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The cluster state model for quantum computation [Phys. Rev. Lett. 86, 5188] outlines a
scheme that allows one to use measurement on a large set of entangled quantum systems
in what is known as a cluster state to undertake quantum computations. The model
itself and many works dedicated to it involve using entangled qubits. In this paper we
consider the issue of using entangled qudits instead. We present a complete framework
for cluster state quantum computation using qudits, which not only contains the features
of the original qubit model but also contains the new idea of adaptive computation: via
a change in the classical computation that helps to correct the errors that are inherent in
the model, the implemented quantum computation can be changed. This feature arises
through the extra degrees of freedom that appear when using qudits. Finally, for prime
dimensions, we give a very explicit description of the model, making use of mutually
unbiased bases.
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1 Introduction

The problem of building a quantum computer that has computational power greater than
that of classical computers is one that has concerned both theorists and experimentalists for
a number of years. The recent development of the cluster state model for quantum compu-
tation [1, 2, 3], in which remarkably quantum computation is achieved essentially by tailored
measurement of entangled states of a large number of qubits, has not only lead to significant
implications in our understanding of quantum computation and quantum dynamics, but also
to new experimental approaches to the possible realisation of large scale quantum computers
[4, 22, 5].

Although much study has been devoted to this model [7, 8, 13, 16, 23] this work has almost
exclusively been concerned with using qubits as the basic physical resource. However, many
quantum systems cannot be treated as simple two-level systems, but rather as multi-level
systems. Furthermore, recent work [6] has suggested that qutrit based quantum computation
schemes yield in some sense the most efficient implementation of quantum computation.

In this paper we are going to present a generalisation of the cluster state model, by replac-
ing the cluster state of qubits with more general cluster states of qudits. Such a generalisation
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has already been presented in [10], but in this paper we will take a much more explicit ap-
proach, in which we try and present the cluster state model by presenting each constituent
of the model in as simple a way possible. This allows us to see the critical ingredients that
make cluster state QC possible.

The paper will be laid out as follows. In section 2 we will present a generalisaton of an
idea used in [9] which we will call one dit teleportation. This forms the core to our approach
to cluster state QC. One dit teleportation takes the form of a simple two-qudit circuit identity
which can be thought of as implementing a certain quantum gate (namely the d-dimensional
analogue of the Fourier transform gate) by measurement. We then proceed to show that
this identity can be used to implement a much wider class of gates, and how this process
can be turned into a quantum computational paradigm, which essentially involves a series of
measurements on a entangled state of qudits to implement quantum computation. While this
approach turns out to not be the best approach for some types of cluster states, it ties in our
cluster state model for QC heavily with the circuit model, hence giving us an alternative and
(in the eyes of the author) a simpler way of looking at the model.

In section 3 we will first discuss the issue of adapting measurements based on previous
measurement results to allow us to implement any quantum operation we wish. Measurements
on a quantum system by their very nature are statistical; and in the cluster state paradigm
this randomness can be thought of as introducing errors into our computation which can
be corrected for using classical computation. This notion is known as the issue of adaptive
measurement and is crucial in the theory of cluster state QC. We will also introduce a new
phenomena which we call adaptive computation, a feature that will be unique to cluster
state QC on qudits, arising due to the extra degrees of freedom we are presented with. The
basic idea is that by changing the method by which we correct the errors associated with
a measurement outcome, we can implement different quantum gates. We will discuss this
in further detail at the appropriate time. We conclude this section with an example of the
simplicity of the one-dit teleportation approach which also makes use of adaptive computation.

In section 4, we briefly review the stabiliser method for cluster states, which is the most
common approach in most of the existing literature. For details of the model we refer the
reader to the appropriate paper, but we do give a comparison of the two approaches, high-
lighting the fact that both approaches are indeed useful.

In section 5 we will discuss the problem of generating a universal set of quantum gates
for quantum computation, giving a general method by which quantum gates can be realised,
and then discussing a connection of this method with the theory of mutually unbiased bases.
While this connection is not a fundamental one, using the known theory for MUBs gives us
a very elegant method of establishing measurement patterns for implementing a universal set
of quantum gates. We will use the connection to give explicit calculations and details of the
measurements required to generate certain quantum gates in prime dimensions. We conclude
with a discussion in the final section.

