.

Introducing a resolution of the identity as above, we have that |ψ〉 =
∑

α,β |Ψα,β〉|Ψβ,α〉,
with |Ψα,β〉 =

∑
i1,...,i N

2

〈α|Ai1 · · ·Ai N
2
|β〉|i1 · · · iN

2
〉. But now

〈Ψα,β|Ψα′,β′〉 = 〈α′|E N
2 (|β′〉〈β|)|α〉 = λαδα,α′δβ,β′ ,

up to corrections of the order |ν2|N/2 (where ν2 is the second largest eigenvalue of E). This
implies that with increasing N

|ψ〉 =
∑
α,β

√
λαλβ

|Ψα,β〉√
λα

|Ψβ,α〉√
λβ

becomes the Schmidt decomposition associated to half of the chain. Hence we have proved
the following.

Theorem 6 (Interpretation of Λ) Consider a TI MPS state. In the generic case (con-
dition C2), the eigenvalues of its reduced density operator with respect to half of the chain
converge with increasing N to the diagonal matrix Λ ⊗ Λ with Λ from the TI canonical form
(Thm.4).

3.2.5 Uniqueness

We will prove in this section that the TI canonical form in Thm.4 is unique in the generic
case.

Theorem 7 (Uniqueness of the canonical form) Let

|ψ〉 =
d−1∑

i1,...,iN =0

tr(Bi1 · · ·BiN )|i1 · · · iN 〉

be a TI canonical D-MPS such that (i) condition C1 holds, (ii) the OBC canonical represen-
tation of |ψ〉 is unique, and (iii) N > 2L0 +D4 (a condition polynomial in D). Then, if |ψ〉
admits another TI canonical D-MPS representation

|ψ〉 =
d−1∑

i1,...,iN=0

tr(Ci1 · · ·CiN )|i1 · · · iN 〉,

there exists a unitary matrix U such that Bi = UCiU
† for every i (which implies in the case

where Λ is non-degenerate that Bi = Ci up to permutations and phases).
To prove it we need a pair of lemmas.

Lemma 1 Let T, S be linear maps defined on the same vector spaces and suppose that there
exist vectors Y1, . . . , Yn such that
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• T (Yk) = S(Yk+1) for every 1 ≤ k ≤ n− 1,

• Y1, . . . , Yn−1 are linearly independent,

• Yn =
∑n−1

k=1 λkYk.

Consider a solution x �= 0 of the equation λ1x
n−1 + · · · + λn−1x = 1, and define

μ1 = λ1x

μ2 = λ1x
2 + λ2x

· · ·
μn−1 = λ1x

n−1 + · · · + λn−1x = 1.

Then, if Y =
∑n−1

k=1 μkYk, we have that Y �= 0 and T (Y ) = 1
xS(Y ).

Proof. Clearly

T (Y ) =
n−1∑
k=1

μkT (Yk) =
n−1∑
k=1

μkS(Yk+1) =

= S

(
n−2∑
k=1

μkYk+1 +
n−1∑
k=1

λkYk

)
=

= S (λ1Y1 + (λ2 + μ1)Y2 + · · · + (λn−1 + μn−2)Yn−1) ,

and this last expression is exactly 1
xS(Y ) by the definition of the μ’s. Moreover, since μn−1 = 1

and Y1, . . . , Yn−1 are linearly independent we have that Y �= 0. .
The following lemma is a consequence of [10, Theorem 4.4.14].

Lemma 2 If B,C are square matrices of the same size n × n, the space of solutions of the
matrix equation

W (C ⊗ �) = (B ⊗ �)W

is S ⊗Mn, where S is the space of solutions of the equation XC = BX.
We can prove now Theorem 7.

Proof. By Proposition 1 we know that the matrices A[j]
i in the canonical OBC repre-

sentation of |ψ〉 are of dimension D2 ×D2 for any L0 ≤ j ≤ N − L0 (in particular there are
at least D4 of such j’s). From the TI MPS representation of |ψ〉 we can obtain an alternative
OBC representation by noticing that

|ψ〉 =
d−1∑

i1,...,iN =0

b
[1]
i1

(Bi2 ⊗ �) · · · (BiN ⊗ �)b[N ]
iN

|i1 · · · iN 〉,

where b[1]i is the vector 1 ×D2 that contains all the rows of Bi, that is,

b
[1]
i = (Bi(1, 1), Bi(1, 2), . . . , Bi(1, D), Bi(2, 1), . . .),

and b[N ]
i is the vector D2 × 1 that contains all the columns of Bi, that is,

(b[N ]
i )T = (Bi(1, 1), Bi(2, 1), . . . , Bi(D, 1), Bi(1, 2), . . .).
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Doing the same with the C’s we have also

|ψ〉 =
d−1∑

i1,...,iN=0

c
[1]
i1

(Ci2 ⊗ �) · · · (CiN ⊗ �)c[N ]
iN

|i1 · · · iN 〉.

Using now Theorem 2 and the fact that between L0 and N − L0 both A[j]
i , (Bi ⊗ �) and

(Ci ⊗ �) are D2 ×D2 matrices, we can conclude that there exist invertible D2 ×D2 matrices
W1 . . .WD4 such that Wk(Ci ⊗ �) = (Bi ⊗ �)Wk+1 for every 1 ≤ k ≤ D4 − 1.

Now take n such that W1, . . . ,Wn−1 are linearly independent but Wn =
∑n−1

k=1 λkWk. Let
us define x and μ1, . . . , μn−1 as in Lemma 1 and W =

∑n−1
k=1 μkWk. By Lemma 1 we have

W �= 0 and W (Ci ⊗ �) = ( 1
xBi ⊗ �)W for every i. Now, Lemma 2 implies that there exist

R �= 0 such that RCi = 1
xBiR for every i.

We can use now that Λ =
∑

i B
†
i ΛBi to prove that

∑
i C

†
iR

†ΛRCi = 1
|x|2R

†ΛR. Since the

completely positive map X 
→ ∑
iC

†
iXCi is trace preserving (and R†ΛR �= 0) one has that

|x|2 = 1.
Now, from � =

∑
i CiC

†
i , we obtain that

∑
i BiRR

†B†
i = RR†. Since the Bi’s have only

one box (Proposition 1) we conclude that RR† = � so that R is a unitary. .

