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This article discusses entanglement between two subsystems, one with discrete degrees of
freedom and the other with continuous degrees of freedom. The overlap integral between
continuous variable wave functions emerges as an important parameter to characterize
this kind entanglement. “Beam-like” entanglement and “shape-like” entanglement are
contrasted. One example of this kind of entanglement is between between the spin

degrees of freedom and the momentum degrees of freedom for a non-relativistic particle.
This intraparticle entanglement is Galilean invariant.
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1 Introduction

The article considers the properties of entanglement between two subsystems, one of which
has discrete degrees of freedom (DOF) and the other has continuous DOF. This topic therefore
lies somewhere between the more well-established field of entanglement in discrete systems [1]
and the growing field of continuous variable (CV) entanglement [2]. The subsystems under
consideration need not be “systems” in the sense of two different quantum objects, like elec-
trons or atoms or fields. Following recent work [3, 4, 5], by the term “subsystem” all that
is implied is that there is an algebra of observables that can be divided into two commuting
subalgebras and this can be used to specify a tensor product structure.

Two recent applications of continuous-discrete (CD) entanglement are in analyses of the
Stern-Gerlach experiment [6] and nuclear decays [7]. In [6], the entanglement discussed is
between the spin DOF and momentum DOF of a single particle. In [7], the entanglement
is between the total momentum DOF and the total spin DOF of two particles. One goal of
this work is to put these analyses into the broader context of CD entanglement and identify
commonalities.

First, we will consider this problem mathematically, without reference to any particular
physical system. In this context, the importance of the overlap integral between the different
CV wave functions will become apparent. Generally, the smaller the overlap, the greater the
entanglement. There are two fundamentally different ways that small overlap can occur: (1)
The wave functions could have support in different domains of the continuous variables. We
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274 Continuous-discrete entanglement: an example with non-relativistic particles

use the description “beam-like” for this kind of CD entanglement. (2) The wave functions
could have support in similar domains of the continuous variables, but the details of their
structure lead to cancellations. We call this kind of CD entanglement “shape-like”. In the
case of zero overlap, the different CV wave functions act just like discrete DOF.

As an example, we will consider a form of CD entanglement that can arise in parti-
cles: spin-momentum entanglement of a non-relativistic electron. This kind of intraparticle
entanglement is invariant under Galilean transformations between inertial reference frames.
Therefore, it has an intrinsic physical meaning. In the concluding example, we will exem-
plify the two different extremes of CD entanglement considering the properties of Gaussian
momentum wave functions.

2 Continuous-Discrete Entanglement

We will consider a system that has a complete set of commuting observables (CSCO) that
partitions into three sets. One set will be the observables {P̂1, P̂2, ..., P̂d}. These observables
will be represented as operators with a continuous spectrum in the system’s Hilbert space rep-
resentation. Examples are the momentum generators of the Heisenberg group in d-dimensions
or the generators of translations in Rd. Another “set” will be the single operator Ŝi, which
will have a discrete spectrum in the Hilbert space representation. A simple example of Ŝi is a
component of the angular momentum, but this notion could be generalized to other compact
Lie algebras or to a set of commuting observables with discrete spectra. Finally, there are the
generalized Casimir observables. These will be represented as multiples of the unit operator
in the system’s Hilbert space and although they typically are important for characterizing the
physical system, they will play no role in this analysis.

From the existence of this kind of CSCO, it is implied that the system’s Hilbert space
can be factored as H = Hs ⊗ Hp. To the discrete DOFs corresponds the n-dimensional
Hilbert space Hs = Cn. The Hilbert space associated to the d-dimensional continuous DOFs
is the space of Lebesgue-integrable functions Hp = L2(Rd), although in practice, we will limit
ourselves to a dense “well-behaved” subspace Sp ⊂ L2(Rd) (see below).

We can define a basis |p, χ〉 = |χ〉⊗|p〉 for H in terms of a discrete label χ ∈ {0, 1, ..., n−1}
and continuous label p ∈ R

d. These are the eigenvectors of the operators {P̂1, ..., P̂d} = P̂
and Ŝi:

P|p, χ〉 = p|p, χ〉, Ŝi|p, χ〉 = ((n − 1)/2 − χ)|p, χ〉 (1)

The eigenvalues of the Ŝi operator are written as ((n − 1)/2 − χ) for later application when
it will be interpreted as spin component along some axis.

