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Ever since entanglement was identified as a computational and cryptographic resource,
researchers have sought efficient ways to tell whether a given density matrix represents
an unentangled, or separable, state. This paper gives the first systematic and com-
prehensive treatment of this (bipartite) quantum separability problem, focusing on its
deterministic (as opposed to randomized) computational complexity. First, I review the
one-sided tests for separability, paying particular attention to the semidefinite program-
ming methods. Then, I discuss various ways of formulating the quantum separability
problem, from exact to approximate formulations, the latter of which are the paper’s
main focus. I then give a thorough treatment of the problem’s relationship with the
complexity classes NP, NP-complete, and co-NP. I also discuss extensions of Gurvits’
NP-hardness result to strong NP-hardness of certain related problems. A major open
question is whether the NP-contained formulation (QSEP) of the quantum separability
problem is Karp-NP-complete; QSEP may be the first natural example of a problem that
is Turing-NP-complete but not Karp-NP-complete. Finally, I survey all the proposed
(deterministic) algorithms for the quantum separability problem, including the bounded
search for symmetric extensions (via semidefinite programming), based on the recent
quantum de Finetti theorem [1–3]; and the entanglement-witness search (via interior-
point algorithms and global optimization) [4, 5]. These two algorithms have the lowest

complexity, with the latter being the best under advice of asymptotically optimal point-
coverings of the sphere.
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1 Introduction

If a d-dimensional quantum physical system can be physically partitioned into two subsystems
(denoted by superscripts A and B) of dimensions M and N , such that d = MN , then the
pure state |ψ〉 of this total system may be separable, which means |ψ〉 = |ψA〉 ⊗ |ψB〉, for
|ψA〉 ∈ CM and |ψB〉 ∈ CN and where “⊗” denotes the Kronecker (tensor) product. Without
loss of generality, assume M ≤ N (except in Section 2.2.5). If |ψ〉 is not separable, then it is
entangled (with respect to that particular partition).

Denote by D(V ) the set of all density operators mapping complex vector space V to itself;
let DM,N := D(CM ⊗ CN ). The maximally mixed state is IM,N := I/MN , where I denotes
the identity operator. A pure state |ψ〉 is separable if and only if trB(|ψ〉〈ψ|) is a pure state,
where “trB” denotes the partial trace with respect to subsystem B; a pure state is called
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336 Computational complexity of the quantum separability problem

maximally entangled if trB(|ψ〉〈ψ|) is the maximally mixed state I/M in the space of density
operators on the A-subsystem D(CM ). Thus, the mixedness of trB(|ψ〉〈ψ|) is some “measure”
of the entanglement of |ψ〉.

A mixed state ρ ∈ DM,N is separable if and only if it may be written ρ =
∑k
i=1 piρ

A
i ⊗ ρB

i

with pi ≥ 0 and
∑

i pi = 1, and where ρA
i ∈ D(CM ) is a (mixed or pure) state of the A-

subsystem (and similarly for ρB
i ∈ D(CN )); when k = 1, ρ is a product state. Let SM,N ⊂

DM,N denote the separable states; let EM,N := DM,N \ SM,N denote the entangled states.
The following fact will be used several times throughout this work:

Fact 1 ([6]) If σ ∈ SM,N , then σ may be written as a convex combination of M2N2 pure
product states, that is,

σ =
M2N2∑
i=1

pi|ψA
i 〉〈ψA

i | ⊗ |ψB
i 〉〈ψB

i |, (1)

where
∑M2N2

i=1 pi = 1 and 0 ≤ pi ≤ 1 for all i = 1, 2, . . . ,M2N2.

Recall that a set of points {x1, . . . , xj} ⊂ Rn is affinely independent if and only if the set
{x2−x1, x3−x1, . . . , xj−x1} is linearly independent in Rn. Recall also that the dimension of
X ⊂ Rn is defined as the size of the largest affinely-independent subset of X minus 1. Fact 1
is based on the well-known theorem of Carathéodory that any point in a compact convex set
X ⊂ Rn of dimension k can be written as a convex combination of k+1 affinely-independent
extreme points of X .

Definition 1 (Formal quantum separability problem) Let ρ ∈ DM,N be a mixed state.
Given the matrixa [ρ] (with respect to the standard basis of CM ⊗CN ) representing ρ, decide
whether ρ is separable.

1.1 One-sided tests and restrictions

Shortly after the importance of the quantum separability problem was recognized in the
quantum information community, efforts were made to solve it reasonably efficiently. In
this vein, many one-sided tests have been discovered. A one-sided test (for separability) is
a computational procedure (with input [ρ]) whose output can only ever imply one of the
following (with certainty):

• ρ is entangled (in the case of a necessary test)

• ρ is separable (in the case of a sufficient test).

There have been many good articles (e.g. [7–9]) which review the one-sided (necessary)
tests. As this work is concerned with algorithms that are both necessary and sufficient tests
for separability for all M and N – and whose computer-implementations have a hope of being
useful in low dimensions – I only review in detail the one-sided tests which give rise to such
aWe do not yet define how the entries of this matrix are encoded; at this point, we assume all entries have
some finite representation (e.g. “

√
2”) and that the computations on this matrix can be done exactly.
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algorithms (see Section 1.2). But here is a list of popular conditions on ρ giving rise to efficient
one-sided tests for finite-dimensional bipartite separability:

Necessary conditions for ρ to be separable

• PPT test [10]: ρTB ≥ 0, where “TB” denotes partial transposition

• Reduction criterion [11]: ρA ⊗ I − ρ ≥ 0 and I ⊗ ρB − ρ ≥ 0, where ρA := trB(ρ) and
“trB” denotes partial trace (and similarly for ρB)

• Entropic criterion for α = 2 and in the limit α→ 1 [12]: Sα(ρ) ≥ max{Sα(ρA), Sα(ρB)};
where, for α > 1, Sα(ρ) := 1

1−α ln(tr(ρα))

• Majorization criterion [13]: λ↓ρ ≺ λ↓ρA and λ↓ρ ≺ λ↓ρB , where λ↓τ is the list of eigenvalues
of τ in nonincreasing order (padded with zeros if necessary), and x ≺ y for two lists of
size s if and only if the sum of the first k elements of list x is less than or equal to that of
list y for k = 1, 2, ..., s; the majorization condition implies max{rank(ρA), rank(ρB)} ≤
rank(ρ).

• Computable cross-norm/reshuffling criterion [14, 15]: ||U(ρ)||1 ≤ 1, where ||X ||1 :=
tr(

√
X†X) is the trace norm; and U(ρ), an M2 × N2 matrix, is defined on prod-

uct states as U(A ⊗ B) := v(A)v(B)T , where, relative to a fixed basis, [v(A)] =
(col1([A])T , . . . , colM ([A])T )T (and similarly for v(B)), where coli([A]) is the ith col-
umn of matrix [A]; more generally [16], any linear map U that does not increase the
trace norm of product states may be used.

Sufficient conditions for ρ to be separable

• Distance from maximally mixed state (see also [17]):

– [18]: e.g. tr(ρ− IM,N )2 ≤ 1/MN(MN − 1)

– [19, 20] λmin(ρ) ≥ (2 +MN)−1, where λmin(ρ) denotes the smallest eigenvalue of
ρ

• When M = 2 [21]: ρ = ρTA .

When ρ is of a particular form, the PPT test is necessary and sufficient for separability.
This happens when

• MN ≤ 6 [22]; or

• rank(ρ) ≤ N [21, 23], see also [24].

The criteria not based on eigenvalues are obviously efficiently computable; i.e. computing
the natural logarithm can be done with a truncated Taylor series, and the rank can be com-
puted by Gaussian elimination. That the tests based on the remaining criteria are efficiently
computable follows from the efficiency of algorithms for calculating the spectrum of a Her-
mitian operator. The method of choice for computing the entire spectra is the QR algorithm
(see any of [25–27]), which has been shown to have good convergence properties [28].
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In a series of articles ([29], [21], [23]), various conditions for separability were obtained
which involve product vectors in the ranges of ρ and ρTA . Any constructive separability checks
given therein involve computing these product vectors, but no general bounds were obtained
by the authors on the complexity of such computations.

1.2 One-sided tests based on semidefinite programming

Let HM,N denote the set of all Hermitian operators mapping CM ⊗ CN to CM ⊗ CN ;
thus, DM,N ⊂ HM,N . This vector space is endowed with the Hilbert-Schmidt inner product
〈X,Y 〉 ≡ tr(AB), which induces the corresponding norm ||X || ≡

√
tr(X2) and distance

measure ||X−Y ||. By fixing an orthogonal Hermitian basis for HM,N , the elements of HM,N

are in one-to-one correspondence with the elements of the real Euclidean space RM2N2
. If the

Hermitian basis is orthonormal, then the Hilbert-Schmidt inner product in HM,N corresponds
exactly to the Euclidean dot product in RM2N2

.
Let us be more precise. Let B = {Xi : i = 0, 1, . . . ,M2N2 − 1} be an orthonormal,

Hermitian basis for HM,N , where X0 ≡ 1√
MN

I. For concreteness, we can assume that the
elements of B are tensor-products of the (suitably normalized) canonical generators of SU(M)
and SU(N), given e.g. in [30]. Note tr(Xi) = 0 for all i > 0. Define v : HM,N → RM2N2−1 as

v(A) :=

⎡
⎢⎢⎢⎣

tr(X1A)
tr(X2A)

...
tr(XM2N2−1A)

⎤
⎥⎥⎥⎦ . (2)

Via the mapping v, the set of separable states SM,N can be viewed as a full-dimensional
convex subset of RM2N2−1

{v(σ) ∈ RM2N2−1 : σ ∈ SM,N}, (3)

which properly contains the origin v(IM,N ) = 0 ∈ RM2N2−1 (recall that there is a ball of
separable states of nonzero radius centred at the maximally mixed state IM,N ).

Thus DM,N and SM,N may be viewed as subsets of the Euclidean space RM2N2
; actually,

because all density operators have unit trace, DM,N and SM,N are full-dimensional subsets
of RM2N2−1. This observation aids in solving the quantum separability problem, allowing
us to apply easily well-studied mathematical-programming tools. The following is from the
popular review article of semidefinite programming in [31].

Definition 2 (Semidefinite program (SDP)) Given the vector c ∈ Rm and Hermitian
matrices Fi ∈ Cn×n, i = 0, 1, . . . ,m,

minimize cTx (4)

subject to: F (x) ≥ 0, (5)

where F (x) := F0 +
∑m

i=1 xiFi.

Call x feasible when F (x) ≥ 0. When c = 0, the SDP reduces to the semidefinite feasibility
problem, which is to find an x such that F (x) ≥ 0 or assert that no such x exists. Semidefinite
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programs can be solved efficiently, in time O(m2n2.5). Most algorithms are iterative. Each
iteration can be performed in time O(m2n2). The number of required iterations has an
analytical bound of O(

√
n), but in practice is more like O(log(n)) or constant.

1.2.1 A test based on symmetric extensions

Consider a separable state σ =
∑

i pi|ψA
i 〉〈ψA

i | ⊗ |ψB
i 〉〈ψB

i |, and consider the following sym-
metric extension of σ to k copies of subsystem A (k ≥ 2):

σ̃k =
∑
i

pi(|ψA
i 〉〈ψA

i |)⊗k ⊗ |ψB
i 〉〈ψB

i |. (6)

The state σ̃k is so called because it satisfies two properties: (i) it is symmetric (unchanged)
under permutations (swaps) of any two copies of subsystem A; and (ii) it is an extension of
σ in that tracing out any of its (k − 1) copies of subsystem A gives back σ. For an arbitrary
density operator ρ ∈ D(CM⊗CN), define a symmetric extension of ρ to k copies of subsystem
A as any density operator ρ′ ∈ D((CM )⊗k ⊗ CN ) that satisfies (i) and (ii) with ρ in place
of σ. If ρ does not have a symmetric extension to k0 copies of subsystem A for some k0,
then ρ /∈ SM,N (else we could construct ρ̃k0). Thus a method for searching for symmetric
extensions of ρ to k copies of subsystem A gives a sufficient test for separability.