3.2.6 Obtaining the canonical form

In the previous section we have implicitly used the “freedom” that one has in the choice of
the matrices in the generic case. In this section we will make this explicit (answering question
1) and will use it to show how to obtain efficiently the canonical form (answering question 3).

Let us take a TI state |ψ〉 ∈ Cd⊗N such that the rank of all the reduced density operators
is bounded by D2. Clearly it can be stored using a MPS with OBC in Nd D2 ×D2 matrices.
If we are in the generic case and this state has a canonical form verifying condition C1, it
would be very convenient to have a way of obtaining it, since it allows us to store the state
using only d D ×D matrices!

In this section we will show how the techniques developed so far allow us to do it by
solving an independent of N system of O(D8) quadratic equations with O(D4) unknowns.

We will assume that the problem has a solution, that is, the state has a TI canonical form
with condition C1. We will also assume that we are in the generic case in the sense that the
OBC canonical form is unique (no degeneracy in the Schmidt Decomposition). Then, the
algorithm to find it reads as follows:

We start with the D2 ×D2 matrices A[L0+1]
i , . . . , A

[L0+D4]
i of the OBC canonical form.

We solve the following system (S) of quadratic equations in the unknows Yj , Zj+1, Bi,
j = L0 + 1, . . . , L0 +D4, i = 1, . . . , d (Yj , Zj are D2 ×D2 matrices and Bi D ×D matrices).

Bi ⊗ � = YjA
[j]
j Zj+1 ∀ i, j

YjZj = � ∀ j∑
i

BiB
†
i = �

and we have the following.
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Theorem 8 (Obtaining the TI canonical form) Consider any TI state |ψ〉 with unique
OBC canonical form and such that the rank of each reduced density operator (of successive
spins) is bounded by D2.

1. If there is a TI MPS representation verifying condition C1, then the above systems (S)
of quadratic equations has a solution.

2. Any solution of (S) gives us a TI D-MPS representation of |ψ〉, that is related to the
canonical one by unitaries (Ai = UBiU

†).

Proof. We have seen in the previous Section that the canonical representation is a
solution for (S). Now, if Bi’s are the solution of (S) and Ai’s are the matrices of the canonical
representation, we have, reasoning as in the proof of Theorem 7, that there exists anR �= 0 and
an x �= 0 such that RBi = 1

xAiR for every i. Using that
∑

iBiB
†
i = �, that Λ =

∑
iA

†
iΛAi

and that � is the only fixed point of X 
→ ∑
iAiXA

†
i we can conclude, as in the proof of

Theorem 7, that R is unitary. .

4 Parent Hamiltonians

This section pretends to extend the results of the seminal paper [1] to the case of a finite chain.
That is, we will study when a certain MPS is the unique ground state of certain gapped local
hamiltonian. However, since we deal with a finite chain, the arguments given in [1] for the
“uniqueness” part are no longer valid, and we have to find a different approach. As in the
previous section we will start with the case of OBC and then move to the case of TI and
PBC. In the “gap” part we will simply sketch the original proof given in [1].

4.1 Uniqueness

4.1.1 Uniqueness of the ground state under condition C1 in the case of OBC

Let us take a MPS with OBC given in the canonical form |ψ〉 =
∑

i1,...,iN
A

[1]
i1

· · ·A[N ]
iN

|i1 · · · iN 〉.
Let us assume that we can group the spins in blocks of consecutive ones in such a way that, in
the regrouped MPS |ψ〉 =

∑
i1,...,iM

B
[1]
i1

· · ·B[M ]
iM

|i1 · · · iM 〉, every set of matrices B[j]
ij

verifies
condition C1, that is, generates the corresponding space of matrices. If we call hj,j+1 the
projector onto the orthogonal subspace of

{
∑

ij ,ij+1

tr(XB[j]B[j+1]) : X arbitrary},

then
Theorem 9 (Uniqueness with OBC) |ψ〉 is the unique ground state of the local Hamil-

tonian H =
∑

j hj,j+1.
Proof. Any ground state |φ〉 of H verifies that hj,j+1 ⊗ �|φ〉 = 0 for every j, that is

|φ〉 =
∑

i1,...,iM

tr(Xj
I(j,j+1)B

[j]
ij
B

[j+1]
ij+1

)|i1 . . . iM 〉, (19)

where I(j, j + 1) is the set of indices i1 . . . ij−1, ij+2 . . . iM .
Mixing (19) for j and j + 1 and using condition C1 for B[j+1] gives

Xj
I(j,j+1)B

[j]
ij

= B
[j+2]
ij+2

Xj+1
I(j+1,j+2).
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Using now that
∑

ij
B

[j]
ij
B

[j] †
ij

= � and calling Y j
I(j,...,j+2) =

∑
ij
Xj+1

I(j+1,j+2)B
[j] †
ij

we get

|φ〉 =
∑

i1,...,iM

tr(Y j
I(j,...,j+2)B

[j]
ij

· · ·B[j+2]
ij+2

)|i1 . . . iM 〉.

Using the trivial fact that blocking again preserves condition C1 one can easily fin-
ish the argument by induction. We just notice that in the last step one obtains |φ〉 =∑

i1,...,iM
XB

[1]
i1

· · ·B[M ]
iM

|i1 · · · iM 〉, where X is just a number that, by normalization, has to
be 1, giving |φ〉 = |ψ〉 and hence the result. .

4.1.2 Uniqueness of the ground state under condition C1 with TI and PBC

To obtain the analogue result in the case of TI and PBC one can apply the same argument.
However, since we do not have any more vectors in the first and last positions, we need to
refine the reasoning of the last step. Moreover, using the symmetry we have now, one can
decrease a bit the interaction length of the Hamiltonian, from 2L0 to L0 + 1.