Because P̂ is an unbounded operator, the basis eigenkets |p〉 are not elements of Hp and
can only defined as anti-linear functionals on nuclear subspaces of Hp [8]. One suitable choice
for this subspace is the Schwartz space Sp of well-behaved vectors, i.e. vectors corresponding
to smooth, rapidly-decreasing wave functions. For vectors in a nuclear subspace |φ〉 ∈ Hs⊗Sp,
the basis eigenket expansion holds:

|φ〉 =
n∑

χ=1

∫
ddpφχ(p)|p, χ〉, (2)

where the eigenket normalization is

〈p, χ|p′, χ′〉 = δχχ′δd(p− p′). (3)
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Because of the restriction to the Schwartz space and the normalization, the integration mea-
sure ddp can be chosen as the standard Riemann integration measure in d-dimensions [8], e.g.
ddp = Πd

i=1dpi.
As a consequence of the product structure of the Hilbert space, one can talk about internal

entanglement between the discrete and continuous DOFs. For a pure state |φ〉, one can define
the reduced discrete density matrix ρs by

ρs = Trp(|φ〉〈φ|)
=

∑
χ,χ′

(∫
ddpφχ(p)φ∗

χ′ (p)
)
|χ〉〈χ′|

=
∑
χ,χ′

hχ,χ′ |χ〉〈χ′|, (4)

where hχ,χ′ are the integrals of overlap of CV wave functions and the matrix elements of the
reduced discrete density matrix. Also, one can define the reduced continuous density matrix
(operator) ρp by

ρp = Trs(|φ〉〈φ|)

=
∫

ddpddp′
(∑

χ

φχ(p)φ∗
χ(p′)

)
|p〉〈p′|

=
∫

ddpddp′f(p,p′)|p〉〈p′|. (5)

Assuming the initial pure state is normalized,∑
χ

∫
ddp|φχ(p)|2 = 1, (6)

then both reduced density matrices are normalized

Trpρs = Trsρ
p = 1. (7)

Additionally, for pure states |φ〉〈φ|, but not generally for mixed states, we have

Trpg(ρs) = Trsg(ρp), (8)

where g is a continuous, analytic function on the domain of Hermitian operators on both Hs

and Sp. This is a consequence of the fact that the matrices ρs and ρp have the same spectrum
of non-zero eigenvalues [9].

Because finite matrices are easier to work with, it will be easier to consider the reduced
discrete density matrix ρs for calculating entanglement properties of pure states. From nor-
malization, the sum of the diagonal elements of the reduced discrete density matrix is unity:∑

χ

hχ,χ = 1. (9)

The off-diagonal elements hχ,χ′ = h∗
χ′,χ are the integral of overlap between different wave

function components φχ and φχ′

hχ,χ′ =
∫

ddpφχ(p)φ∗
χ′ (p). (10)
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The magnitude of these off-diagonal elements are bounded from above by 1/
√

2 (for any n)
by combination the Cauchy-Schwartz inequality

0 ≤ |hχ,χ′ |2 ≤ |hχ,χ||hχ′,χ′ | (11)

and (9), which implies that
|hχ,χ||hχ′,χ′ | ≤ 1/2. (12)

The amount overlap between the wave function components determines how entangled
the state is. To see how this works, consider the extreme cases of maximum overlap and no
overlap.

• Maximum overlap: The first limiting case is when all components of the wave function
have the same momentum dependence. In this case the wave function has the form

φχ(p) = cχφ(p) (13)

where ∑
χ

|cχ|2 = 1 (14)

and ∫
ddp|φ(p)|2 = 1 (15)

The overlap will be truly maximal in the case where cχ = ωχ/
√

n, where |ωχ| = 1. In
any case where (13) is valid, the discrete and continuous DOF can be separated and the
discrete reduced density matrix elements are

hχ,χ′ = cχc∗χ′ . (16)

This is the density matrix of a pure state and the entanglement as measured by any
entanglement monotone should be zero.

• Zero overlap: The other extreme is when hχ,χ′ = 0 unless χ = χ′. This in turn breaks
into two cases: (1) All φχ(p) are identically zero except for one. This state is clearly
separable and has no CD entanglement. (2) The more interesting case is when φχ(p)
and φ′

χ(p) are orthogonal for all χ, χ′. Then the continuous DOFs can effectively be
treated as discrete DOFs; and χ then plays a dual role labeling the orthogonal CV mode
and the discrete index.