Doherty et al. [1, 2] showed that the search for a symmetric extension to k copies of ρ (for
any fixed k) can be phrased as a SDP. This result, combined with the “quantum de Finetti
theorem” [32, 33] that ρ ∈ SM,N if and only if, for all k, ρ has a symmetric extension to k
copies of subsystem A, gives an infinite hierarchy (indexed by k = 2, 3, . . .) of SDPs with the
property that, for each entangled state ρ, there exists a SDP in the hierarchy whose solution
will imply that ρ is entangled.

Actually, Doherty et al. develop a stronger test, inspired by Peres’ PPT test. The state σ̃k,
which is positive semidefinite, satisfies a third property: (iii) it remains positive semidefinite
under all possible partial transpositions. Thus σ̃k is more precisely called a PPT symmetric
extension. The SDP can be easily modified to perform a search for PPT symmetric exten-
sions without any significant increase in computational complexity (one just needs to add
constraints that force the partial transpositions to be positive semidefinite). This strengthens
the separability test, because a given (entangled) state ρ may have a symmetric extension to
k0 copies of subsystem A but may not have a PPT symmetric extension to k0 copies of sub-
system A (Doherty et al. also show that the (k+1)st test in this stronger hierarchy subsumes
the kth test).

The final SDP has the following form:

minimize 0
subject to: X̃k ≥ 0

(X̃k)Tj ≥ 0, j ∈ J,

(7)

where X̃k is a parametrization of a symmetric extension of ρ to k copies of subsystem A, and
J is the set of all subsets of the (k+1) subsystems that give rise to inequivalent partial trans-
poses (X̃k)Tj of X̃k. By noting that we can restrict our search to so-called Bose-symmetric
extensions, where (I ⊗P )ρ′ = ρ′ for all k! permutations P of the k copies of subsystem A (as
opposed to just extensions where (I ⊗P )ρ′(I ⊗P †) = ρ′ for all permutations P ), the number
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of variables of the SDP is m = ((dSk
)2 − M2)N2, where dSk

=
(
M+k−1

k

)
is the dimension

of the symmetric subspace of (CM )⊗k. The size of the matrix X̃k for the first constraint is
(dSk

)2N2. The number of inequivalent partial transpositions is |J | = k.b The constraint
corresponding to the transposition of l copies of A, l = 1, 2, ..., k − 1, has a matrix of size
(dSl

)2(dS(k−l))
2N2 [2]. I will estimate the total complexity of this approach to the quantum

separability problem in Section 3.2.

1.2.2 A test based on semidefinite relaxations

Doherty et al. formulate a hierarchy of necessary criteria for separability in terms of semidef-
inite programming – each separability criterion in the hierarchy may be checked by a SDP.
As it stands, their approach is manifestly a one-sided test for separability, in that at no point
in the hierarchy can one conclude that the given [ρ] corresponds to a separable state (happily,
recent results show that, for sufficiently large k, the symmetric-extension test is a complete
approximate separability test; see Section 3.2).

Eisert et al. [34] formulate a necessary and sufficient criterion for separability as a hier-
archy of SDPs. Define the function

Ed22(ρ) := min
x∈SM,N

tr((ρ− x)2) (8)

for ρ ∈ DM,N . As tr((ρ − x)2) is the square of the Euclidean distance from ρ to x, ρ is
separable if and only if Ed22(ρ) = 0. The problem of computing Ed22(ρ) (to check whether it
is zero) is already formulated as a constrained optimization. The following observation helps
to rewrite these constraints as low-degree polynomials in the variables of the problem:

Fact 2 ([34]) Let O be a Hermitian operator and let α ∈ R satisfy 0 < α ≤ 1. If tr(O2) = α2

and tr(O3) = α3, then tr(O) = α and rank(O) = 1 (i.e. O corresponds to an unnormalized
pure state).

Combining Fact 2 with Fact 1, the problem is equivalent to

minimize tr((ρ−
∑M2N2

i=1 Xi)2)
subject to: tr(

∑M2N2

i=1 Xi) = 1
tr((trj(Xi))2) = (tr(Xi))2,

for i = 1, 2, . . . ,M2N2 and j ∈ {A,B}
tr((trj(Xi))3) = (tr(Xi))3,

for i = 1, 2, . . . ,M2N2 and j ∈ {A,B},
(9)

where the new variables are Hermitian matrices Xi for i = 1, 2, . . . ,M2N2. The constraints
do not require Xi to be tensor products of unit-trace pure density operators, because the pos-
itive coefficients (probabilities summing to 1) that would normally appear in the expression∑M2N2

i=1 Xi are absorbed into the Xi, in order to have fewer variables (i.e. the Xi are con-
strained to be density operators corresponding to unnormalized pure product states). Once
bChoices are: transpose subsystem B, transpose 1 copy of subsystem A, transpose 2 copies of subsystem A, ...,
transpose k − 1 copies of subsystem A. Transposing all k copies of subsystem A is equivalent to transposing
subsystem B. Transposing with respect to both subsystem B and l copies of subsystem A is equivalent to
transposing with respect to k − l copies of subsystem A.
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an appropriate Hermitian basis is chosen for HM,N , the matrices Xi can be parametrized by
the real coefficients with respect to the basis; these coefficients form the real variables of the
feasibility problem. The constraints in (9) are polynomials in these variables of degree less
than or equal to 3.c

Polynomially-constrained optimization problems can be approximated by, or relaxed to,
semidefinite programs, via a number of different approaches (see references in [34]).d Some
approaches even give an asymptotically complete hierarchy of SDPs, indexed on, say, i =
1, 2, . . .. The SDP at level i+ 1 in the hierarchy gives a better approximation to the original
problem than the SDP at level i; but, as expected, the size of the SDPs grows with i so
that better approximations are more costly to compute. The hierarchy is asymptotically
complete because, under certain conditions, the optimal values of the relaxations converge
to the optimal value of the original problem as i → ∞. Of these approaches, the method of
Lasserre [35] is appealing because a computational package [36] written in MATLAB is freely
available. Moreover, this package has built into it a method for recognizing when the optimal
solution to the original problem has been found (see [36] and references therein). Because
of this feature, the one-sided test becomes, in practice, a full algorithm for the quantum
separability problem. However, no analytical worst-case upper bounds on the running time
of the algorithm for arbitrary ρ ∈ DM,N are presently available.

1.2.3 Entanglement Measures

The function Ed22(ρ) defined in (8), but first defined in [37], is also known as an entanglement
measure, which, at the very least, is a nonnegative real function defined on DM,N (for a
comprehensive review of entanglement measures, see [38]). If an entanglement measure E(ρ)
satisfies

E(ρ) = 0 ⇔ ρ ∈ SM,N , (11)

then, in principle, any algorithm for computing E(ρ) gives an algorithm for the quantum
separability problem. Note that most entanglement measures E do not satisfy (11); most just
satisfy E(ρ) = 0 ⇐ ρ ∈ SM,N .
cAlternatively, we could parametrize the pure states (composing Xi) in CM and CN by the real and imaginary
parts of rectangularly-represented complex coefficients with respect to the standard bases of CM and CN :

minimize 0

subject to: tr((ρ − PM2N2

i=1 |ψA
i 〉〈ψA

i | ⊗ |ψB
i 〉〈ψB

i |)2) = 0

tr
“PM2N2

i=1 |ψA
i 〉〈ψA

i | ⊗ |ψB
i 〉〈ψB

i |
”

= 1.

(10)

This parametrization hard-wires the constraint that the |ψA
i 〉〈ψA

i |⊗|ψB
i 〉〈ψB

i | are (unnormalized) pure product
states, but increases the degree of the polynomials in the constraint to 4 (for the unit trace constraint) and 8
(for the distance constraint).
dFor our purposes, the idea of a relaxation can be briefly described as follows. The given problem is to solve
minx∈Rn{p(x) : gk(x) ≥ 0, k = 1, . . . ,m}, where p(x), gi(x) : Rn → R are real-valued polynomials in
R[x1, . . . , xn]. By introducing new variables corresponding to products of the given variables (the number
of these new variables depends on the maximum degree of the polynomials p, gi), we can make the objective
function linear in the new variables; for example, when n = 2 and the maximum degree is 3, if p(x) =
3x1 + 2x1x2 + 4x1x2

2 then the objective function is cT y with c = (0, 3, 0, 0, 2, 0, 0, 0, 4, 0) ∈ R10 and y ∈ R10,
where 10 is the total number of monomials in R[x1, x2] of degree less than or equal to 3. Each polynomial
defining the feasible set G := {x ∈ Rn : gk(x) ≥ 0, k = 1, . . . ,m} can be viewed similarly. A relaxation of
the original problem is a SDP with objective function cT y and with a (convex) feasible region (in a higher-
dimensional space) whose projection onto the original space Rn approximates G. Better approximations to
G can be obtained by going to higher dimensions.
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A class of entanglement measures that do satisfy (11) are the so-called “distance mea-
sures” Ed(ρ) := minσ∈SM,N d(ρ, σ), for any reasonable measure of “distance” d(x, y) satis-
fying d(x, y) ≥ 0 and (d(x, y) = 0) ⇔ (x = y). If d is the square of the Euclidean dis-
tance, we get Ed22(ρ). Another “distance measure” is the von Neumann relative entropy
S(x, y) := tr(x(log x− log y)).

In Eisert et al.’s approach, we could replace Ed22 by Ed for any “distance function” d(ρ, σ)
that is expressible as a polynomial in the variables of σ. What dominates the running time of
Eisert et al.’s approach is the implicit minimization over SM,N , so using a different “distance
measure” (i.e. only changing the first constraint in (9)) like (tr(ρ − σ))2 would not improve
the analytic runtime (because the degree of the polynomial in the constraint is still 2), but
may help in practice.

Another entanglement measure E that satisfies (11) is the entanglement of formation [39]

EF (ρ) := min
{pi,|ψi〉〈ψi|}i: ρ=

P
i pi|ψi〉〈ψi|

∑
i

piS(trB(|ψi〉〈ψi|)), (12)

where S(ρ) := −tr(ρ log(ρ)) is the von Neumann entropy. This gives another strategy for a
separability algorithm: search through all decompositions of the given ρ to find one that is
separable. We can implement this strategy using the same relaxation technique of Eisert et
al., but first we have to formulate the strategy as a polynomially-constrained optimization
problem. The role of the function S is to measure the entanglement of |ψi〉〈ψi| by measuring
the mixedness of the reduced state trB(|ψi〉〈ψi|). For our purposes, we can replace S with
any other function T that measures mixedness such that, for all ρ ∈ DM,N , T (ρ) ≥ 0 and
T (ρ) = 0 if and only if ρ is pure. Recalling that, for any ρ ∈ DM,N , tr(ρ2) ≤ 1 with equality if
and only if ρ is pure, the function T (ρ) := 1 − tr(ρ2) suffices; this function T may be written
as a (finite-degree) polynomial in the real variables of ρ, whereas S could not. Defining

E′
F (ρ) := min

{pi,|ψi〉〈ψi|}i: ρ=
P

i pi|ψi〉〈ψi|

∑
i

piT (trB(|ψi〉〈ψi|)), (13)

we have that E′
F satisfies (11). Using an argument similar to the proof of Lemma 1 in

[40], we can show that the minimum in (13) is attained by a finite decomposition of ρ into
M2N2 + 1 pure states. Thus, the following polynomially-constrained optimization problem
can be approximated by semidefinite relaxations:

minimize
∑M2N2+1
i=1 tr(Xi)T (trB(Xi))

subject to: tr(
∑M2N2+1

i=1 Xi − [ρ])2 = 0
tr(

∑M2N2+1
i=1 Xi) = 1

tr(X2
i ) = (tr(Xi))2,

for i = 1, 2, . . . ,M2N2 + 1
tr(X3

i ) = (tr(Xi))3,
for i = 1, 2, . . . ,M2N2 + 1.