Let us be a bit more concrete. Given our ring ofN d-dimensional quantum systems, L ≤ N

and a subspace S of Cd⊗L, we denote HS =
∑N

i=1 τ
i(hS), where hS is the projection onto

S⊥ a. If we start with a MPS |ψ〉 =
∑

i1,...,iN
tr(Ai1 · · ·AiN )|i1 · · · iN〉 with property C1, we

will consider L > L0 and, as before, the subspace GA
L (or simply GL) formed by the elements∑

i1,...,iL
tr(XAi1 · · ·AiL)|i1 · · · iL〉. It is clear that HGL |ψ〉 = 0 and that HGL is frustration

free. Moreover, if N ≥ 2L0 and L > L0, then
Theorem 10 (Uniqueness with TI and PBC) |ψ〉 is the only ground state of HGL .
Proof. Reasoning as in the case of OBC one can easily see that any ground state |φ〉 of

HGL is in GN , that is, has the form |φ〉 =
∑

i1,...,iN
tr(XAi1 · · ·AiN )|i1 · · · iN 〉. Since there is

no distinguished first position, |φ〉 can also be written

|φ〉 =
∑

i1,...,iN

tr(Ai1 · · ·AiL0
Y AiL0+1 · · ·AiN )|i1 · · · iN 〉.

By condition C1, XAi1 · · ·AiL0
= Ai1 · · ·AiL0

Y for every i1, . . . , iL0. But, also by condition
C1, Ai1 · · ·AiL0

generates the whole space of D × D matrices. Hence X = Y which, in
addition, commutes with Ai1 · · ·AiL0

for every i1, . . . , iL0 . This means that X commutes
with every matrix and hence X = λ� and |φ〉 = |ψ〉. .

4.1.3 Non-uniqueness in the case of two or more blocks

In the absence of condition C1 in our MPS, we cannot guarantee uniqueness for the ground
state of the parent hamiltonian. There are two different properties that can lead to degeneracy.
One is the existence of a periodic decomposition (Theorem 5), that can happen even in the
case of one block. This is the case of the Majumdar-Gosh model (Section 2). The other
property is the existence of more than one block in the canonical form (Thm.4). As we will
see below, this leads to a stronger version of degeneracy that is closely related to the number
of blocks. In particular, we are going to show that whenever we have more than one block,
the MPS is never the unique ground state of a frustration free local Hamiltonian (Thm 11).

aFor all the reasonings it is enough to consider h̃ : Cd⊗L −→ Cd⊗L
positive such that ker h̃ = S. We take

h̃ = PS⊥ for simplicity.
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In addition, there exists one local hamiltonian which has the MPS as ground state and with
ground space degeneracy equal to the number of blocks (Thm 12).

In all this section we need to assume that we have condition C1 in each block. For a
detailed discussion of the reasonability of this hypothesis see Appendix 1.

Let us take a TI MPS |φ〉 with b(≥ 2) blocks A1
i , . . . , A

b
i in the canonical form, size(A1

i ) ≥
· · · ≥ size(Ab

i ), and condition C1 in each block. Let us call L0 = maxj{LAj

0 }, which
will be logarithmic in N for the generic case. Clearly |φ〉 =

∑b
j=1 |φAj 〉, where |φAj 〉 =

λN
j

∑
i1,...,iN

tr(Aj
i1
· · ·Aj

iN
)|i1 · · · iN〉. Moreover, w.l.o.g. we can assume that the states |φAj 〉

are pairwise different. The following lemmas will take care of the technical part of the section.
Lemma 3 Given any D × D matrices C �= 0 and X there exist matrices Ri, Si such that
X =

∑
i RiCSi.

Proof. By the polar decomposition, it is easy to find matrices E,F,G,H (with
G,H invertible) such that ECF = |1〉〈1| and GXH =

∑m
i=1 |i〉〈i|. Clearly

∑m
i=1 |i〉〈i| =∑m

i=1 Pi|1〉〈1|Pi, where Pi is the matrix obtained from the identity by permuting the first and
the i-th row. So Ri = G−1PiE and Si = FPiH

−1. .
Lemma 4 If L ≥ 3(b− 1)(L0 + 1), the sum

⊕b
j=1 GAj

L is direct.
Proof. We group the spins in 3(b− 1) blocks of at least L0 + 1 spins each and then use

induction. First the case b = 2.

We assume on the contrary that there exist X,Y �= 0 such that∑
i1,i2,i3

tr(A1
i1XA

1
i2A

1
i3)|i1i2i3〉 =

∑
i1,i2,i3

tr(A2
i1Y A

2
i2A

2
i3 )|i1i2i3〉.

If we consider now an arbitrary matrix Z, by C1 and Lemma 3, there exist complex numbers
μi

i1
, ρi

i2
such that Z =

∑
i

∑
i1,i2

μi
i1
ρi

i2
A1

i1
XA1

i2
. Calling W =

∑
i

∑
i1,i2

μi
i1
ρi

i2
A2

i1
Y A2

i2
we

have that
∑

i3
tr(ZA1

i3
)|i3〉 =

∑
i3

tr(WA2
i3

)|i3〉.
This means that GA1

L0+1 ⊂ GA2

L0+1. Since size(A1
i ) ≥ size(A2

i ), this implies that size(A1
i ) =

size(A2
i ) and that GA1

L0+1 = GA2

L0+1. But now, taking the local Hamiltonian HGA1
L0+1

= HGA2
L0+1

,

by Theorem 10, both |φA1〉 and |φA2〉 should be its only ground state; which is the desired
contradiction.

Now the induction step. Let us start with
∑b+1

j=1 w
j = 0, where

GAj

3b(L0+1) � wj =
∑

i1,...,i3b

tr(Aj
i1
W jAj

i2
· · ·Aj

i3b
)|i1 · · · i3b〉.

We want to prove that W j = 0 for every j. So let us assume the opposite, take j such that

W j �= 0 and call w̃j =
(
�[12] ⊗ hGAb+1

[3]
⊗ �[4...3b]

)
(wj). We have that

∑b
j=1 w̃j = 0, and, by

the induction hypothesis, each w̃j = 0. Now

w̃j =
∑

i1,...,i3b

tr(Aj
i1
W jAj

i2
Xj

i3
Aj

i4
· · ·Aj

i3b
)|i1 · · · i3b〉,
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with Xj
i3
�= 0 for some i3 (Theorem 10). Moreover, we can use condition C1 and Lemma 3 to

get complex numbers μi
i1
, ρi

i2
such that � =

∑
i

∑
i1,i2

μi
i1
ρi

i2
Aj

i1
W jAj

i2
.