When hχ,χ′ = 0, the discrete density matrix ρs is already in diagonalized form, and
so the entanglement depends only on the relative magnitudes of the diagonal elements
hχ,χ. Maximal entanglement occurs when when ρs is maximally mixed and therefore
|hχ,χ| = 1/n.

In the second case of orthogonal wave functions, it may be important to contrast two
different kinds of orthogonality. One kind, which we metaphorically call beam-like, is when
the wave functions are orthogonal because they have support on disjoint regions of Rd. For
example, imagine d-dimensional Gaussian wave functions whose central maxima are distant
compared to their widths, like focused beams going in different directions. Hyperentangled
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states [10] and the interferometry states used in [11] are examples of these. Alternatively, one
could imagine that the wave functions have the similar domains but are close to orthogonality
because of cancellations in the integration, like the various families of orthogonal polynomials.
We call this shape-like CD entanglement. For example, the φχ(p) wave functions could be
energy eigenstates of some potential well expressed in the momentum basis.

3 Intraparticle Spin-Momentum Entanglement

We now consider the non-relativistic particle as an example of CD entanglement. For non-
relativistic particles, the state space of a particle can be factored into the direct product
of two Hilbert spaces He = Hs ⊗ Hp, where Hs is associated to the spin DOF and Hp

to the momentum DOF. This separation is allowed by the CSCO {P̂, Ŝi; M̂, Ŵ , Ŝ2}. The
eigenvalues of the invariant operators for a single free particle {M̂, Ŵ , Ŝ2} are the mass m,
internal energy W = E − p2/2m, and intrinsic spin extracted from s(s + 1). These invariants
characterize the representation space H(m, W, s), and since we will consider the electron,
s = 1/2 and m = me is a known constants, and without loss of generality we can consider
the case W = 0. All this can be proved by explicitly constructing the unitary (projective)
representation spaces of the (centrally-extended, universal covering of the) Galilean group G
of symmetries [12]. This representation space corresponds precisely to the solution of the two
component, non-relativistic Schrödinger equation for a free electron.

As described above, we will consider the dense subspace H1/2 ⊗Sp of the electron Hilbert
space He = H(me, 0, 1/2). Then the momentum eigenkets will be well-defined and we will
have the usual expansion theorems: every “well-behaved” pure state vector in |φ〉 ∈ Hs ⊗ S
and can be expanded as

|φ〉 =
∑

χ

∫
d3pφχ(p)|p, χ〉

=
∫

d3p
∑

χ

φχ(p)|p, χ〉. (17)

We now interpret P̂ as a momentum operator and Ŝi as the spin component in some direction.
By choosing the Schwartz space Sp for the dense subspace, we guarantee that the expectation
values of all positive powers of momentum are bounded, as well as other properties assuring
that the momentum wave functions are “well-behaved” [8]. This restriction makes physical
sense and the importance of energy boundedness for entanglement measures of CV systems
has been previously emphasized [13].

Note that the order of the integral and sum is not relevant in (17) because the Hilbert
space of the particle factors into independent DOFs. This is not the case for relativistic
particles because for them the spin component definition is momentum dependent [14].

Because of the product structure of the non-relativistic, single particle Hilbert space, one
can talk about the spin-momentum entanglement of a particle in a frame-independent way.
All shifts of reference frame are Galilean transformations and these are represented as a tensor
product of unitary operators acting locally on each factor Hilbert space. Here we show the
explicit construction of the unitary irreducible representations of the Galilean group in the
representation that is implied by our choice of CSCO:
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A general element g ∈ G is denoted by ten parameters: g = (b, a,v, R), where b is the
amount of time translation, a is the three-vector of space translation, v is the three-vector
of velocity boost, and R ∈ SO(3) is a rotation. The projective representation acting on the
basis for the physical subspace of He can be chosen as

U(g)|p, χ〉 = ei( 1
2mea·v−a·p+bE)

∑
χ′

D1/2(R)χχ′ |p′, χ′〉, (18)

where p′ = Rp + mv and D1/2(R) is a 2 × 2 unitary matrix representing R in H1/2 (some
details of the SU(2)-SO(3) little group homomorphism have been swept under the table here).
Notice, as promised, this representation factorizes into unitary operators on the discrete
Hilbert space, i.e. the unitary matrix D1/2(R), and the continuous Hilbert space, i.e. the phase
factor. Since Galilean transformations are tensor products of local unitaries with respect to
the spin-momentum tensor product structure, any reasonable measure of entanglement will
be invariant across different inertial reference frames. Note, however, that in the relativistic
case, the spin-momentum tensor product structure is not invariant under Poincaré symmetry,
as a result, “mixing” between different kinds of entanglement can occur [14, 15] (although
sometimes authors have not recognized the true origin of this phenomenon).