(14)

The above has about half as many constraints as (9), so it would be interesting to compare
the performance of the two approaches.
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1.2.4 Other tests

There are several one-sided tests which do not lead to full algorithms for the quantum sepa-
rability problem for SM,N .

Definition 3 (Robust semidefinite program) Given the vector c ∈ Rm, Hermitian ma-
trices Fi ∈ Cn×n, i = 0, 1, . . . ,m, and vector space D,

minimize cTx (15)

subject to: F (x,Δ) ≥ 0, for all Δ ∈ D, (16)

where F (x,Δ) := F0(Δ) +
∑m

i=1 xiFi(Δ).

Brandão and Vianna [41] have a set of one-sided necessary tests based on deterministic re-
laxations of a robust semidefinite program, but this set is not an asymptotically complete
hierarchy. The same authors also have a related randomized quantum separability algorithm
which uses probabilistic relaxations of the same robust semidefinite program [42] (but ran-
domized algorithms are outside of our scope). I give their robust semidefinite program at the
end of Section 3.3.1, where we will see a similar (nonrobust) SDP – essentially, a discretiza-
tion of the robust semidefinite program – that solves the (approximate) quantum separability
problem.

Woerdeman [43] has a set of one-sided tests for the case where M = 2. His approach might
be described as the mirror-image of Doherty et al.’s: Instead of using an infinite hierarchy
of necessary criteria for separability, he uses an infinite hierarchy of sufficient criteria. Each
criterion in the hierarchy can be checked with a SDP.

2 Separability as a Computable Decision Problem

Definition 1 gave us a concrete definition of the quantum separability problem that we could
use to explore some important results. Now we step back from that definition and, in Section
2.1, consider more carefully how we might formulate the quantum separability problem for
the purposes of computing it. After considering exact formulations in Section 2.1.1, we settle
on approximate formulations of the problem in Section 2.1.2, and give a few examples that
are, in a sense, equivalent.

In Section 2.2, I discuss various aspects of the computational complexity of the quantum
separability problem. Section 2.2.1 contains a review of NP-completeness theory. In Sections
2.2.2 and 2.2.3, I give a formulation of the quantum separability problem that is NP-complete
with respect to Turing reductions. In Section 2.2.4, I consider the quantum separability
problem’s membership in co-NP. In Section 2.2.5, I explore the problem of strong NP-
hardness of the (approximate) quantum separability problem. Finally, in Section 2.2.6, I
discuss the open problem of whether the quantum separability problem is NP-complete with
respect to Karp reductions.

2.1 Formulating the quantum separability problem

The nature of the quantum separability problem and the possibility for quantum computers
allows a number of approaches, depending on whether the input to the problem is classical
(a matrix representing ρ) or quantum (T copies of a physical system prepared in state ρ) and
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whether the processing of the input will be done on a classical computer or on a quantum
computer. The use of entanglement witnessese in the laboratory is a case of a quantum input
and very limited quantum processing in the form of measurement of each copy of ρ. The
case of more-sophisticated quantum processing on either a quantum or classical input is not
well studied (see [44] for an instance of more-sophisticated quantum processing on a quantum
input). For the remainder of the paper, I focus on the case where input and processing are
classical (though the algorithm in Section 3.3 can be applied in an experimental setting [4, 5]).

2.1.1 Exact formulations

Let us examine Definition 1 from a computational viewpoint. The matrix [ρ] is allowed to
have real entries. Certainly there are real numbers that are uncomputable (e.g. a number
whose nth binary digit is 1 if and only if the nth Turing machine halts on input n); we
disallow such inputs. However, the real numbers e, π, and

√
2 are computable to any degree

of approximation, so in principle they should be allowed to appear in [ρ]. In general, we should
allow any real number that can be approximated arbitrarily well by a computer subroutine.
If [ρ] consists of such real numbers (subroutines), say that “ρ is given as an approximation
algorithm for [ρ].” In this case, we have a procedure to which we can give an accuracy
parameter δ > 0 and out of which will be returned a matrix [ρ]δ that is (in some norm) at
most δ away from [ρ]. Because SM,N is closed, the sequence ([ρ]1/n)n=1,2,... may converge to a
point on the boundary of SM,N (when ρ is on the boundary of SM,N). For such ρ, the formal
quantum separability problem may be “undecidable” because the δ-radius ball centred at [ρ]δ
may contain both separable and entangled states for all δ > 0 [45] (more generally, see “Type
II computability” in [46]).

If we really want to determine the complexity of deciding membership in SM,N , it makes
sense not to confuse this with the complexity of specifying the input. To give the computer a
fighting chance, it makes more sense to restrict to inputs that have finite exact representations
that can be readily subjected to elementary arithmetic operations begetting exact answers.
For this reason, we might restrict the formal quantum separability problem to instances where
[ρ] consists of rational entries:

Definition 4 (Rational quantum separability problem (EXACT QSEP)) Let
ρ ∈ DM,N be a mixed state such that the matrix [ρ] (with respect to the standard basis of
CM ⊗ CN ) representing ρ consists of rational entries. Given [ρ], is ρ separable?

As pointed out in [2], Tarski’s algorithmf [48] can be used to solve EXACT QSEP. The
Tarski-approach is as follows. Note that the following first-order logical formulag is true if

eAn entanglement witness (for ρ) is defined to be any operator A ∈ HM,N such that tr(Aσ) < tr(Aρ) for all
σ ∈ SM,N and some ρ ∈ EM,N ; we say that “A detects ρ”. Every ρ ∈ EM,N has an entanglement witness that
detects it [22].
fTarski’s result is often called the “Tarski-Seidenberg” theorem, after Seidenberg, who found a slightly better
algorithm [47] (and elaborated on its generality) in 1954, shortly after Tarski managed to publish his; but
Tarski discovered his own result in 1930 (the war prevented him from publishing before 1948).
gRecall the logical connectives: ∨ (“OR”), ∧ (“AND”), ¬ (“NOT”); the symbol → (“IMPLIES”), in “x → y”,
is a shorthand, as “x → y” is equivalent to “(¬x) ∨ y”; as well, we can consider “x ∨ y” shorthand for
“¬((¬x) ∧ (¬y))”. Also recall the existential and universal quantifiers ∃ (“THERE EXISTS”) and ∀ (“FOR
ALL”); note that the universal quantifier ∀ is redundant as “∀xφ(x)” is equivalent to “¬∃x¬φ(x)”.
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and only if ρ is separable:

∀A[(∀Ψ(tr(AΨ) ≥ 0)) → (trAρ ≥ 0)], (17)

where A ∈ HM,N and Ψ is a pure product state. To see this, note that the subformula enclosed
in square brackets means “−A is not an entanglement witness for ρ”, so that if this statement
is true for all A then there exists no entanglement witness detecting ρ. When [ρ] is rational,
our experience in Section 1.2.2 with polynomial constraints tells us that the formula in (17)
can be written in terms of “quantified polynomial inequalities” with rational coefficients:

∀X{(∀Y [Q(Y ) → (r(X,Y ) ≥ 0)]) → (s(X) ≥ 0)}, (18)

where

• X is a block of real variables parametrizing the matrix A ∈ HM,N (with respect to an
orthogonal rational Hermitian basis of HM,N ); the “Hermiticity” of X is hard-wired by
the parametrization;

• Y is a block of real variables parametrizing the matrix Ψ;

• Q(Y ) is a conjunction of four polynomial equations that are equivalent to the four
constraints tr((trj(Ψ))2) = 1 and tr((trj(Ψ))3) = 1 for j ∈ {A,B};

• r(X,Y ) is a polynomial representing the expression tr(AΨ);h

• s(X) is a polynomial representing the expression tr(A[ρ]).

The main point of Tarski’s result is that the quantifiers (and variables) in the above sentence
can be eliminated so that what is left is just a formula of elementary algebra involving Boolean
connections of atomic formula of the form (α � 0) involving terms α consisting of rational
numbers, where � stands for any of <,>,=, �=; the truth of the remaining (very long) formula
can be computed in a straightforward manner. The best algorithms for deciding (18) require a
number of arithmetic operations roughly equal to (PD)O(|X|)×O(|Y |), where P is the number
of polynomials in the input, D is the maximum degree of the polynomials, and |X | (|Y |)
denotes the number of variables in block X (Y ) [49]. Since P = 6 and D = 3, the running
time is roughly 2O(M4N4).

2.1.2 Approximate formulations

The benefit of EXACT QSEP is that, compared to Definition 1, it eliminated any uncertainty
in the input by disallowing irrational matrix entries. Consider the following motivation for an
alternative to EXACT QSEP, where, roughly, we only ask whether the input [ρ] corresponds
to something close to separable:

hTo ensure the Hermitian basis is rational, we do not insist that each of its elements has unit Euclidean norm.
If the basis is {Xi}i=0,1,...,M2N2 , where X0 is proportional to the identity operator, then we can ignore the

X0 components write A =
PM2N2

i=1 AiXi and Ψ =
PM2N2

i=1 ΨiXi. An expression for tr(AΨ) in terms of the

real variables Ai and Ψi may then look like
PM2N2

i=1 AiΨitr(X2
i ).
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• Suppose we really want to determine the separability of a density operator ρ such that
[ρ] has irrational entries. If we use the EXACT QSEP formulation (so far, we have no
decidable alternative), we must first find a rational approximation to [ρ]. Suppose the
(Euclidean) distance from [ρ] to the approximation is δ. The answer that the Tarski-
style algorithm gives us might be wrong, if ρ is not more than δ away from the boundary
of SM,N .

• Suppose the input matrix came from measurements of many copies of a physical state
ρ. Then we only know [ρ] to some degree of approximation.

• The best known Tarski-style algorithms for EXACT QSEP have gigantic running times.
Surely, we can achieve better asymptotic running times if we use an approximate for-
mulation.

Thus, in many cases of interest, insisting that an algorithm says exactly whether the input
matrix corresponds to a separable state is a waste of time. In Section 2.2.2, we will see that
there is another reason to use an approximate formulation, if we would like the problem to
fit nicely in the theory of NP-completeness.

Gurvits was the first to use the weak membership formulation of the quantum separability
problem [50, 51]. For x ∈ Rn and δ > 0, let B(x, δ) := {y ∈ Rn : ||x− y|| ≤ δ}. For a convex
subset K ⊂ Rn, let S(K, δ) := ∪x∈KB(x, δ) and S(K,−δ) := {x : B(x, δ) ⊆ K}.