2 One dit teleportation and cluster state quantum computation

2.1 Preliminaries: a basic measurement result

For clarity, we will start by giving a very basic result. We assume throughout this paper that
all Hilbert space(s) involved here are of dimension d. Let {|k〉}d−1

k=0 be a standard (compu-
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tational) basis for our Hilbert space. We define measuring in the basis defined by U for a
unitary U ∈ U(d) to mean measurement in the orthonormal basis {U |k〉}d−1

k=0 (i.e. the vectors
defined by the columns of U when U is described in matrix form in the computational basis).
Our result is as follows:

Lemma 1. Given a bipartite state |Ψ〉, measuring one of the systems in the basis defined
by U and discarding is equivalent to applying U † to the first system, measuring it in the
computational basis and then discarding it.

Proof. Let |Ψ〉 =
∑

k U |k〉 ⊗ |ψk〉. Measuring the first system in the basis defined by
U leaves the second system in the state |ψk〉 /

√〈ψk|ψk〉 with probability 〈ψk|ψk〉. Applying
U † to the first system and then measuring it in the computational basis can easily be seen to
have the same effect. .

This lemma gives us an alternative way to generate the appropriate statistics for measure-
ment of one system of a bipartite system in a given basis.

2.2 One dit teleportation

The idea of one dit teleportation is a many-level generalisation of one-bit teleportation that
was first presented in [11]. We will first simply present this relatively simple idea, and then
show how it is integral to cluster state quantum compuation.

We first need some definitions. The Fourier transform basis is defined by

|+j〉 =
d−1∑
k=0

ωjk |k〉 (1)

where ω = e2πi/d, the primitive dth root of unity. We will often denote |+0〉 by simply |+〉.
We also need to introduce a set of operators known as the generalised Pauli operators [14]:

Z =
d−1∑
k=0

ωk|k〉〈k|, X =
d−1∑
k=0

|k − 1〉〈k| (2)

where we are using modulo d arithmetic within the bras and kets. Finally, we define the
Fourier gate F by

F =
1√
d

d−1∑
j,k=0

ωjk|j〉〈k| =
d−1∑
k=0

|+k〉〈k|. (3)

This gate is the d-dimensional Quantum Fourier Transform gate, and in d = 2 is equivalent
to the Hadamard gate.

|ψ〉 • F
��

��� m

|+〉 Z XmF |ψ〉

Fig. 1. The circuit diagram for one-dit teleportation.

The notion of one-dit teleportation is given by the circuit identity in Figure 1, where we
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are using the d dimensional analog of controlled gates:

CZ =
d−1∑
k=0

|k〉〈k| ⊗ Zk =
d−1∑

k,l=0

e2πikl/d|k〉〈k| ⊗ |l〉〈l| (4)

and the meter represents measurement in the computational basis, with outcome k corre-
sponding to the state |k〉. Furthermore, each of the possible outcomes occurs with equal
probability 1/d.

Proof. First we note two important facts, both of which can be deduced by elementary
means:

Zj |+k〉 = |+j+k〉 (modulo d addition in ket index); (5)

Xj |+k〉 = wjk |+k〉 . (6)

Let |ψ〉 =
∑

k ak |k〉. Then

|ψ〉 |+〉 =
∑

k

ak |k〉 |+〉

CZ→
∑

k

ak |k〉 |+k〉

F⊗I→
∑

k

ak |+k〉 |+k〉 ≡ |Ψ〉

where we calculate the effect of the CZ gate using equation (5). Now, we can write |Ψ〉 as

|Ψ〉 =
1√
d

∑
j,k

akω
jk |j〉 |+k〉

=
1√
d

∑
j

|j〉
∑

k

akω
jk |+k〉

=
1√
d

∑
j

|j〉
∑

k

akX
jF |k〉

=
1√
d

∑
j

|j〉XjF |ψ〉

where the penultimate line follows from equation (6) above; hence, when measuring the first
qudit, an outcome j (occuring with probability 1/d) yields a state XjF |ψ〉 for the second
qudit. .