Hence, 0 =
∑

i4,...,i3b
tr(Xj

i3
Aj

i4
· · ·Aj

i3b
)|i4 · · · i3b〉 for every i3, which implies by C1 the

contradiction Xj
i3

= 0. .
Finally the results,

Theorem 11 (Degeneracy of the ground space v1) If N ≥ 3(b−1)(L0+1)+L and
H =

∑
i τ

i(h) is any translationally invariant frustration free L-local Hamiltonian on our
ring of N spins that has |φ〉 as a ground state (that is, H |φ〉 = 0), then |φAj 〉 is also a ground
state of H for every j.

In particular H has more than one ground state.
Proof. One has 0 = (h⊗�)|φ〉 =

∑
j(h⊗�)|φAj 〉. Since (h⊗�)|φAj 〉 ∈ (Cd

)⊗L ⊗GAj

N−L,
we can use Lemma 4 to get the desired conclusion: (h⊗ �)|φAj 〉 = 0 for every j. .

Theorem 12 (Degeneracy of the ground space v2) There exists a local Hamiltonian
H acting on L ≥ 3(b − 1)(L0 + 1) + 1 spins such that its ground space is exactly ker(H) =
span{|φAj 〉}1≤j≤b.

Proof. The hamiltonian will be HS with S =
⊕

j GAj

L , and L ≥ 3(b − 1)(L0 + 1) + 1.
For m ≥ L,

C
d ⊗

⎛⎝⊕
j

GAj

m

⎞⎠ ∩
⎛⎝⊕

j

GAj

m

⎞⎠⊗ C
d =

⊕
j

GAj

m+1.

In fact, if |φ〉 ∈ Cd ⊗ (
⊕

j GAj

m ) ∩ (
⊕

j GAj

m ) ⊗ Cd, we have simultaneously that

|ψ〉 =
∑

j

∑
i1,...,im+1

tr(Aj
im+1

Cj
i1
Aj

i2
· · ·Aj

im
)|i1 · · · im+1〉 and

|ψ〉 =
∑

j

∑
i1,...,im+1

tr(Dj
im+1

Aj
i1
Aj

i2
· · ·Aj

im
)|i1 · · · im+1〉 .

Lemma 4 and condition C1 allows us to identify for every j, i1, im+1

Aj
im+1

Cj
i1

= Dj
im+1

Aj
i1
.

Calling Ej =
∑

i1
Cj

i1
Aj

i1
and using that

∑
i1
Aj

i1
Aj †

i1
= �, we get Aj

im+1
Cj

i1
= Aj

im+1
EjAj

i1
,

which implies that |φ〉 ∈⊕j GAj

m+1.

Then one can easily follow the lines of the proof of Theorem 10 (assuming N ≥ L + L0)
to conclude that ker(HS) = span{|φAj 〉}1≤j≤b. .

4.2 Energy gap

If the ground state energy is zero (which can always be achieved by a suitable offset), the
energy gap γ above the ground space is the largest constant for which

H2 ≥ γH . (20)

If in addition H =
∑

i τ
i(h) is frustration free and has interaction length l, by taking any

p ≥ l and grouping the spins in blocks of p, one can define an associated 2-local interaction in
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the regrouped chain by h̃i,i+1 = H[pi+1,...,(i+2)p] ( =
∑p(i+2)−l

j=pi τ j(h)). The new hamiltonian
H̃ verifies

H[1,...,mp] ≤ H̃[1...m] =
m−1∑
i=0

τ i(h̃) ≤ 2H[1,...,mp].

Moreover, calling P to the projection onto ker(h̃), there exists a constant γ2p (that is exactly
the spectral gap of H[1...,2p]) such that h̃ ≥ γ2p(�− P ).

Therefore, to study the existence of an energy gap in a local TI frustration free Hamil-
tonian, it is enough to study the case of a nearest neighbor interaction Ĥ =

∑
i τ

i(Pi,i+1)
where P is a projector. In this situation, Knabe [11] gave a sufficient condition to assure the
existence of a gap, namely that the gap εn of Ĥ[1...,n+1] is bigger than 1

n for some n.
In the particular case of the parent hamiltonian of an MPS, a much more refined argument

was provided in [1] to prove the existence of a gap under condition C1. The idea reads as
follows. Clearly Ĥ2 ≥ Ĥ +

∑
i Pi,i+1Pi+1,i+2 + Pi,i+2Pi+1,i+1. By the proof of Theorem 10,

Pi,i+1 = �[1...pi] ⊗ (�− PG2p) ⊗ �[p(i+2)+1...N ].

Then a technical argument proves that Pi,i+1Pi+1,i+2 + Pi,i+2Pi+1,i+1 ≥ −O(νp
2 )(Pi,i+1 +

Pi+1,i+2), where ν2 is the second largest eigenvalue of E . This gives Ĥ2 ≥ (1 − O(νp
2 ))Ĥ ,

which concludes the argument.

5 Generation of MPS

The MPS formalism is particularly suited for the description of sequential schemes for the
generation of multipartite states. Consider for instance a chain of spins in a pure product
state. Two possible sequential ways of preparing a more general state on the spin chain are
either to let an ancillary particle (the head of a Turing machine) interact sequentially with
all the spins or to make them interact themselves in a sequential manner: first spin 1 with 2
then 2 with 3 an so on.

Clearly, many physical setups for the generation of multipartite states are of such se-
quential nature: time-bin photons leaking out of an atom-cavity system, atoms passing a
microwave cavity or laser pulses propagating through atomic ensembles. We will see in the
following that the MPS formalism provides the natural language for describing such schemes.
This section reviews and extends the results obtained in [12]. A detailed application of the
formalism to particular physical systems can be found in [12, 15].