Definition 5 (Weak membership problem for K (WMEM(K))) Given a rational vec-
tor p ∈ Rn and rational δ > 0, assert either that

p ∈ S(K, δ), or (19)

p /∈ S(K,−δ). (20)

Denote by WMEM(SM,N ) the quantum separability problem formulated as the weak mem-
bership problem. An algorithm solving WMEM(SM,N ) is a separability test with two-sided
“error” in the sense that it may assert (19) when p represents an entangled state and may
assert (20) when p represents a separable state. Any formulation of the quantum separability
problem will have (at least) two possible answers – one corresponding to “p approximately
represents a separable state” and the other corresponding to “p approximately represents an
entangled state”. Like in WMEM(SM,N ), there may be a region of p where both answers are
valid. We can use a different formulation where this region is shifted to be either completely
outside SM,N or completely inside SM,N :

Definition 6 (In-biased weak membership problem for K (WMEMIn(K))) Given a
rational vector p ∈ Rn and rational δ > 0, assert either that

p ∈ S(K, δ), or (21)

p /∈ K. (22)
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Definition 7 (Out-biased weak membership problem for K (WMEMOut(K))) Given
a rational vector p ∈ Rn and rational δ > 0, assert either that

p ∈ K, or (23)

p /∈ S(K,−δ). (24)

We can also formulate a “zero-error” version such that when p is in such a region, then any
algorithm for the problem has the option of saying so, but otherwise must answer exactly:

Definition 8 (Zero-error weak membership problem for K (WMEM0(K))) Given a
rational vector p ∈ Rn and rational δ > 0, assert either that

p ∈ K, or (25)

p /∈ K, or (26)

p ∈ S(K, δ) \ S(K,−δ) (27)

All the above formulations of the quantum separability problem are based on the Euclidean
norm and use the isomorphism between HM,N and RM2N2

. We could also make similar for-
mulations based on other operator norms in HM,N . In the next section, we will see yet another
formulation of an entirely different flavour. While each formulation is slightly different, they
all have the property that in the limit as the error parameter approaches 0, the problem coin-
cides with EXACT QSEP. Thus, despite the apparent inequivalence of these formulations, we
recognize that they all basically do the same job. In fact, WMEM(SM,N ), WMEMIn(SM,N ),
WMEMOut(SM,N ), and WMEM(SM,N )0 are equivalent: given an algorithm for one of the
problems, one can solve an instance (ρ, δ) of any of the other three problems by just calling
the given algorithm at most twice (with various parameters).i

2.2 Computational complexity

This section addresses how the quantum separability problem fits into the framework of
complexity theory. I assume the reader is familiar with concepts such as problem, instance
(of a problem), (reasonable, binary) encodings, polynomially relatedness, size (of an instance),
(deterministic and nondeterministic) Turing machine, and polynomial-time algorithm; all of
which can be found in any of [53–55].

Generally, the weak membership problem is defined for a class K of convex sets. For
example, in the case of WMEM(SM,N ), this class is {SM,N}M,N for all integers M and N

i To show this equivalence, it suffices to show that given an algorithm for WMEM(SM,N ), one can solve
WMEMOut(SM,N ) with one call to the given algorithm (the converse is trivial); a similar proof shows that
one can solve WMEMIn(SM,N ) with one call to the algorithm for WMEM(SM,N ). The other relationships
follow immediately. Let (ρ, δ) be the given instance of WMEMOut(SM,N ). Define ρ0 := ρ + δ(ρ − IM,N )/2

and δ0 := δ/(2
p
MN(MN − 1)). Call the algorithm for WMEM(SM,N ) with input (ρ0, δ0). Suppose the

algorithm asserts ρ0 /∈ S(SM,N ,−δ0). Then, because ||ρ− ρ0|| = δ
2
||ρ− IM,N || and ||ρ− IM,N || ≤ 1, we have

ρ /∈ S(SM,N ,−(δ0+δ/2)) hence ρ /∈ S(SM,N ,−δ). Otherwise, suppose the algorithm asserts ρ0 ∈ S(SM,N , δ0).
By way of contradiction, assume that ρ is entangled. But then, by convexity of SM,N and the fact that SM,N

contains the ball B(IM,N , 1/
p
MN(MN − 1)), we can derive that the ball B(ρ0, δ0) does not intersect SM,N .

But this implies ρ0 /∈ S(SM,N , δ0) – a contradiction. Thus, ρ ∈ SM,N . This proof is a slight modification of
the argument given in [52]. See also Lemma 4.3.3 in [50].
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such that 2 ≤ M ≤ N . An instance of WMEM thus includes the specification of a member
K of K. The size of an instance must take into account the size 〈K〉 of the encoding of
K. It is reasonable that 〈K〉 ≥ n when K ∈ Rn, because an algorithm for the problem
should be able to work efficiently (in time that is upper-bounded by a polynomial in the size
of an instance) with points in Rn. But the complexity of K matters, too. For example, if
K extends (doubly-exponentially) far from the origin (but contains the origin) then K may
contain points that require large amounts of precision to represent; again, an algorithm for
the problem should be able to work with such points efficiently (for example, it should be able
to add such a point and a point close to the origin, and store the result efficiently). In the case
of WMEM(SM,N ), the size of the encoding of SM,N may be taken as N (assuming M ≤ N),
as SM,N is not unreasonably long or unreasonably thin: it is contained in the unit sphere in
RM2N2−1 and contains a ball of separable states of radius Ω(1/poly(N)) (see Section 1.1).j

Thus, the total size of an instance of WMEM(SM,N ), or any formulation of the quantum
separability problem, may also be taken to be N plus the size of the encoding of (ρ, δ).

2.2.1 Review of NP-completeness

Complexity theory, and, particularly, the theory of NP-completeness, pertains to decision
problems – problems that pose a yes/no question. Let Π be a decision problem. Denote
by DΠ the set of instances of Π, and denote the yes-instances of Π by YΠ. Recall that
the complexity class P (respectively, NP) is the set of all problems the can be decided by a
deterministic Turing machine (respectively, nondeterministic Turing machine) in polynomial
time. The following equivalent definition of NP is perhaps more intuitive:

Definition 9 (NP) A decision problem Π is in NP if there exists a deterministic Turing
machine TΠ such that for every instance I ∈ YΠ there exists a string CI of length |CI | ∈
O(poly(|I|)) such that TΠ, with inputs CI and (an encoding of) I, can check that I is in YΠ

in time O(poly(|I|)).

The string CI is called a (succinct) certificate. Let Πc be the complementary problem of Π,
i.e. DΠc ≡ DΠ and YΠc := DΠ \ YΠ. The class co-NP is thus defined as {Πc : Π ∈ NP}.

Let us briefly review the different notions of “polynomial-time reduction” from one problem
Π′ to another Π. Let OΠ be an oracle, or black-boxed subroutine, for solving Π, to which
we assign unit complexity cost. A (polynomial-time) Turing reduction from Π′ to Π is any
polynomial-time algorithm for Π′ that makes calls to OΠ. Write Π′ ≤T Π if Π′ is Turing-
reducible to Π. A polynomial-time transformation, or Karp reduction, from Π′ to Π is a Turing
reduction from Π′ to Π in which OΠ is called at most once and at the end of the reduction
algorithm, so that the answer given by OΠ is the answer to the given instance of Π′. In other
words, a Karp reduction from Π′ to Π is a polynomial-time algorithm that (under a reasonable
encoding) takes as input an (encoding of an) instance I ′ of Π′ and outputs an (encoding of
an) instance I of Π such that I ′ ∈ YΠ′ ⇔ I ∈ YΠ. Write Π′ ≤K Π if Π′ is Karp-reducible
to Π. Karp and Turing reductions are on the extreme ends of a spectrum of polynomial-time
reductions; see [56] for a comparison of several of them.

jRecall that a function f(n) is in Ω(g(n)) when there exist constants c and n0 such that cg(n) ≤ f(n) for all
n > n0.
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Reductions between problems are a way of determining how hard one problem is relative
to another. The notion of NP-completeness is meant to define the hardest problems in NP.
We can define NP-completeness with respect to any polynomial-time reduction; we define
Karp-NP-completeness and Turing-NP-completeness :

NPCK := {Π ∈ NP : Π′ ≤K Π for all Π′ ∈ NP } (28)

NPCT := {Π ∈ NP : Π′ ≤T Π for all Π′ ∈ NP }. (29)

We have NPCK ⊆ NPCT. Let Π, Π′, and Π′′ be problems in NP, and, furthermore, suppose
Π′ is in NPCK. If Π′ ≤T Π, then, in a sense, Π is at least as hard as Π′ (which gives an
interpretation of the symbol “≤T”). Suppose Π′ ≤T Π but suppose also that Π′ is not Karp-
reducible to Π. If Π′ ≤K Π′′, then we can say that “Π′′ is at least as hard as Π”, because, to
solve Π′ (and thus any other problem in NP), OΠ has to be used at least as many times as
OΠ′′ ; if any Turing reduction proving Π′ ≤T Π requires more than one call to OΠ, then we
can say “Π′′ is harder than Π”. Therefore, if NPCK �= NPCT, then the problems in NPCK

are harder than the problems in NPCT \NPCK; thus NPCK are the hardest problems in NP
(with respect to polynomial-time reductions).

A problem Π is NP-hard when Π′ ≤T Π for some Karp-NP-complete problem Π′ ∈ NPCK.
The term “NP-hard” is also used for problems other than decision problems. For example,
let Π′ ∈ NPCK; then WMEM(SM,N ) is NP-hard if there exists a polynomial-time algorithm
for Π′ that calls OWMEM(SM,N ).

2.2.2 Quantum separability problem in NP

Fact 1 suggests that the quantum separability problem is in NP: a nondeterministic Turing
machine guesses {(pi, [|ψA

i 〉], [|ψB
i 〉])}M

2N2

i=1 ,k and then easily checks that

[ρ] =
M2N2∑
i=1

pi[|ψA
i 〉][〈ψA

i |] ⊗ [|ψB
i 〉][〈ψB

i |]. (30)

Technically, membership in NP is only defined for decision problems. Since none of the
weak membership formulations of the quantum separability problem can be rephrased as
decision problems (because problem instances corresponding to states near the boundary of
SM,N can satisfy both possible answers), we cannot consider their membership in NP (but
see Section 2.2.4, where we define NP for promise problems). However, EXACT QSEP is a
decision problem.

Problem 1 Is EXACT QSEP in NP?

Hulpke and Bruß [57] have formalized some important notions related to this problem. They
show that if ρ ∈ S(SM,N ,−δ), for some δ > 0, then each of the extreme points xi ∈ SM,N in
the expression ρ =

∑M2N2

i=1 pixi can be replaced by x̃i, where [x̃i] has rational entries. This
is possible because the extreme points (pure product states) of SM,N with rational entries
are dense in the set of all extreme points of SM,N . However, when ρ /∈ S(SM,N ,−δ), then
this argument breaks down. For example, when ρ has full rank and is on the boundary of
kI use square brackets to denote a matrix with respect to the standard basis.
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SM,N , then “sliding” xi to a rational position x̃i might cause x̃i to be outside of the affine
space generated by {xi}i=1,...,k. Figure 1 illustrates this in R3. Furthermore, even if xi can

Fig. 1. The dashed triangle outlines the convex hull of x1, x2, and x3, shown as dots at the
triangle’s vertices. This convex hull contains ρ, shown as a dot inside the triangle, and forms a
(schematic) face of SM,N . The curves represent the allowable choices for the x̃i. Sliding any of the
xi takes conv{x1, x2, x3} outside of the face. Incidentally, SM,N has no maximum-dimensional
faces (facets); this follows from results in [58].

be nudged comfortably to a rational x̃i, one would have to prove that 〈x̃i〉 ∈ O(poly(〈[ρ]〉)),
where 〈X〉 is the size of the encoding of X .