2.3 Application to cluster state quantum computation

One way we can think about the above circuit identity is that it gives us a very simple scheme
for implementing the quantum Fourier gate F : Given a qudit pair in states |ψ〉 , |+〉 entangled
with a controlled-Z interaction, if we measure the first (|ψ〉) qudit in the F † basis, and obtain
the measurement outcome j, the second qudit ends up in the state XjF |ψ〉. The Xj operator
can be thought of as an error operator, and we will discuss this shortly.
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Furthermore, from equation (4) we note that the controlled-Z gate is symmetric in the
two qudits, and so any phase transformation in the computational basis (that is, a quantum
gate of the form

Z(a) =
∑

k

eiak |k〉〈k|,

with a ∈ [0, 2π]d) that acts on the first (upper) qudit commutes through the controlled-Z gate.
This means that measuring the first system in the basis defined by (FZ(a))†, which (by lemma
1) is the same as applying FZ(a) to the system before measurement in the computational
basis, is equivalent to teleporting the initial state Z(a) |ψ〉. This leads to the more general
circuit identity given in Figure 2, meaning we can implement the quantum gates FZ(a) using
this method.

|ψ〉 • Z(a) F
��

��� m

|+〉 Z XmFZ(a) |ψ〉

Fig. 2. The more general circuit diagram for one-dit teleportation.

If the transformation |ψ〉 → FZ(a) |ψ〉 forms our entire quantum computation, then since
the powers of X merely permute the computational basis elements, and all known quantum
algorithms conclude with a measurement in this basis, we can simply correct for the Pauli
error Xj via a classical compuation.

This is the simplest possible example of cluster state computation: We take two qudits,
one of which is our initial state |ψ〉, and an output qudit, which is initialised in the state |+〉.
After entangling the pair using a controlled-Z interaction, and an appropriate measurement,
we can map our input state |ψ〉 onto an output state FZ(a) |ψ〉, up to a Pauli error Xj .

If we wished to apply further quantum operations to our state, we could do so by using
a linear cluster of qudits entangled in this way (Figure 3), and then measuring along the
cluster appropriately to implement the appropriate product of gates. Since measurement on
a qudit and an interaction between another pair of qudits commute, this is equivalent to
several one-dit teleportations, with the output from one teleportation becoming the input to
the next (see Figure 4). The measurements after the first however may have to be adapted
due to the extra X factors brought in by previous measurements, so that the desired quan-
tum operation is implemented. This issue of compensating for the randomness of previous
measurement outcomes by a change of subsequent measurement bases is known as adaptive
measurement, and will be discussed in section 3. For now however, we will assume that this
issue is surmountable.

These ideas lead us to our definition of the cluster states we are going to use for compu-
tation:

� � � � � �

Fig. 3. A linear cluster of 6 qudits. Each dot represents a physical qudit, and the lines an
interaction between the two adjoined qudits.
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|ψ〉 • Z(a) F
��

��� m1

|+〉 Z • Z(b) F
��

��� m2

|+〉 Z |ψ′〉
Fig. 4. A quantum circuit for two successive one-dit teleportations. The circuit diagram is arranged
to illustrate that the teleportation between the upper two qudits is independent of any further
structure in the cluster (in this case a third qudit entangled to the second). The final state will
take the form |ψ′〉 = Xa(m1,m2)Zb(m1,m2)FZ(c(b,m1))FZ(a) |ψ〉, where c is a function of m1

because of the generalised Pauli error introduced by the first measurement may require the second
measurement to be adapted.

1. We prepare a set of qudits, each in the state |+〉 (except perhaps for an ‘initial’ set of
qudits which are in an potentially entangled state |ψ〉; this represents the input to the
algorithm);a

2. Finish creating the cluster by interacting ’neighbouring’ pairs of qudits via a controlled-
Z gate.

For qubits, this is identical to the original framework for cluster state QC [1, 2]. Cluster state
computation then takes the form of a series of measurements on specified qudits, along with a
scheme on how to adapt the measurements based on the previous measurement results. This
definition also gives a possible method for generating these cluster states: suppose we have
d-dimensional physical systems that we can prepare in the state |ψ〉, and we can allow them
to interact with an appropriate interaction Hamiltonian between the systems e.g.

HI = −g
∑
k,l

kl|k〉〈k| ⊗ |l〉〈l|

where g is some coupling constant. If we let this interaction run for a time t = 2π/gd�, then
the time evolution operator for the two qudits takes the form of a controlled-Z gate. Physical
systems which could be used to implement this scheme are discussed in [10] and appropriate
references therein. For the remainder of this paper, we are going to discuss the mathematical
framework of this model.

Before we continue, we make one final remark about our cluster states: they satisfy a
property known as maximal connectedness, which for our purposes we can state as follows:
Given an arbitrary cluster state, if we measure any qudit of the cluster in the computational
(Z) basis, the remaining states are left in a cluster state, up to some Pauli Z errors. For qubit
clusters, this issue is first discussed in [12]. This fact can be used to design specific clusters
from larger base clusters (e.g. a grid) as by the above, Z-measurements on a qudit effectively
remove it from the cluster state. This is discussed in more detail in appendix 1.