5.1 Sequential generation with ancilla

Consider a spin chain which is initially in a product state |0〉⊗N ∈ H⊗N
B with HB � Cd and

an additional ancillary system in the state |ϕI〉 ∈ HA � CD. Let
∑

i,α,β A
[k]
i,α,β |α, i〉〈β, 0| be a

general stochastic operation on HA ⊗HB applied to the ancillary system and the k’th site of
the chain. This operation could for instance correspond to one branch of a measurement or
to a unitary interaction in which case

∑
iA

[k]†
i A

[k]
i = �. If we let the ancillary system interact

sequentially with all N sites and afterwards measure the ancilla in the state |ϕF 〉, then the
remaining state on H⊗N

B is (up to normalization) clearly given by the MPS

|ψ〉 =
d∑

i1,...,iN =1

〈ϕF |A[N ]
iN

· · ·A[2]
i2
A

[1]
i1
|ϕI〉|iN · · · i1〉. (21)
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By imposing different constraints on the allowed operations (and thus on the A’s) we can
distinguish the following types of sequential generation schemes for pure multipartite states:

1. Probabilistic schemes : arbitrary stochastic operations with a D-dimensional ancilla are
allowed.

2. Deterministic schemes : the interactions must be unitary and the D-dimensional ancilla
must decouple in the last step (without measurement).

3. Deterministic transition schemes (for d = 2): Here we consider an enlarged ancillary
system HA = CD ⊕ CD � CD ⊗ C2 (corresponding e.g. to D ‘excited’ and D ‘ground
state’ levels) and a fixed interaction of the form

|ϕ〉|1〉|0〉B 
→ |ϕ〉|0〉|1〉B ,
|ϕ〉|0〉|0〉B 
→ |ϕ〉|0〉|0〉B .

Moreover, we allow for arbitrary unitaries on HA in every step and require the ancilla
to decouple in the last step.

Theorem 13 (Sequential generation with ancilla) The three sets of multipartite states
which can be generated by the above sequential schemes with ancilla are all equal to the set of
states with OBC MPS representation with maximal bond dimension D.
Note that the proof of this statement in [12] (based on subsequent singular value decomposi-
tions) also provides a recipe for the generation of any given state (with minimal resources).
This idea has been recently exploited in [13] to analyze the resources needed for sequential
quantum cloning.

5.2 Sequential generation without ancilla

Let us now consider sequential generation schemes without ancilla. The initial state is again
a product |0〉⊗N ∈ Cd⊗N and we perform first an operation affecting the sites 1 and 2, then 2
and 3 up to one between N − 1 and N . Again we may distinguish between probabilistic and
deterministic schemes and as before both classes coincide with a certain set of MPS:

Theorem 14 (Sequential generation without ancilla) The sets of pure states which
can be generated by a sequential scheme without ancilla either deterministically or probabilis-
tically are both equal to the class of states having an OBC MPS representation with bond
dimension D ≤ d.

Proof. Let us denote the map acting on site k and k+1 by U [k]. Then for k < N−1 we can
straight forward identify the matrices in the MPS representation by A[k]

i,α,β = 〈i, β|U [k]|α, 0〉
where for k = 1 we have α = 0, i.e., A[1]

i are vectors. From the last map with coefficients
〈i, j|U [N−1]|α, 0〉 we obtain the A’s by a singular value decomposition (in i|α, j), such that
A

[N ]
i is again a set of vectors. Hence, all states generated in this way are OBC MPS with

D ≤ d.
Conversely, we can generate every such MPS deterministically in a sequential manner

without ancilla. To do this we exploit Thm.13 and use the site k + 1 as ‘ancilla’ for the k’th
step (i.e., the application of a unitary U [k]) followed by a swap between site k + 1 and k + 2.
N − 1 of these steps are sufficient since the last step in the proof for the deterministic part in
Thm.13 is just a swap between the ancilla and site N . .
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6 Classical simulation of quantum systems

We saw in Section 2 that if a quantum many-body state has a MPS representation with
sufficiently small bond dimension D, then we can efficiently store it on a classical computer
and calculate expectation values. The practical relevance of MPS representations in the
context of classical simulation of quantum systems stems then from two facts: (i) Many
of the states arising in condensed matter theory (of one-dimensional systems) or quantum
information theory either have such a small-D MPS representation or are well approximated
by one; and (ii) One can efficiently obtain such approximating MPS.

The following section will briefly review the most important results obtained along these
lines.

6.1 Properties of ground states of spin chains

The main motivation for introducing the class of MPS was to find a class of wavefunctions that
capture the physics needed to describe the low-energy sector of local quantum Hamiltonians.
Once such a class is identified and expectation values of all states in the class can be computed
efficiently, it is possible to use the corresponding states in a variational method. The very
successful renormalization group methods, first developed by Wilson [16] and later refined by
White [17], are precisely such variational methods within the class of matrix product states
[14, 18, 19].

In the case of 1-D systems (i.e. spin chains) with local interactions, the low-energy states
indeed exhibit some remarkable properties. First, ground states have by definition extremal
local properties (as they minimize the energy), and hence their local properties determine their
global ones. Let us consider any local Hamiltonian of N spins that exhibits the property that
there is a unique ground state |ψex〉 and that the gap is Δ(N). Let us furthermore consider
the case when Δ(N) decays not faster than an inverse polynomial in N (this condition is
satisfied for all gapped systems and for all known critical translationally invariant systems).
Then let us assume that there exists a state |ψappr〉 that reproduces well the local properties
of all nearest neighbor reduced density operators: ‖ρappr − ρex‖ ≤ δ. Then it follows that the
global overlap is bounded by

‖|ψex〉 − |ψappr〉‖2 ≤ Nδ

Δ(N)
.

This is remarkable as it shows that it is enough to reproduce the local properties well to
guarantee that also the global properties are reproduced accurately: for a constant global
accuracy ε, it is enough to reproduce the local properties well to an accuracy δ that scales
as an inverse polynomial in the number of spins. This is very relevant in the context of
variational simulation methods: if the energy is well reproduced and if the computational
effort to get a better accuracy in the energy only scales polynomially in the number of spins,
then a scalable numerical method can be constructed that reproduces all global properties
well (here scalable means essentially a polynomial method) b.