So, either the definition of NP does not apply (for weak membership formulations), or we
possibly run into problems near the boundary of SM,N (for exact formulations). Below we
give an alternative formulation that is in NP; we will refer to this problem as QSEP. The
definition of QSEP is just a precise formulation of the question “Given a density operator ρ,
does there exist a separable density operator σ̂ that is close to ρ?”

Definition 10 (QSEP) Given a rational density matrix [ρ] of dimension MN -by-MN , and
positive rational numbers δp, ε′ and δ′; does there exist a distribution {(p̃i; α̃i, β̃i)}i=1,2,...,M2N2

of unnormalized pure states α̃i ∈ CM , β̃i ∈ CN where p̃i ≥ 0, and p̃i and all elements of α̃i
and β̃i are �log2(1/δp)�-bit numbers (complex elements are x + iy, x, y ∈ R; where x and y

are �log2(1/δp)�-bit numbers) such that∣∣∣∣∣∣1 − ||α̃i||2||β̃i||2
M2N2∑
j=1

p̃j

∣∣∣∣∣∣ < ε′ for all i (31)

and

||[ρ] − σ̃||22 := tr(([ρ] − σ̃)2) < δ′2, (32)
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where σ̃ :=
∑M2N2

i=1 p̃iα̃iα̃
†
i ⊗ β̃iβ̃

†
i ?

Note that these checks can be done exactly in polynomial-time, as they only involve elemen-
tary arithmetic operations on rational numbers. To reconcile this definition with the above
question, we define σ̂ as the separable density matrix that is the “normalized version” of σ̃:

σ̂ :=
M2N2∑
i=1

p̂iα̂iα̂
†
i ⊗ β̂iβ̂

†
i , (33)

where p̂i := p̃i/
∑
i p̃i, α̂i := α̃i/||α̃i||, and β̂i := β̃i/||β̃i||. Using the triangle inequality, we

can derive that

||σ̂ − σ̃||2 ≤
∑
i

p̂i

∣∣∣∣∣∣1 − ||α̃i||2||β̃i||2
∑
j

p̃j

∣∣∣∣∣∣ , (34)

where the righthand side is less than ε′ when (31) is satisfied. If (32) is also satisfied, then
we have

||[ρ] − σ̂||2 ≤ ||[ρ] − σ̃||2 + ||σ̂ − σ̃||2 ≤ δ′ + ε′, (35)

which says that the given [ρ] is no further than δ′ + ε′ away from a separable density matrix
(in Euclidean norm).l

The decision problem QSEP is trivially in NP, as a nondeterministic Turing machine need
only guess the �log2(1/δp)�-bit distribution {(p̃i; α̃i, β̃i)}i=1,2,...,M2N2 and verify (in polytime)
that (31) and (32) are satisfied.

2.2.3 NP-Hardness

Gurvits has shown WMEM(SM,N ) to be NP-hard (with respect to the complexity-measures
M and 〈δ〉, i.e. min{M,N} and 1/δ must be allowed to increase) [51]. More details about
this result appear in Section 2.2.5.

We check now that QSEP is NP-hard, by way of a Karp-reduction from WMEM(SM,N ).
We assume we are given an instance I := ([ρ], δ) of WMEM(SM,N ) and we seek an instance
I ′ := ([ρ′], δp, ε′, δ′) of QSEP such that if I ′ is a “yes”-instance of QSEP, then I satisfies (19);
otherwise I satisfies (20). It suffices to use [ρ′] = [ρ]. It is clear that if δ′ and ε′ are chosen such
that δ ≥ δ′ + ε′, then I ′ is a “yes”-instance only if I satisfies (19). For the other implication,
we need to bound the propagation of some truncation-errors. Let p := �log2(1/δp)�.

Recall how absolute errors accumulate when multiplying and adding numbers. Let x =
x̃+ Δx and y = ỹ + Δy where x, y, x̃, ỹ, Δx, and Δy are all real numbers. Then we have

xy = x̃ỹ + x̃Δy + ỹΔx + ΔxΔy (36)

x+ y = x̃+ ỹ + Δx + Δy. (37)

For |x̃|, |ỹ| < 1, because we will be dealing with summations of products with errors, it is
sometimes convenient just to use

|xy − x̃ỹ| ≤ |Δy| + |Δx| + max{|Δx|, |Δy |} (38)
l I have formulated these checks to avoid division; this makes the error analysis of the next section simpler.
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to obtain our cumulative errors (which do not need to be tight to show NP-hardness). For
example, if x̃ and ỹ are the p-bit truncations of x and y, where |x|, |y| < 1, then |Δx|, |Δy| <
2−p; thus a conservative bound on the error of x̃ỹ is

|xy − x̃ỹ| < |Δy| + |Δx| + |Δx| = 3|Δx| < 22|Δx| = 2−(p−2). (39)

Proposition 1 Let σ ∈ SM,N be such that σ =
∑M2N2

i=1 piαiα
†
i ⊗ βiβ

†
i , and let

{(p̃i; α̃i, β̃i)}i=1,2,...,M2N2 be the p-bit truncation of {(pi;αi, βi)}i=1,2,...,M2N2 .
Then ||σ − σ̃||2 < M3N32−(p−7.5), where

σ̃ :=
M2N2∑
i=1

p̃iα̃iα̃
†
i ⊗ β̃iβ̃

†
i . (40)

Proof Letting γi := piαiα
†
i ⊗ βiβ

†
i − p̃iα̃iα̃

†
i ⊗ β̃iβ̃

†
i , we use the triangle inequality to get

||σ − σ̃||2 ≤
∑
i

||γi||2 =
∑
i

√
tr(γ2

i ). (41)

It suffices to bound the absolute error on the elements of [p̃iα̃iα̃
†
i⊗β̃iβ̃

†
i ]; using our conservative

rule (38), these elements have absolute error less than 2−(p−7). Thus [γi] is an MN -by-MN

matrix with elements no larger than 2−(p−7) in absolute value. It follows that (tr(γ2
i ))

1/2 is
no larger than

√
MN2−(p−7.5) in absolute value. Finally, we get

||σ − σ̃||2 ≤
∑
i

√
tr(γ2

i ) ≤M3N32−(p−7.5). (42)

Proposition 2 Let σ̃ be as in Proposition 1. Then for all i = 1, 2, . . .M2N2∣∣∣∣∣∣1 − ||α̃i||2||β̃i||2
M2N2∑
j=1

p̃j

∣∣∣∣∣∣ < M3N32−(p−5). (43)

Proof The absolute error on
∑

j p̃j is M2N22−p. The absolute error on ||α̃i||2 (resp. ||β̃i||2)
is no more than M2−(p−3) (resp. N2−(p−3)). This gives total absolute error of∣∣∣∣∣∣1 − ||α̃i||2||β̃i||2

∑
j

p̃j

∣∣∣∣∣∣ < M3N32−(p−5). (44)

Let δ′ := M3N32−(p−8) and ε′ := M3N32−(p−5) and set p such that ε′ + δ′ ≤ δ. Suppose
there exists a separable density matrix σ such that ||[ρ] − σ||2 = 0. Then Propositions 1 and
2 say that there exists a certificate σ̃ such that (31) and (32) are satisfied. Therefore, if I ′ is
a “no”-instance, then for all separable density matrices σ, ||[ρ]− σ||2 > 0; which implies that
I satisfies (20). This concludes a polytime Karp-reduction from WMEM(SM,N ) to QSEP
(actually, from WMEMIn(SM,N ) to QSEP):

Fact 3 QSEP is in NPCT.
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2.2.4 Nonmembership in co-NP

Technically, WMEM(SM,N ) is not in NP because it is not a decision problem; but it is a
promise problem. Recall that a promise problem Π may be defined as a generalization of a
decision problem, where, instead of just yes-instances YΠ and no-instances NΠ, we allow a
third set of maybe-instances (the “promise” is that the given instance is in YΠ ∪ NΠ). For
Π = WMEM(SM,N ), we have YΠ = {(x, δ) : x ∈ S(SM,N ,−δ), δ > 0} and NΠ = {(x, δ) : x ∈
DM,N \ S(SM,N , δ), δ > 0} (where we have implicitly restricted all states to being rational
density matrices [ρ]). For our purposes, a promise problem Π is defined to be in Promise-NP
if every yes-instance has a succinct certificate of being a yes-instance or a maybe-instance.
Accordingly, WMEM(SM,N ) is clearly in Promise-NP.

Is either EXACT QSEP or QSEP in co-NP? To avoid possible technicalities, we might first
consider the presumably easier question of whether WMEM(SM,N ) is in Promise-co-NP: Does
every entangled state ρ /∈ S(SM,N , δ) have a succinct certificate of not being in S(SM,N ,−δ)?
It may or may not be the case that P equals NP∩co-NP, but a problem’s membership in
NP∩co-NP can be “regarded as suggesting” that the problem is in P [53]. Thus, we might
believe that WMEM(SM,N ) is not in Promise-co-NP (since WMEM(SM,N ) is NP-hard).

Let us consider this with regard to entanglement witnesses, which are candidates for
succinct certificates of entanglement. We know that every entangled state has an entanglement
witness A ∈ HM,N that detects it (see footnote on page 344). However, it follows from the
NP-hardness of WMEM(SM,N ) and Theorem 4.4.4 in [50] that the weak validity problem for
K = SM,N (WVAL(SM,N )) is NP-hard:m

Definition 11 (Weak validity problem for K (WVAL(K))) Given a rational vector c ∈
Rn, a rational number γ, and rational ε > 0, assert either that

cTx ≤ γ + ε for all x ∈ K, or (45)

cTx ≥ γ − ε for some x ∈ K. (46)

So there is no known way to check efficiently that a hyperplane πA,b separates ρ from SM,N

(given just the hyperplane); thus, an entanglement witness alone does not serve as a succinct
certificate of a state’s entanglement unless WVAL(SM,N ) is polytime solvable. However, one
could imagine that there is a succinct certificate of the fact that a hyperplane πA,b separates
ρ from SM,N . If such a certificate exists, then WVAL(SM,N ) is in Promise-NP (and thus
WMEM(SM,N ) is in Promise-co-NP).n

With regard to QSEP, we have the following:

Fact 4 QSEP is not in co-NP, unless NP equals co-NP.

This follows from the fact that if any Turing-NP-complete problem is in co-NP, then NP
equals co-NP [54]. It is strongly conjectured that NP and co-NP are different [54], thus we

mTheorem 4.4.4 in [50], applied to SM,N , states that there exists an oracle-polynomial-time algorithm that
solves the WSEP(SM,N ) given an oracle for WVAL(SM,N ).
nWVAL(K) is in Promise-NP if, for any instance c, γ, ε satisfying cTx ≤ γ − ε for all x ∈ K, there exists a
succinct certificate of the fact that cTx ≤ γ + ε for all x ∈ K.
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might believe that QSEP is not in co-NP. We would like to be able to use Fact 4 to show that
WVAL(SM,N ) is not in Promise-NP unless NP equals co-NP. However, for this, we would
require that WVAL(SM,N ) is in Promise-NP implies QSEP is in co-NP; but this is not the
case, because exhibiting a separating hyperplane for ρ (i.e. showing that ρ is entangled) does
not make ρ a no-instance of QSEP.

2.2.5 Strong NP-hardness

The NP-complete problem known as PARTITION may be defined as follows: Given a nonneg-
ative integral vector a ∈ Zn, does there exist a solution z ∈ {−1, 1}n to the equation aT z = 0?
It is well known that there exists a “dynamic programming” algorithm that solves PARTI-
TION in time O(poly(n||a||1)), where ||a||1 is the sum of the elements of a [53]. This is known
as a pseudopolynomial-time algorithm, because if a is restricted such that ||a||1 ∈ O(poly(n)),
then the algorithm runs in “polynomial time”.