Suppose we can use linear clusters to implement any single qudit operation. We can then
use more general multi-dimensional clusters to allow the implementation of more complicated
multi-qudit algorithms. One possible model is where rows of linear clusters, each representing
a logical qudit (i.e. corresponding to a single ’qudit wire’ in the circuit model) are used to

aAlternatively, some initial measurements on a cluster state where before any interactions are applied all
qudits are initially in the state |+〉 could be used on a larger cluster to prepare this initial state.
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implement single qudit operations, and entanglement (again in the form of a controlled-Z
interaction) between the rows acts as an interaction between logical qudits. We will use this
topology for cluster states a number of times throughout this paper; however, there are also
a number of other ways of establishing this interaction between logical qudits.b It is a known
fact that the set of one qudit gates along with any interacting two-qudit gate is sufficient to
create any unitary gate on an arbitrary number of qudits (i.e. this set of gates is a universal
set for multi-qudit quantum gates) [15]. Hence by establishing single-qudit universality, we
obtain universality for an arbitrary number of qubits on an appropriate cluster. A diagram
to illustrate this point is given in Figure 5.

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

Fig. 5. An example of a topology for cluster states that can be used to establish universal quantum
computation. The rows represent a logical qudit, with one-dit teleportation the mechanism for
implementing single-qudit gates. The interactions between rows are used to implement two-qudit
gates, and so we can implement any arbitrary multi-qudit unitary operation.

We note that although in this paper we study single-qudit universality on linear clusters,
since ultimately these ideas are to be applied to larger multi-dimensional clusters, we are
not contradicting the theorem of Nielsen [16] that says that quantum computation on linear
clusters can be efficiently simulated on a classical computer (although the proof is for qubits,
the same proof applies to qudits), as we ultimately want to use multi-dimensional clusters for
multi-qudit QC.

For qubits, the set of gates given by C2 = {FZ(a) | a ∈ [0, 2π]2} (i.e. those that can be
implemented via one-bit teleportation) is a universal set for single-qudit quantum gates.c In
section 5 we will consider the same question for the set Cd = {FZ(a) | a ∈ [0, 2π]d}.

Finally, we note that our definition of qudit cluster states is the same as that used in [10].
In that paper the stabiliser formalism for cluster state computation (introduced in [2] and
discussed later in section 4) is heavily used. We will use a much more direct approach to
establish the theory.

3 Adaptive measurements and adaptive computation

In this section we outline how the unwanted Xm (generalised Pauli) operators that appear in
our cluster state model can be corrected using classical computation, and by adapting, based
on previous measurement results, the bases further measurements are taken in. This idea is
known as adaptive measurement. We will also show that by changing our correction method
for these errors, we can extend one-dit teleportation to a further class of quantum gates; we
call this adaptive computation.

3.1 Adaptive measurements for single qudit operations

In using linear clusters and successive one-dit teleportation defined in the previous section to
implement one-qudit quantum gates, generalised Pauli errors of the form Xm are introduced

bThe computational power of cluster states of many shapes are studied in [13].
cThis is equivalent to the well known Euler decomposition for 2-dimensional unitaries.
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to the overall state after each measurement. What we aim to show here is a remarkable feature
of the original cluster state model that spreads to our generalisation, that we can compensate
for these errors using solely classical computation.

Suppose we have a state |ψ〉 = XxZzU |φ〉. The U represents the quantum gate applied so
far, and the powers of X and Z are the generalised Pauli errors that we have due to previous
measurements. Suppose now we apply one-dit teleportation to the pair |ψ〉 |+〉 entangled by
a controlled-Z operation as usual, and we obtain the new state XmFZ(a) |ψ〉. The final state
can be written as |ψ′〉 = XmFZ(a)XxZzU |φ〉.The problem that we appear to have is that
we are implementing the gate FZ(a)XxZzU rather than the intended FZ(a)U . What we
want is to move the powers of X and Z through the F and Z(a) so that they appear on the
left of the overall gate FZ(a)U , so we can treat the Pauli operator as an error operator. To
do this, we can make use of the following identities:

Z(a)X = XZ(a′); (a′k = ak−1) (7)

Z(a)Z = ZZ(a) (8)