Second, there is very few entanglement present in ground states of spin chains, even in the
case of a critical system. The relevant quantity here is to study area-laws: if one considers

bOf course this does not apply to global quantities, like entropy, where one needs exponential accuracy in
order to have closeness
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the reduced density operator ρL of a contiguous block of L spins in the ground state of a spin
chain with N � L spins, how does the entropy of that block scale with L? This question
was first studied in the context of black-hole entropy [20] and has recently attracted a lot of
attention [21, 22, 23]. Ground states of local Hamiltonians of spins seem to have the property
that the entropy is not an extensive property but that the leading term in the entropy only
scales as the boundary of the block (hence the name area-law), which means a constant in
the case of a 1-D system [23, 24]:

Sα(ρL) � c

6

(
1 +

1
α

)
log(ξ) (22)

Here Sα is the Renyi entropy

Sα(ρ) =
1

1 − α
log (Trρα) ,

c is the central chargecand ξ the correlation length. This has a very interesting physical
meaning: it shows that most of the entanglement must be concentrated around the boundary,
and therefore there is much less entanglement than would be present in a random quantum
state (where the entropy would be extensive and scale like L). The area law (22) is mildly
violated in the case of 1-D critical spin systems where ξ has to be replaced with L, but even in
that case the amount of entanglement is still exponentially smaller than the amount present
in a random state. This is very encouraging, as one may exploit the lack of entanglement
to simulate these systems classically. Indeed, we already proved that MPS obey the same
property [22].

The existence of an area law for the scaling of entropy is intimately connected to the
fact that typical quantum spin systems exhibit a finite correlation length. In fact, it has
been recently proven [25] that all connected correlation functions between two blocks in a
gapped system have to decay exponentially as a function of the distance of the blocks. Let us
therefore consider a 1-D gapped quantum spin system with correlation length ξcorr. Due to
the finite correlation length, it is expected that the reduced density operator ρAB obtained
when tracing out a block C of length lAB � ξcorr is equal to

ρAB � ρA ⊗ ρB (23)

up to exponentially small corrections d. The original ground state |ψABC〉 is a purification
of this mixed state, but it is of course also possible to find another purification of the form
|ψACl

〉 ⊗ |ψBCr 〉 (up to exponentially small corrections) with no correlations whatsoever be-
tween A and B; here Cl and Cr together span the original block C. Since different purifications
are unitarily equivalent, there exists a unitary operation UC on the block C that completely
disentangles the left from the right part:

IA ⊗ UC ⊗ IC |ψABC〉 � |ψACl
〉 ⊗ |ψBCr 〉.

cWe note that Eq.(22) has been proven for critical spin chains (in particular the XX-model with transverse
magnetical field [24]) which are related to a conformal field theory. A general result is still lacking.
dStrictly speaking, Hastings theorem does not imply the validity of equation (23), as it was shown in [26] that
orthogonal states exist whose correlation functions are exponentially close to each other; although it would be
very surprising that ground states would exhibit that property, this prohibits to turn the present argument
into a rigorous one.



424 Matrix product state representations

This implies that there exists a tensor Ai,α,β with indices 1 ≤ i, α, β ≤ D (where D is the
dimension of the Hilbert space of C) and states |ψA

α 〉, |ψC
i 〉, |ψB

β 〉 defined on the Hilbert spaces
belonging to A,B,C such that

|ψABC〉 �
∑
i,α,β

Ai,α,β |ψA
α 〉|ψC

i 〉|ψB
β 〉.

Applying this argument recursively leads to a matrix product state description of the state
and gives a strong hint that ground states of gapped Hamiltonians are well represented by
MPS. It turns out that this is even true for critical systems.

6.2 MPS as a class of variational wavefunctions

Here we will review the main results of [27], which give analytical bounds for the approxima-
tion of a state by a MPS that justify the choice of MPS as a reasonable class of variational
wavefunctions.

We consider an arbitrary state |ψ〉 and denote by

{μ[k]i}, i = 1..Nk = dmin(k,N−k)

the eigenvalues of the reduced density operators

ρk = Trk+1,k+2,...,N|ψ〉〈ψ|,

sorted in decreasing order.
Theorem 15 There exists a MPS |ψD〉 with bond dimension D such that

‖|ψ〉 − |ψD〉‖2 ≤ 2
N−1∑
k=1

εk(D)

where εk(D) =
∑Nk

i=D+1 μ
[k]i.

This shows that for systems for which the εk(D) decay fast in D, there exist MPS with
small D which will not only reproduce well the local correlations (such as energy) but also
all the nonlocal properties (such as correlation length).

The next result relates the derived bound to the Renyi entropies of the reduced density
operators. Given a density matrix ρ, we denote as before ε(D) =

∑∞
i=D+1 λi with λi the

nonincreasingly ordered eigenvalues of ρ. Then we have

Theorem 16 If 0 < α < 1, then log(ε(D)) ≤ 1−α
α

(
Sα(ρ) − log D

1−α

)
.

The two results together allow us to investigate the computational effort needed to rep-
resent critical systems, arguable the hardest ones to simulate e, as MPS. The key fact here is
the area-law (22), which for critical systems reads

Sα(ρL) � c

6

(
1 +

1
α

)
log(L) (24)

eFor non–critical systems, the renormalization group flow is expected to increase the Renyi entropies in the UV
direction. The corresponding fixed point corresponds to a critical system whose entropy thus upper bounds
that of the non–critical one.
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for all α > 0 (c the central charge).
Let us therefore consider the Hamiltonian associated to a critical system, but restricted to

2L sites. The entropy of a half chain (we consider the ground state |ψex〉 of the finite system)
will typically scale as in eq. (24) but with an extra term that scales like 1/L. Suppose we
want to get that ‖|ψex〉−|ψD〉‖2 ≤ ε0/L with ε0 independent of L f. If we call DL the minimal
D needed to obtain this precision for a chain of length 2L, the previous two results combined
yield

Theorem 17

DL ≤ cst

(
L2

(1 − α)ε0

) α
1−α

L
c+c̄
12

1+α
α .

This shows that D only has to scale polynomially in L to keep the accuracy ε0/L fixed;
in other words, there exists an efficient scalable representation for ground states of critical
systems (and hence also of noncritical systems) in terms of MPS. This is a very strong result,
as it shows that one can represent ground states of spin chains with only polynomial effort
(as opposed to the exponential effort if one would do e.g. exact diagonalization).