Aaronson [59] notes that Gurvits’ original NP-hardness result (in [51]) more precisely
shows that WMEM(SM,N ) is NP-hard provided that 1/δ is exponentially large, as I briefly
explain now. For this section only, we switch convention: M ≥ N . The full reduction chain
that Gurvits uses to prove NP-hardness is

PARTITION ≤K RSDF ≤K WVAL(SM,N ) ≤T WMEM(SM,N ), (47)

where the robust semidefinite feasibility (RSDF) problem is defined as follows:

Definition 12 (RSDF) Given k l× l, rational, symmetric matrices B1, . . . , Bk and rational
numbers ζ and η, assert either that

F (B1, . . . , Bk) ≤ ζ + η, or (48)

F (B1, . . . , Bk) ≥ ζ − η, (49)

where F (B1, . . . , Bk) := maxx∈Rl,||x||2=1

∑k
i′=1(x

TBi′x)2.

Given a PARTITION instance a ∈ Zl, we want to solve it using an oracle for RSDF. The reduc-
tion (in [60]) from PARTITION to RSDF says that η needs to be on the order of 1/poly(l||a||2).
But this implies that, for a to be an NP-hard instance of PARTITION, 1/η needs to be expo-
nentially large in l. In other words, WVAL(SM,N ) (and hence WMEM(SM,N )) is only shown
to be NP-hard when the accuracy parameter is very small. It is still conceivable, though, that
WVAL(SM,N ) (resp. WMEM(SM,N )) is tractable when 1/ε (resp. 1/δ) is in O(poly(M,N)).
Below, I show that a new reduction discovered by Gurvits [61] (inspired by the proof of Lemma
3 in [62]) removes the possibility for such a family of WVAL(SM,N ) instances in a certain
regime of ε; moreover, I also remove this possibility for a problem slightly more difficult than
the weak membership problem for SM,N .

The new reduction chain is

CLIQUE ≤K WMQS ≤K RSDF ≤K WVAL(SM,N ) ≤T WMEM(SM,N ), (50)

where CLIQUE ∈ NPCK (see [53]) is the problem of deciding whether the number of vertices
in the largest complete subgraph (clique) of a given simple graph on n vertices is at least c
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(given also integer c ≤ n), and WMQS is the problem of weakly deciding a bound on the
maximum of the quadratic form yTAy over the simplex Δn := {y ∈ Rn : yi ≥ 0, ||y||1 = 1}:

Definition 13 (WMQS) Given rational, symmetric A ∈ Rn×n with nonnegative entries
Aij and rational numbers ζ′ and η′ > 0, assert either that

H(A) ≤ ζ′ + η′, or (51)

H(A) ≥ ζ′ − η′, (52)

where H(A) := maxy∈Δn y
TAy.

The first link in this chain is well known via the following theorem:o

Theorem 1 ([63]) Let G be a simple graph on n vertices, and let AG be the adjacency matrix
for G.p Let κ be the size of the maximum complete subgraph of G. Then

max
y∈Δn

yTAGy = 1 − 1/κ. (53)

Suppose (G, c) is a given CLIQUE instance, where G has n vertices. To transform (G, c) into
a WMQS-instance, just set ζ′ to be the midpoint of interval Ic = [1 − 1/(c − 1), 1 − 1/c]
and set η′ so that the interval [ζ′ − η′, ζ′ + η′] is strictly contained in Ic (and set A := AG).
Note that such an η′ exists in Ω((c − 1)−1 − c−1) ∈ Ω(n−2). Therefore, WMQS is NP-hard
(with respect to n and 〈η′〉) even when 1/η′ is restricted to being in O(poly(n)), which we
call strong NP-hardness (see [53]).

The second link Gurvits establishes by noting that, via a change of variables yi → x2
i ,

max
y∈Δn

yTAy = max
x∈Rn,||x||2=1

n∑
i,j=1

Aijx
2
ix

2
j , (54)

and
n∑

i,j=1

Aijx
2
ix

2
j =

n∑
i,j=1

(
√
Aijxixj)2 = 2

∑
1≤i<j≤n

(
√
Aijxixj)2 =

∑
1≤i<j≤n

(xTBijx)2, (55)

where Bij , for all 1 ≤ i < j ≤ n, is the matrix with
√
Aij in positions (i, j) and (j, i), and

zeros elsewhere (note there are n(n − 1)/2 matrices Bij). Thus RSDF is strongly NP-hard
(with respect to l and 〈η〉) in the regime k ≥ l(l − 1)/2, because we can make some of the
blocks Bi′ zero-blocks (the rest of the instance-transformation is (ζ, η) := (ζ′, η′)).

The third link is established in [51], where Gurvits shows that, for

B :=

⎛
⎜⎜⎜⎝

0 B1 · · · BM−1

B1 0 · · · 0
...

...
. . .

...
BM−1 0 · · · 0

⎞
⎟⎟⎟⎠ , (56)

oThanks to Etienne de Klerk at University of Waterloo for pointing me to this theorem.
pAG has a 1 in position (i, j) whenever (i, j) is an edge of G, and otherwise has a 0 (AG has just zeros on the
diagonal).
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where the zeros are N × N blocks of 0 and the Bi are real symmetric N × N matrices, the
following holds:

max
σ∈SM,N

tr(Bσ) = max
x∈RN ,||x||2=1

M−1∑
i′=1

(xTBi′x)2. (57)

It follows that WVAL(SM,N ) is strongly NP-hard (with respect to N and 〈ε〉) in the regime
M ≥ N(N−1)/2+1 (again, the rest of the instance-transformation is trivial: (γ, ε) := (ζ, η)).
But suppose we had an oracle for WVAL(SM,N )N≤M≤N(N−1)/2 and wanted to solve the
instance of CLIQUE. Then, by setting M := N := n(n− 1)/2 + 1 and making each Bi′ block
(i′ = 1, . . . , N − 1) zeros but for the upper left n× n submatrix (into which we put Bij), we
have that

max
x∈RN ,||x||2=1

M−1∑
i′=1

(xTBi′x)2 = max
x∈Rn,||x||2=1

∑
1≤i<j≤n

(xTBijx)2. (58)

Thus WVAL(SM,N ) is also strongly NP-hard (with respect to N and 〈ε〉) in the regime
2 ≤ N ≤M .

The last link in the reduction is more correctly split up into two links:

WVAL(SM,N ) ≤K WVIOL(SM,N ) ≤T WMEM(SM,N ), (59)

where the following definition applies:

Definition 14 (Weak violation problem for K (WVIOL(K))) Given a rational vector
c ∈ Rn, a rational number γ, and rational ε > 0, either

• assert cTx ≤ γ + ε for all x ∈ K, or

• find a vector y ∈ S(K, ε) with cT y ≥ γ − ε.

It is clear that WVIOL(SM,N ) is also strongly NP-hard. But the Turing-reduction from
WVIOL(SM,N ) to WMEM(SM,N ) is highly nontrivial in that the only proof of this reduction,
appearing in Theorem 4.3.2 of [50], requires the shallow-cut ellipsoid method. The accuracy
parameters for the WMEM(SM,N )-oracle queries in this reduction only have exponentially
small lower bounds. Thus the problem remains:

Problem 2 Is WMEM(SM,N ) tractable when 1/δ is in O(poly(M,N))?

Let us consider the following problem, which is more difficult than the weak membership
problem because it asks for the normal vector to a separating hyperplane in the case where
the given point is not inside the convex set:

Definition 15 (Weak separation problem for K (WSEP(K))) Given a rational vec-
tor p ∈ Rn and rational δ > 0, either
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• assert p ∈ S(K, δ), or

• find a rational vector c ∈ Rn with ||c||∞ = 1 such that cTx < cT p+ δ for every x ∈ K.

Note that WSEP(SM,N ) asks either to assert that the given density matrix is almost separa-
ble, or to find an approximate entanglement witness. A Turing reduction from WVIOL(SM,N )
to WSEP(SM,N ) (one of which appears in Theorem 4.2.2 of [50]), is much more straightfor-
ward and does not require the ellipsoid method – any cutting-plane algorithm for the weak
nonemptiness problemq relative to a weak separation oracle suffices. Applying the analytic-
center algorithm of Atkinson and Vaidya [64] gives a Turing-reduction that only needs to
make polynomially-accurate WSEP(SM,N)-queries:

Fact 5 WSEP(SM,N ) is strongly NP-hard (w.r.t. N and 〈δ〉) in the regime 2 ≤ N ≤M .

2.2.6 Possibility of a Karp Reduction

To date, every decision problem (except for QSEP) that is known to be in NPCT is also
known to be in NPCK [65].r While it is strongly suspected that Karp and Turing reductions
are inequivalent within NP, it would be surprising if QSEP, or some other formulation of the
quantum separability problem,s is the first example that proves this inequivalence:

Problem 3 Is QSEP in NPCK?

One reason to believe that a Turing reduction is necessary to prove the NP-hardness of the
quantum separability problem is that a proof (see Section 2.2.5) seems to require a reduction
from WVAL(SM,N ) to WMEM(SM,N ); in turn, this reduction seems to require the shallow-
cut ellipsoid method (a Turing reduction). It is a long-standing open problem as to whether
the reduction from WVAL(SM,N ) to WMEM(SM,N ) can be done differently. However, as
the NP-hardness of WMEM(SM,N ) is a relatively recent result, there may be an altogether
different proof of it that does not require a reduction from WVAL(SM,N ) to WMEM(SM,N ).

Note that, because of Fact 3, a negative answer to Problem 3 implies that P �= NP. Note
also that a direct reduction from some Π′ ∈ NPCK to QSEP (or some other formulation)
would depend heavily on the precise definition of QSEP rather than the true spirit of the
quantum separability problem captured by WMEM(SM,N ). Thus, if the answer to Problem
3 is positive, it might be easier to look for a Karp-reduction from some Π ∈ NPCK to
WMEM(SM,N ).

qThe weak nonemptiness problem for K is merely to find a point in S(K, ε) or assert that S(K,−ε) is empty.
rBy “known to be in NPCT”, I mean that the language corresponding to the decision problem can be defined
and shown to be Turing-NP-complete, independent of any unproven assumptions. See [66] for languages that
are suspected to be Turing-but-not-Karp-NP-complete, whose existence depends on unproven assumptions
about NP.
sBy “formulation of the quantum separability problem”, I mean an NP-contained approximate formulation
that tends to EXACT QSEP as the accuracy parameters of the problem tend to zero.
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3 Survey and complexity analysis of algorithms for the quantum separability
problem

For the survey, I concentrate on proposed algorithms that solve an approximate formulation
of the quantum separability problem and have (currently known) asymptotic analytic bounds
on their running times. For this reason, the SDP relaxation algorithm of Eisert et al. is
not mentioned here (see Section 1.2.2); though, I do not mean to suggest that in practice it
could not outperform the following algorithms on typical instances. As well, I do not analyze
the complexity of the naive implementation of every necessary and sufficient criterion for
separability, as it is presumed that this would yield algorithms of higher complexity than the
following algorithms. For an exhaustive list of all such criteria, see the book by Bengtsson
and Zyczkowski [67].

I give complexity estimates for several of the algorithms surveyed. The main purpose
below is to get a time-complexity estimate in terms of the parameters M , N , and δ, where δ
is the accuracy parameter in WMEM(SM,N ). The running-time estimates are based on the
number of elementary arithmetic operations and do not attempt to deal with computer round-
off error; I do not give estimates on the total amount of machine precision required. Instead,
where rounding is necessary in order to avoid exponential blow-up of the representation of
numbers during the computation, I assume that the working precisiont can be set large enough
that the overall effect of the round-off error on the final answer is either much smaller than δ
or no larger than, say, δ/2 (so that doubling δ takes care of the error due to round-off).