The reduced spin density matrix ρs of the pure electron state |φ〉 will have the following
form

ρs =
(

h0,0 h0,1

h∗
0,1 h1,1

)
. (19)

The eigenvalues λ± of this matrix characterize the entanglement properties:

λ± =
1
2
±
√

1
4
− (h0,0h1,1 − |h0,1|2). (20)

For maximum entanglement, λ± = 1/2. From (11), the quantity h0,0h1,1 − |h0,1|2 is always
positive and less than 1/4. The upper bound corresponds to maximum entanglement and the
lower bound to separability.

Separability will occur in two cases: (1) Either φ0(p) or φ1(p) is identically zero. The
state is obviously separable then because the electron is polarized in the direction of one spin
component. (2) In the other case, φ0(p) = ωφ1(p) where |ω| = 1. Then h0,0h1,1 = |h0,1|2
and the state can be put in the form (13) where ω is absorbed in c0. All other |φ〉 will be
entangled, and this entanglement increases as φ0(p) and φ1(p) come closer to equal norm of
1/

√
2 and to orthogonality.

4 Concluding Example

Let us now consider a specific but flexible model for considering beam-like entanglement.
Each wave function component φχ(p) will be taken to be a Gaussian in 3D momentum space
with central momentum kχ and width σχ:

φχ(p) =
cχ

(πσ2
χ)3/4

exp
(
− 1

2σ2
χ

(p − kχ)2
)

. (21)

The constant cχ gives the normalization of each Gaussian wave function, i.e.∫
ddp|φχ(p)|2 = |cχ|2 (22)
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and total normalization implies |c0|2 + |c1|2 = 1. These kinds of states could be useful approx-
imations for wave packets prepared under some dynamics that have an explicit asymmetry
with respect to a preferred projection of spin component, the classic example being the Stern-
Gerlach device [7].

The reduced spin density matrix for the non-relativistic electron with wave functions of
the form (21) is

ρs =
( |c0|2 c0c

∗
1x

c∗0c1x
∗ |c1|2

)
(23)

where x is the Gaussian overlap function

x =
∫

d3pφ0(p)φ∗
1(p)

=
(

2σ0σ1

σ2
0 + σ2

1

)3/2

exp
( −2q2

σ2
0 + σ2

1

)
(24)

and q = |k0 − k1| is the magnitude of the difference of the central momenta. The eigenvalues
of this matrix are

λ± =
1
2
±
√

1
4
− |c0|2|c1|2(1 − |x|2). (25)

The first observation from (25) is that maximum intraparticle entanglement can only occur
if the state has a spin component expectation value 〈Ŝi〉 = 0. For such states, the quantity
|c0|2|c1|2 takes its maximal value 1/4. This feature is a consequence of the intrinsic preferred
direction in the choice of states (21), and is not a general feature of intraparticle entanglement.

The second observation is that intraparticle entanglement increases when |x| → 0, i.e.
when the Gaussian wave packets have minimal overlap. This can be seen most easily in the
case where |c0|2|c1|2 = 1/4; then (25) simplifies to

λ± =
1
2
± 1

2
|x|. (26)

The quantity |x| will go to zero if either or both 2q2 
 σ2
0 + σ2

1 and σ0/σ1 
 1 (or equiva-
lently σ0/σ1 � 1). Physically, these limits correspond to narrow wave packets with different
central momenta or to wave packets with same central momentum and very different widths,
respectively. Both cases can best be thought of as examples of beam-like entanglement.

Beam-like entanglement is manifest in particle experiments with beam splitters, e.g. the
Stern-Gerlach experiment, and in quantum optics with photon. It is unclear whether it is
experimentally feasible to produce shape-like entanglement in a free, beam-like system, but
perhaps the control of wave functions possible within quantum optics could allow such a
possibility. In bound electron systems, shape-like entanglement between vibrational energy
levels and spin states has already be achieved with trapped ions [16]. The orthogonality of
the bound states allows the CV DOF to be treated like discrete DOF.
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