FZ = XF, FX = Z−1F (9)

and hence (ignoring any changes in the irrelevant overall phase),

|φ′〉 = XmFXxZzZ(a(x))U |φ〉
= XmZ−xXzFZ(a(x))U |φ〉
= ωxzXm+zZ−xFZ(a(x))U |φ〉 (10)

where a(l) is defined by a(l) = ak−l, and the final step is true because XZ = ωZX . Here we
have succeeded in moving the generalised Pauli operators to where we want them; the only
trouble now is that the overall gate that we are implementing is not identical to the one we
want. We can get round this by using an adaptive measurement: Given x in advance, we
can use one-dit teleportation to implement the gate FZ(a(−x)) instead of FZ(a). With this
adaptation, our new state is then given by (up to phase)

|φ′〉 = Xx′
Zz′

FZ(a)U |φ〉

where
x′ ≡ m+ z mod d; z′ = −x mod d. (11)

So, by keeping track of the exponents of the X and Z operators by classical computation,
and adapting the measurement taken via the original exponent values, we can apply the gate
FZ(a) to our state, up to a generalised Pauli error. The final step of the algorithm, which is
(at least in all quantum algorithms to date) a measurement on the computational basis, can
simply be performed without any quantum corrections to the final state, because the Z errors
have no effect on the probabilities of each outcome (they only change the computational basis
vectors by a phase) and the X errors permute the computational basis elements, which can
be compensated for by a final classical computation.

The above process would also work if we had a multi-qudit state |Ψ〉, with generalised
Pauli errors acting on each qudit, and we entangled one of its qudits with a further |+〉 qudit
via a controlled-Z interaction, and then performed one-dit teleportation. This would simply
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implement a one-qudit operation on the given qudit, and change the generalised Pauli errors
on that qudit also. This situation often arises when using more complicated multi-dimensional
clusters, and is illustrated by Figure 6.

We also note that we can move generalised Pauli errors through controlled-Z gates, because
of the identities

CZ(Z ⊗ I) = (Z ⊗ I)CZ; CZ(I ⊗ Z) = (I ⊗ Z)CZ;

CZ(X ⊗ I) = (X ⊗ Z−1)CZ; CZ(I ⊗X) = (Z−1 ⊗X)CZ (12)

which are easily established directly. These identities are necessary since we will sometimes
need to treat a controlled-Z interaction as an actual two-qudit gate, rather than a means
to allow the use of one-dit teleportation. An example of this (from Figure 5) is the vertical
interaction between rows (logical qudits): we use these to create two-qudit interacting gates.
The above relations mean that if two logical qudits are in a state (Xx1Zz1 ⊗ Xx2Zz2) |Ψ〉,
applying a controlled-Z gate to this and commuting it past the error operators yields a state

(Xx1Zz1−x2 ⊗Xx2Zz2−x1)(CZ) |Ψ〉 . (13)

3.2 Adapative computation

Given that a quantum algorithm ends in a measurement in the computational basis, gener-
alised Pauli X or Z errors are not the only error operators that can be compensated for by a
classical compuation. Any overall operator that only permutes computational basis elements
(and possibly modifies them by a phase) is also correctable by a final classical computation.

Let us develop this idea further. Suppose we wish to implement a single unitary gate U
via a series of measurements on some cluster state, but end up with ZkPρU , where ρ ∈ Sd

and

Pρ =
d−1∑
l=0

|ρ(l)〉〈l|. (14)

We can then compensate for this at the end of a quantum algorithm via classical computation
also.

With this in mind, we can ask ourselves if we can somehow adapt our scheme for compu-
tation to include correction for more general permutation errors of the form above. We can
express this more formally as follows: suppose we are given a state |φ〉 = ZnPρU |ψ〉, and we

{ }
|Ψ〉 { } |Ψ′〉

{ • Z(a) F
��

��� m1

|+〉 Z }
Fig. 6. One-dit teleportation applied to one qudit of a three-qudit state. It is easily seen (e.g.
by writing |Ψ〉 = Σij |i〉 |j〉 |ψij〉) that one-dit teleportation applied to one qudit of the multi-
qudit state gives us the appropriate transformation on the transported qudit i.e. |Ψ′〉 = (I ⊗ I ⊗
XmFZ(a)) |Ψ〉.
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wish to apply the gate FZ(a) to the state via one-dit teleportation. We wish to establish
whether we can peform a one-dit teleportation to obtain the state |φ′〉 = XmFZ(ã)ZnPρU |ψ〉,
and then rewrite this in the form |φ′〉 = Zm′