3.1 Naive algorithm and δ-nets

The naive algorithm for any problem in NP consists of a search through all potential succinct
certificates that the given problem instance is a “yes”-instance. Thus QSEP immediately gives
an algorithm for the quantum separability problem. Hulpke and Bruß [57] have demonstrated
another hypothetical guess-and-check procedure that does not involve the probabilities pi.
They noticed that, given the vectors {[|ψA

i 〉], [|ψB
i 〉]}M

2N2

i=1 , one can check that

{[|ψA
i 〉][〈ψA

i |] ⊗ [|ψB
i 〉][〈ψB

i |]}M
2N2

i=1 is affinely independent; and (60)

[ρ] ∈ conv{[|ψA
i 〉][〈ψA

i |] ⊗ [|ψB
i 〉][〈ψB

i |]}M
2N2

i=1 (61)

in polynomially many arithmetic operations (and they give an algorithm for the separability
problem based on this observation). We can, in principle, reformulate QSEP to incorporate
the ideas of Hulpke and Bruß in order to get a better naive algorithm. The reader is referred to
[68] for details (and for how our approach differs from theirs – essentially, their algorithm solves
a more exact formulation of the separability problem); we quote the asymptotic running-time
estimate of (MN/δ)O(M3N2+M2N3).

QSEP can be further reformulated to avoid searching through all p-bit-precise pure states
by using the concept of a net on (or covering of) the unit sphere. Let SM be the Euclidean
unit sphere in CM . In principle, we can use a Euclidean δ-net of SM , which is a minimal
set of points NM

δ := {|xi〉}|N
M
δ |

i=1 ⊂ SM such that for any |x〉 ∈ SM there exists |xi〉 ∈ NM
δ

t“Working precision” is defined as the number of significant digits the computer uses to represent numbers
during the computation.



L.M. Ioannou 359

such that |||x〉 − |xi〉||2 ≤ δ. The optimal size of a δ-net on the real sphere is known to
be no larger than (1 + 2/δ)M [69], thus we can take |NM

δ | ≤ (1 + 2/δ)2M .u Assuming the
availability of asymptotically optimal NM

δ for allM and δ (where the real elements in each |xi〉
have p bits of precision), the complexity of the naive algorithm for separability is reduced to
(2/δ)O(M3N2+M2N3), which simply corresponds to the number ofM2N2-subsets of NM

δ ×NN
δ .

We will assume availability, or advice, of δ-nets for the complexity estimates of several of the
following algorithms.

3.2 Bounded search for symmetric extensions

In Section 1.2.1, we considered two tests – one that searches for symmetric extensions of ρ,
and a stronger one that searches for PPT symmetric extensions. Now I show that recent
results can put an upper bound on the number k of copies of subsystem A when solving
an approximate formulation of the separability problem. The bound only assumes symmetric
extensions, not PPT symmetric extensions, so it is possible that a better bound may be found
for the stronger test (Problem 4).

If a symmetric state � ∈ D((Cd)⊗n) has a symmetric extension to D((Cd)⊗(n+m)) for all
m > 0, then it is called (infinitely) exchangeable. The quantum de Finetti theorem (see [2]
and references therein) says that the infinitely exchangeable state � is separable. Recalling
the terminology of Section 1.2.1, it is also possible to derive that, for ρ ∈ D(CM ⊗ CN),
if there exists a symmetric extension of ρ to k copies of subsystem A for all k > 0, then
ρ ∈ SM,N . This is the result that proves that Doherty et al.’s hierarchy of tests is complete:
if ρ is entangled, then the SDP at some level k0 of the hierarchy will not be feasible (i.e. will
not find a symmetric extension of ρ to k0 copies of subsystem A).

It seems reasonable that, if we are only interested in whether ρ is δ-close to SM,N , we
should not need to check for extensions of ρ to k copies of subsystem A for k larger than some
bound k̄ = k̄(M,N, δ). In fact, we can use results of Christandl et al. [3] to compute just
such a k̄.v We require the following theorem:

Theorem 2 ([3]) Suppose ρ ∈ DM,N and there exists a Bose-symmetric extension ρ′ of ρ to
k ≥ 2 copies of subsystem A, i.e. (I ⊗ P )ρ′ = ρ′ for all k! permutations P of the k copies of
subsystem A. Then

tr|ρ− σ| ≤ 4M
k
, (62)

for some σ ∈ SM,N .

Note that the result uses the trace distance, tr|X − Y |, between two operators X and Y .
Let us assume we are solving the weak membership formulation of the quantum separability
problem with respect to the trace distance, and with accuracy parameter δ. Then, setting
δ = 4M/k, we get the following upper bound for k:

uRecall that the Euclidean distance between two vectors in CM depends only on the real part of their inner
product, which behaves exactly like the dot-product of real vectors in R2M .
vThanks to Andrew Doherty for calling my (and Christandl et al.’s!) attention to this; otherwise, I would be
deriving a worse bound on k, based on results in [70].
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Corollary 1 To solve WMEM(SM,N ) (with respect to the trace distance) with accuracy pa-
rameter δ by searching for symmetric extensions (as described in Section 1.2.1), it suffices to
look for symmetric extensions to

k̄ := �4M/δ� (63)

copies of subsystem A.

To estimate the total complexity of the algorithm, note that

dSk
=

(
M + k − 1

k

)
≈

(
M + k

k

)
=

(M + k)!
k!M !

(64)

≈ 1√
2π

(M + k)M+k

kkMM

(
1
k

+
1
M

)1/2

, (65)

(66)

where in the last line we used Stirling’s approximation n! ≈ nn
√

2πn/en. Substituting k̄ ≈
4M/δ for k, we get(

1
k̄

+
1
M

)−1/2

dSk̄
≈ 1√

2π
(M + 4M/δ)M+k̄

(4M/δ)k̄MM
=

1√
2π

(1 + 4/δ)M+k̄

(4/δ)k̄
(67)

≈ 1√
2π

(4/δ)M (68)

dSk̄
≈ 1√

2π
(4/δ)M (δ/4M + 1/M)1/2 (69)

≈ 1√
2π

(4/δ)M (1/M)1/2 . (70)

Just to solve the first constraint in (7) requires
√
n (but usually far fewer) iterations of

a procedure that requires O(m2n2) arithmetic operations, for m = ((dSk̄
)2 − M2)N2 and

n = (dSk̄
)2N2 [2]. That is, the complexity of each iteration is on the order of

(dSk̄
)8poly(M,N, log(1/δ)).

Problem 4 Can the upper bound k̄ be improved by taking into consideration the PPT con-
straints in (7)?

We mention that a larger bound k̄′ � k̄ on k can be derived from a theorem in [70], which
also can be used to compute an approximate separable decomposition of ρ in the case where
the SDP algorithm finds a symmetric extension of ρ to k̄′ copies of subsystem A.

3.3 Entanglement-witness search via global optimization

Recall that an entanglement witness (for ρ) is defined to be any operator A ∈ HM,N such that
tr(Aσ) < tr(Aρ) for all σ ∈ SM,N and some ρ ∈ EM,N ; we say that “A detects ρ”. Since every
ρ ∈ EM,N has an entanglement witness that detects it [22], one way to solve the quantum
separability problem is to exhaustively (but not naively!) search for an entanglement witness
for the given ρ. We mention that the dual of the SDP in the symmetric-extension search
algorithm can be used to find an (approximate) entanglement witness for ρ (when the SDP
is infeasible) [2].
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3.3.1 Large SDP method

Pérez-Garcia and Cirac [71] note that the following SDP effectively searches for an approxi-
mate entanglement witness −A for ρ:

minimize tr(Aρ) (71)

subject to: 〈xi|A|xi〉 ≥ 0, for all |xi〉 ∈ NM
δ , and tr(A) = 1. (72)

Define the following convex hull:

C := conv{|xi〉〈xi| ⊗ |b〉〈b| : |xi〉 ∈ NM
δ , |b〉 ∈ CN}. (73)

If the minimum is negative, then −A is an approximate entanglement witness for ρ because
there is a hyperplane with normal −A that separates ρ from C (otherwise ρ is in C and is
thus in SM,N ). This is justified because for any ρ ∈ SM,N there exists a σ ∈ C such that
||ρ−σ||1 ≤ 2δ, as we now verify. First, note that if |||x〉−|y〉||2 ≤ δ < 1, then Re〈x|y〉 ≥ 1−δ2/2
(since |||x〉 − |y〉||22 = 2 − 2Re〈x|y〉) and thus

|||x〉〈x| − |y〉〈y|||1 = 2
√

1 − |〈x|y〉|2 (see [55], p. 415) (74)

≤ 2
√

1 − (Re〈x|y〉)2 (75)

≤ 2
√

1 − (1 − δ2/2)2 (76)

= 2δ
√

1 − δ2/4 (77)

< 2δ. (78)

If ρ =
∑

j λj |uj〉〈uj | ⊗ |vj〉〈vj |, for λj ≥ 0 and
∑

j λj = 1, then choosing |xij 〉 ∈ NM
δ such

that |||xij 〉 − |uj〉||2 ≤ δ makes σ :=
∑

j λj |xij 〉〈xij | ⊗ |vj〉〈vj | in C with ||ρ− σ||1 ≤ 2δ.
The size (up to a constant factor) of the constraint of the SDP is n = |NM

δ |N (and the
number of real variables to parametrize A is m = M2N2 − 1), thus the complexity of one
iteration of the SDP is of the order |NM

δ |2poly(M,N, log(1/δ)) (assuming NM
δ is available).

This approach is a discretization of Brandão and Vianna’s robust semidefinite program
(see Section 1.2.4), which is

minimize tr(Aρ) (79)

subject to: x†Ax ≥ 0, for all x ∈ CM , and tr(A) = 1. (80)

(Note that, combined with Gurvits’ NP-hardness result [51], this demonstrates that robust
semidefinite programs are, in general, NP-hard.) Essentially, Pérez-Garcia and Cirac have
removed the robustness by using a δ-net, which clarifies the complexity of the approach for
deterministically solving WMEM(SM,N ).

3.3.2 Interior-point cutting-plane algorithm with global optimization subroutine

The algorithms in [4, 5] solve WMEM(SM,N ) by solving WSEP(SM,N ) using a subroutine for
WOPT(SM,N):

Definition 16 (Weak optimization problem for K (WOPT(K))) Given a rational vec-
tor c ∈ Rn and rational ε > 0, either
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• find a rational vector y ∈ Rn such that y ∈ S(K, ε) and cTx ≤ cT y+ ε for every x ∈ K;
or

• assert that S(K,−ε) is empty.w

Clearly, using a subroutine for WOPT(SM,N ) allows one to test whether a Hermitian operator
A approximately detects ρ. The algorithms effectively perform a binary search through the
space of all entanglement witnesses. For example, the algorithm in [4] searches through the
space W := {A ∈ HM,N : tr(A) = 0, tr(A) ≤ 1} of all normalized entanglement witnesses by
iterating the following:

(i) Let A be an approximate center (interior point) of the current search space (which is
initialized to W∩{x ∈ HM,N : tr(ρx) ≥ 0}, but subsequently gets approximately halved
in each iteration, in step (iv) below).

(ii) Set A := A/||A||2 and give (A, ε := δ/5) to WOPT(SM,N) subroutine, which outputs
σA.

(iii) If A approximately detects ρ, then return A;
(iv) otherwise, use σA to generate a cutting plane which approximately halves the current

search space (cuts it through A and the origin). If current search space is too small to
contain a hyperplane that separates ρ from S(SM,N , δ), then return “ρ ∈ S(SM,N , δ)”.