6.3 Variational algorithms

Numerical renormalization group methods have since long been known to be able to simulate
spin systems, but it is only recently that the underlying structure of matrix product states has
been exploited. Both NRG, developed by K. Wilson [16] in the ’70s, and DMRG, developed
by S. White [17] in the ’90s, can indeed be reformulated as variational methods within the
class of MPS [19, 18]. The main question is how to find the MPS that minimizes the energy
for a given spin chain Hamiltonian: given a Hamiltonian H acting on nearest neighbours, we
want to find the MPS |ψ〉 such that the energy

〈ψ|H|ψ〉
〈ψ|ψ〉

is minimized. If |ψ〉 is a TI MPS, then this is a highly complex optimization problem. The
main trick to turn this problem into a tractable one is to break the translational symmetry and
having site-dependent matrices A[k]

i for the different spins k; indeed, then the functional to
be minimized is a multiquadratic function of all variables, and then one can use the standard
technique of alternating least squares to do the minimization [19]. This works both in the
case of open and closed boundary conditions, and in practice the convergence of the method
is excellent. The computational effort of this optimization scales as D4d2 in memory and
similarly in time (for a single site optimization).

But what about the theoretical worst case computational complexity of finding this optimal
MPS? It has been observed that DMRG converges exponentially fast to the ground state with a
relaxation time proportional to the inverse of the gap Δ of the system [28]. For translationally
invariant critical systems, this gap seems to close only polynomially. As we have proven that
D only have to scale polynomially too, the computational effort for finding ground states of 1-
D quantum systems is polynomial (P ). This statement is true under the following conditions:
1) the α-entropy of blocks in the exact ground state grow at most logarithmically with the

fWe choose the 1/L dependence such as to assure that the absolute error in extensive observables does not
grow.
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size of the block for some α < 1; 2) the gap of the system scales at most polynomially with
the system size; 3) given a gap that obeys condition 2, there exists an efficient DMRG-like
algorithm that converges to the global minimum. As the variational MPS approach [19] is
essentially an alternating least squares method of solving a non-convex problem, there is a
priori no guarantee that it will converge to the global optimum, although the occurrence of
local minima seems to be unlikely [28]. But still, this has not been proven and the worst-case
complexity could well be NP-hard, as multiquadratic cost functions have been shown to lead
to NP-hard problems [29]. g

6.4 Classical simulation of quantum circuits

In the standard circuit model of quantum computation a set of unitary one and two-qubit
gates is applied to a number of qubits, which are initially in a pure product state and mea-
sured separately in the end. In the cluster state model a multipartite state is prepared in
the beginning and the computation is performed by applying subsequent single-qubit mea-
surements. For both computational models the MPS formalism provides a simple way of
understanding why a large amount of entanglement is crucial for obtaining an exponential
speed-up with respect to classical computations. The fact that quantum computations (of
the mentioned type) which contain too little entanglement can be simulated classically is a
simple consequence of the following observations (see also [31]):

1. Let |ψ〉 ∈ C
⊗dN

have a MPS representation with maximal bond dimension D. By
Eq.(3) the expectation values of factorizing observables are determined by a product of
N D2 ×D2 matrices. Hence, their calculation as well as the sampling of the respective
measurement outcomes and the storage of the state requires only polynomial resources
in N and D.

2. A gate applied to two neighboring sites increases the respective bond dimension (Schmidt
rank) at most by a factor d2 and the MPS representation can be updated with poly(D)
resources.

3. A gate applied to two qubits, which are l sites apart, can be replaced by 2l − 1 gates
acting on adjacent qubits. In this way we can replace a circuit in which each qubit line
is crossed or involved by at most L two-qubit gates by one where each qubit is affected
only by at most 4L nearest neighbor gates.

A trivial implication of 1. is that measurement based quantum computation (such as cluster
state computation) requires more than one spatial dimension:

Theorem 18 (Simulating 1D measurement based computations) Consider a se-
quence of states with increasing particle number N for which the MPS representation has
maximal bond dimension D = O(poly(N)). Then every measurement based computation on
these states can be simulated classically with O(poly(N)) resources.
This is in particular true for a one-dimensional cluster state, for which D = 2 is independent
of N . Similarly, if the initial states are build by a constant number of nearest neighbor
gIn fact, it can be shown [30] that a variant of DMRG leads to NP-hard instances in intermediate steps.
However, one has to note that (i) such a worst case instance might be avoided by starting from a different
initial point and (ii) convergence to the optimum at the end of the day does not necessarily require finding
the optimum in every intermediate step.
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interactions on a two-dimensional n× logn lattice, the measurements can be simulated with
poly(n) resources.

Concerning the standard circuit model for quantum computation on pure states the points
1.-3. lead to:

Theorem 19 (Simulating quantum circuits) If at every stage the N -partite state in a
polynomial time circuit quantum computation has a MPS representation with D = O(poly(N)),
then the computation can be simulated classically with poly(N) resources. This is in particu-
lar true if every qubit-line in the circuit is crossed or involved by at most O(logN) two-qubit
gates.
For more details on the classical simulation of quantum circuits we refer to [31] and [32]
for measurement based computation as well as for the relation between contracting tensor
networks and the tree width of network graphs. In [33] a simple interpretation of measurement
based quantum computation in terms of the valence bond formalism is provided.
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Appendix A An open problem

The main open problem we left open is the reasonability of assuming condition C1 in the
blocks of the canonical form. Since condition C2 is known to imply C1 for sufficiently large
L0 [1] and we do have C2 in each block by construction, it only remains to show how big
L0 can be. (We are neglecting complex eigenvalues of E of modulus 1. The reason is that,
by Thm.5, they can be avoided by grouping the spins into blocks or simply considering N
prime.) In the generic case this L0 can be taken L0 = � 2 lnD

ln d � + 1. However there are cases
in which L0 ∼ O(D2). For instance A0 =

∑D
i=1 |i+1〉〈i|, A1 = |2〉〈D|. Our conjecture is that

this is exactly the worst case.
Conjecture 1 There exists a function f(D) such that for any sequence of D×D matrices

Ai verifying C1 for some L0, L0 can be taken f(D).
Conjecture 2 f(D) ∼ O(D2).
We have been able to prove both in a particular (but generic) case:
Proposition 2 If A0 is invertible, then L0 can be taken D2.
Proof. Take an r and call Sr ⊂ {0, . . . , d − 1}r to a maximal set of indices for which