The number of arithmetic operations required by the algorithm described in [4] is

O((T +M6N6 log(1/δ))M2N2 log2(M2N2/δ)), (81)

where T is the cost of one call to the WOPT(SM,N) subroutine (see [68] for details).

Now consider the complexity of computing an instance (A, ε) of WOPT(SM,N ), ||A||2 = 1.
For each xi ∈ NM

δ , we compute |ji〉 := argmax|j〉|〈xi|〈j|A|xi〉|j〉| via eigenvector analysis of
〈xi|A|xi〉 (which is Hermitian).x Let ĩ denote the index i of an element |xi〉 of NM

δ that
maximizes |〈xi|〈ji|A|xi〉|ji〉|. Then |xĩ〉|j̃i〉 may be taken as a solution to WOPT(SM,N )
because

|〈xĩ|〈j̃i|A|xĩ〉|j̃i〉 − max
|α〉|β〉

〈α|〈β|A|α〉|β〉| ≤ 2δ, (82)

wFor ε we consider, this will never be the case for us, as we only consider WOPT(SM,N ) and SM,N is far from
empty.
xThanks to David Pérez-Garcia for suggesting this method.
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as we now verify. Let |a〉|b〉 := argmax|α〉|β〉〈α|〈β|A|α〉|β〉 and let i∗ denote the index i of an
element |xi〉 of NM

δ such that |||xi〉 − |a〉||2 ≤ δ. Writing |yb〉 for |y〉|b〉 for any |y〉,

|〈xi∗b|A|xi∗b〉 − 〈ab|A|ab〉| (83)

= |〈xi∗b|A|xi∗b〉 − 〈ab|A|xi∗b〉 + 〈ab|A|xi∗b〉 − 〈ab|A|ab〉| (84)

= |||xi∗〉 − |a〉||2
∣∣∣∣ 〈xi∗ | − 〈a|
|||xi∗〉 − |a〉||2

〈b|A|xi∗b〉 + 〈ab|A |xi∗〉 − |a〉
|||xi∗ 〉 − |a〉||2

|b〉
∣∣∣∣ (85)

≤ 2δ max
|c〉,|d〉∈CM

|〈c|〈b|A|d〉|b〉| (86)

≤ 2δ max
|c′〉,|d′〉∈CM⊗CN

|〈c′|A|d′〉| (87)

= 2δmax{
√
λ : λ an eigenvalue of A†A} (see [72], p. 312) (88)

≤ 2δ
√∑

i

λi(A†A) (where λi(X) denotes eigenvalues of X) (89)

= 2δ||A||2 (since A is normal, see [72], p. 316) (90)

= 2δ. (91)

The inequality (82) follows from noting

〈xi∗ |〈b|A|xi∗〉|b〉 ≤ 〈xi∗ |〈ji∗ |A|xi∗〉|ji∗〉 ≤ 〈xĩ|〈j̃i|A|xĩ〉|j̃i〉 ≤ 〈a|〈b|A|a〉|b〉. (92)

Therefore, the complexity of the whole algorithm is on the order of
|NM

δ |poly(M,N, log(1/δ)) (assuming NM
δ is available).

3.4 Other algorithms

We mention two other algorithms, whose running times cannot be easily compared to that of
the above algorithms.

3.4.1 Cross-norm criterion via linear programming

Rudolph [73] derived a simple characterization of separable states in terms of a computation-
ally complex operator norm || · ||γ . For a finite-dimensional vector space V , let T (V ) be the
class of all linear operators on V . The norm is defined on T (CM ) ⊗ T (CN ) as

||t||γ := inf{
k∑
i=1

||ui||1||vi||1 : t =
k∑
i=1

ui ⊗ vi}, (93)

where the infimum is taken over all decompositions of t into finite summations of elementary
tensors, and ||X ||1 := tr(

√
X†X). Rudolph showed that ||ρ||γ ≤ 1 if and only if ||ρ||γ = 1,

and that a state ρ is separable if and only if ||ρ||γ = 1.
Pérez-Garcia [74] showed that approximately computing this norm can be reduced to a

linear program (which is a special case of a semidefinite program): min{cTx : Ax = b, x ≥ 0},
where A ∈ Rn×m, b ∈ Rn, c ∈ Rm, and x is a vector of m real variables; here, x ≥ 0 means
that all entries in the vector are nonnegative. An LP can be solved in O(m3L′) arithmetic
operations, where L′ is the length of the binary encoding of the LP [75]. The linear program
has on the order of M2N2 variables and |NM

1/k|2|NN
1/k|2 constraints, where k is an integer

that determines the relative errory (k/(k − 1))4 − 1 on the computation of the norm. Thus
yThe relative error of an approximation x̃ of x is defined as |x− x̃|/x.
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the complexity of the whole algorithm is on the order of |NM
1/k|2|NN

1/k|2poly(M,N, log(1/δ))
(assuming availability of Euclidean (1/k)-nets).

Suppose ||ρ||γ is found to be no greater than 1 + η. Then, we would like to use η to
upper-bound the distance, with respect to either trace or Euclidean norm, from ρ to SM,N .
Unfortunately, we do not know how to do this. This drawback, along with the fact that the
error on the computed norm is relative as opposed to absolute, does not allow this algorithm
to be easily compared to the other algorithms we consider.

3.4.2 Fixed-point iterative method

Zapatrin [76] suggests an iterative method that solves the separability problem.z He defines
the function Φ : HM,N → HM,N :

Φ(X) := X + λ

(
ρ−

∫ ∫
e〈ψ

A|⊗〈ψB|X|ψA〉⊗|ψB〉|ψA〉〈ψA| ⊗ |ψB〉〈ψB|dSMdSN
)
, (96)

where SM and SN are the complex origin-centred unit spheres (containing, respectively, |ψA〉
and |ψB〉), and λ is a constant dependent on the derivative (with respect to X) of the quantity
in parentheses (λ is chosen so that Φ is a contraction mapping). In earlier work [77–79],
Zapatrin proves that any state σ in the interior S◦

M,N of SM,N may be expressed

σ =
∫ ∫

e〈ψ
A|⊗〈ψB|Xσ |ψA〉⊗|ψB〉|ψA〉〈ψA| ⊗ |ψB〉〈ψB|dSMdSN ∈ SM,N , (97)

for some Hermitian Xσ. Thus the function Φ has a fixed point Xρ = Φ(Xρ) if and only if
ρ ∈ S◦

M,N . When ρ ∈ S◦
M,N , then a neighbourhood (containing 0) in the domain of Φ can be

found where iterating Xi+1 := Φ(Xi), starting at X0 := 0, will produce a sequence (Xi)i that
converges to Xρ when ρ ∈ S◦

M,N , but diverges otherwise.
Each evaluation of Φ(X) requires M2N2/2 +MN integrations of the form∫ ∫

e〈ψ
A|⊗〈ψB|X|ψA〉⊗|ψB〉〈eA

j |ψA〉〈eB
j′ |ψB〉〈ψA|eA

k 〉〈ψB|eB
k′〉dSMdSN , (98)

where {eA
j }j and {eB

k }k are the standard bases for CM and CN . However, the off-diagonal
(j �= k, j′ �= k′) integrals have a complex integrand so are each really two real integrals;
thus the total number of real integrations is M2N2. Let Ξδ represent the number of pure
states at which the integrand needs to be evaluated in order to perform each real numerical
integration, in order to solve the overall separability problem with accuracy parameter δ.
Zapatrin shows that the approximate number of iterations required is upper-bounded by
zFacts about iterative methods: First, the basic Newton-Raphson method in one variable. Suppose ξ is a zero
of a function f : R → R and that f is twice differentiable in a neighbourhood U(ξ) of ξ. Then the Taylor
expansion of f about x0 ∈ U(ξ) gives

0 = f(ξ) = f(x0) + (ξ − x0)f ′(x0) + · · · (94)

= f(x0) + (ξ̃ − x0)f ′(x0), (95)

where ξ̃ = x0 − f(x0)/f ′(x0) is an approximation of ξ. Repeating the process, with a truncated Taylor

expansion of f about ξ̃, gives a different approximation ˜̃ξ = ξ̃−f(ξ̃)/f ′(ξ̃). This suggests the iterative method
xi+1 = Φ(xi), for Φ(x) := x − f(x)/f ′(x). If f ′(ξ) �= 0, the sequence (xi)i converges to ξ if x0 is sufficiently
close to ξ. More generally, if Φ(x) : Rn → Rn is a contractive mapping on B(x0, r), then the sequence
(x0,Φ(x0),Φ(Φ(x0)), . . .) converges to the unique fixed point in B(x0, r) (as long as Φ(x0) ∈ B(x0, r)) [27].
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2N(N+1)L(log(1/δ), log(N)), where L is a bilinear function of its arguments. The complexity
of the entire algorithm is roughly Ξδpoly(M,N, log(1/δ)) (ignoring log(N) factors). We can
use nets on SM and SN to estimate the complexity of Ξδ. It is clear that the numerical
integration is more complex than solving WOPT(SM,N ); at the very least, it needs to sample
points in SN as well as SM . Thus, I make the reasonable presumption that Ξδ ≥ |NM

δ ||NN
δ |.

3.5 Complexity comparison of algorithms and practical considerations

The complexity estimates in the survey show that the two best algorithms are the bounded
search for symmetric extensions (Section 3.2) and the cutting-plane entanglement-witness
search algorithm (Section 3.3.2). The dominant (exponential) factors in the asymptotic com-
plexity estimates are

(dSk̄
)8 ≈ 2M × (1/δ)8M (symmetric-extensions search) (99)

|NM
δ | ≈ 2M × (1/δ)2M (entanglement-witness search). (100)

As a caveat, recall that the estimate for the entanglement-witness search algorithm assumes
the advice of asymptotically optimal NM

δ , which in principle can be precomputed for the M
and δ of interest [80].

The bounded symmetric-extension search algorithm only experiences “exponential slow-
down” when k approaches k̄. The SDP relaxation algorithm of Section 1.2.2 behaves similarly,
in that successive SDP relaxations get larger, while the first SDP relaxation is feasible. Thus,
a good strategy for a deterministic WMEM(SM,N ) solver might be to start with these algo-
rithms (after exhausting all the other efficient one-sided tests), and proceed until the SDPs
get infeasibly large; then, switch to the entanglement-witness search algorithm, whose com-
plexity bottleneck is the WOPT(SM,N ) subroutine, which has constant worst-case complexity
throughout the execution of the algorithm, but whose task – essentially, searching the domain
of the function f(|α〉, |β〉) := 〈α|〈β|A|α〉|β〉 – can be parallelized. Interestingly, the subrou-
tine need not find a certified optimum of f until its final execution, and even then only in
the case where the algorithm will output ρ ∈ S(SM,N , δ) [4]; thus, comparing the outputs of
executions of a local optimum finder seeded at a few random points in the domain may suffice
for at least some of the WOPT(SM,N) calls. Finally, instead of using δ-nets, the subrou-
tine should benefit from more-sophisticated, continuous global optimization methods (which
may utilize calculus to eliminate large chunks of the domain of f) such as the semidefinite
programming relaxation method of Lasserre [35], Lipschitz optimization [81], and Hansen’s
global optimization algorithm using interval analysis [82].
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[74] David Pérez-Garcia. Deciding sepability with a fixed error. Phys. Lett. A, 330:149–154,
2004.

[75] Y. Ye. Interior Point Algorithms: Theory and Analysis. John Wiley and Sons, Inc., New
York, 1997.
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