{Ai1 · · ·Air}(i1,...,ir)∈S is linearly independent. It is then sufficient to prove that the cardinal-
ities #Sr+1 > #Sr, whenever #Sr < D2 . If not, using that A0 is invertible, we can assume
that Sr+1 = Sr × {0}. Now Ai1 · · ·Air+2 =

Ai1

∑
(j2,...,jr+1)∈Sr

c
j2,...,jr+1
i2,...,ir+2

Aj2 · · ·Ajr+1A0 =

∑
(j2,...,jr+1)∈Sr

c
j2,...,jr+1
i2,...,ir+2

∑
(k1,...,kr)∈Sr

ck1,...,kr

i1,j2...,jr+1
Ak1 · · ·AkrA

2
0,

which implies that one can take Sr+2 = Sr × {0} × {0} and hence #Sr+2 = #Sr+1 = #Sr.
We can continue the reasoning and prove that, in fact, #Sk = #Sr for every k ≥ r; which is
the desired contradiction. .

A particular case of this proposition occurs when one of the matrices in the canonical
decomposition is hermitian. To see that one can group the spins in blocks of two. The new
matrices are Ãij = AiAj , and the canonical condition

∑
i A

2
i = � reads

∑
i Ãii = 1. Now, by

doing a unitary operation in the physical system on can assume that Ã0 =
∑

i Ãii = � (up
to normalization) and therefore we are in the conditions of Proposition 2.
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The conjectures, if true, can be used to prove a couple of interesting results, one concerning
the MPS representation of the W-state, and the other concerning the approximation by MPS
of ground states of gapped hamiltonians

A.1 W state

The W -state can be written with matrices 2 × 2 in the OBC representation. However, this
representation does not respect the symmetry of the state. What if we ask instead for repre-
sentations of this kind?

Let us start with a permutational invariant one, that is, one with diagonal matrices. By
the permutational invariance of |WN 〉, it can be written as a sum

∑N+1
n=1 δn|xn〉⊗N . Calling

αn to a N -th root of δn and Ai =
∑

n αn〈i|xn〉|n〉〈n|,

|WN 〉 =
2∑

i1,...,iN=1

tr(Ai1 · · ·AiN )|i1 · · · iN 〉.

with the matrices Ai diagonal and of size (N + 1) × (N + 1).

Of course we would be interested in a representation with smaller matrices. The surprising
consequence of Conjecture 2 is that this is impossible even if we ask for a TI representation;
that is, one with site-independent matrices (not necessarily diagonal):

Corollary A.1 If we assume Conjecture 2 and |WN 〉 =
∑2

i1,...,iN =1 tr(Ai1 · · ·AiN )|i1 · · · iN 〉
for D ×D matrices Ai, then D � O

(
N1/3

)
.

Proof. By Conjecture 2, we have condition C1 by blocks with L0 = O(D2). Let us
assume that N

2 ≥ 3(b − 1)(L0 + 1), where (as usual) b is the number of different blocks in
the canonical form. We can break the chain in two parts, each one having at least 3(b −
1)(L0 + 1) spins and decompose the state as |WN 〉 =

∑D
α,β=1 |Φα,β〉|Ψα,β〉, where |Φα,β〉 =∑

i1,...,iR
〈α|Ai1 · · ·AiR |β〉|i1 · · · iR〉 and |Ψα,β〉 =

∑
i1,...,iR

〈β|AiR · · ·AiN |α〉|iR+1 · · · iN 〉.
If we call Sj to the set of positions of the j-th block in the canonical form of |WN 〉

and S = ∪Sj , we claim that the sets {|Φα,β〉}(α,β)∈S and {|Φα,β〉}(α,β)∈S are both linearly
independent. This implies that the rank of the reduced density operator after tracing out the
particles 1, . . . , R is ≥∑b

i=1D
2
i , being Di ×Di the size of the i-th block.

We know that in the case of |WN 〉, this rank is 2, so we get exactly two blocks of size
1 × 1. It is trivial now to see that this is impossible. Therefore, N

2 ≤ 3(b − 1)(L0 + 1) and
hence the result.

So it only remains to prove the claim. For (α, β) ∈ Sj let us take complex numbers cα,β

such that
∑

α,β cα,β |Φα,β〉 = 0 ; which is exactly

b∑
j=1

tr(

⎡⎣ ∑
(α,β)∈Sj

cα,β|β〉〈α|
⎤⎦Aj

i1
· · ·Aj

iR
)|i1 · · · iR〉 = 0.

By Lemma 4 the sum in j is direct, so each summand is 0. Finally, by condition C1 by blocks∑
(α,β)∈Sj

cα,β |β〉〈α| = 0 for every j and hence cα,β = 0 for every (α, β) ∈ Sj . .
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6.5 Approximation of ground states by MPS

As we saw in Sec.6, one of the big open questions in condensed matter theory is to mathemat-
ically explain the high accuracy of DMRG. Since DMRG can be seen as a variational method
in the class of MPS, it is crucial to prove that any ground state of a gapped local Hamiltonian
can be efficiently approximated by a MPS of low bond dimension D. Despite the important
recent advances in this direction (see Sec.6) the problem is still unsolved. An important step
has been done by Hastigns, who has recently reduced this problem to the case in which the
Hamiltonian is frustration free [6]. This highlights the importance of the following dichotomy

Theorem A.1 (Dichotomy for the size of the MPS) If Conjecture 2 holds and HN =∑N
i=1 τ

i(h) is a local TI Hamiltonian which is frustration free for every N , then the bond di-
mension D of any of its exact ground states, viewed as a MPS, is:

(i) either independent of N

(ii) or > O(N
1
3 )

Proof. Let us take the canonical decomposition of a ground state |ψ〉 of H acting on N
particles

|ψ〉 =
d∑

i1,...,iN=1

tr(Ai1 · · ·AiN )|i1 · · · iN 〉.

If (ii) does not hold, by Conjecture 2, N > 3(b− 1)(L0 + 1) + L (L the interaction length of
H). Now, by Lemma 4, the products of the last N − L matrices generate the whole space
of block diagonal matrices. This immediately implies that the same matrices Ai give us a
ground state of HN ′ for any N ′ > N . That is, D is independent of N . .