Pρ′FZ(a)U |ψ〉, with ρ′ ∈ Sd.
A simple class of permutations for which this is possible can be defined as follows. Let c

is a unit in the ring Zd.dIt then follows that the operator

Sc =
d−1∑
k=0

|ck〉〈k|

is a permutation operator. Furthermore, since

Sc−1F =
1√
d

∑
k

|c−1k〉〈k|
∑

l

ωml|m〉〈l|

=
1√
d

∑
l,m

ωlm|c−1m〉〈l|

=
1√
d

∑
l,m

ωclm|m〉〈l|

=
1√
d

∑
l

|+cl〉〈l| ≡ Fc

it may be possible to implement the gate Fc rather than F by using the identity F =
ScSc−1F = ScFc, and treating the remaining Sc permutation as an error operator (in the
same way we treat powers of X and Z). We use the phrase adaptive computation to refer to
this idea of implementing a different quantm gate by changing the leading error permutation
that we correct for classically.

Let us suppose we are given a state |ψ〉 = XxZzU |φ〉, which is in a linear cluster, and
we measure it to induce a one dit teleportation, so the state becomes (by equation (10))
|ψ′〉 = Xm+zZ−xFZ(a(x))U |φ〉 (if the measurement outcome is m). Note that the powers of
the X and Z operators have already been updated. By applying the identity F = ScFc here,
we obtain the state

|ψ′〉 = Xm+zZ−xScFcZ(a(x))U |φ〉 . (15)

From this form we can see that by considering the Sc operator as an error, our computational
state is equal to FcZ(a(x))U |φ〉, modulo a permutation error operator of the form XxZzSc.
To be able to maintain this form after later one-dit teleportations and further uses of the
identity F = Sc′Fc′ (c′ any other unit in Zd), we need appropriate relations between Sc and
the operators F , Z(a) that appear through the measurement process; however, it can easily
be verified that

FSc = Sc−1F ; Z(a)Sc = ScZ(a′) (a′k = ack). (16)

which allow us to move the Sc operator to the left of the intended unitary gate (the change in
a above will mean adaptive measurement is needed here), and furthermore since ScSd = Scd,
dA unit in a ring is an element that has a multiplicative inverse within the ring. Zd is equal to the quotient
Z/(dZ), and can be thought of as the ring of modulo d arithmetic. In Zd, the units are the integers coprime to
d (i.e. have no common factor with d). Hence, when d is prime, all non-zero elements are units; for non-prime
dimensions not all elements are units e.g. 2 in Z4. If c is a unit, then cj = ck if and only if j = k. This
property establishes Sc as a permutation operator.



194 Cluster state quantum computation for many-level systems

it follows that we are always able to obtain an error operator of the form XxZzSc, where
c = 1, . . . , d− 1 and a unit in Zd.

Note that we are still using the same quantum process (one-dit teleportation), but a
different classical correction procedure. This means that we can implement the gates F †Z(a)
by choosing the measurement bases appropriately.

We note that for qubits, since the only unit in Z2 is 1 = −1, this means that S−1 = I,
and since F † = F , this effect does not exist for cluster computation using qubits.

With this success for single-qudit operations, however, comes a word of warning for multi-
qudit operations, through the identities

CZ(Sc ⊗ I) = (Sc ⊗ I)C[Zc]; CZ(I ⊗ Sc) = (I ⊗ Sc)C[Zc] (17)

and since in our model the interactions between qudits are fixed, these changes in the effective
interaction between e.g. neighbouring linear clusters are an artefact of this framework. How-
ever, since these extra permutation operators are not introduced by a measurement process
but instead through our choice in the classical computation, we can in theory design quantum
algorithms to get round this problem or even utilise it to allow us to implement different
interactions between neighbouring logical qudits. For example, since S2

−1 = I, applying F †

rather than F twice in a linear cluster produces two cancelling S−1 factors which we no longer
need worry about.

The group of permutations generated by the shifts Xj and the multiplication maps Sc is
of order ≤ d(d−1), which is in general less than d!, the order of the symmetric group Sd. This
means that the above does not deal with the most general permutation error. One issue with
trying to correct for general permutation errors is that we would have to find a commutation
relation between Pρ and F for general ρ, which seems hard to ascertain.

We could have chosen to place the Sc operator in front of the Pauli operators; in this case,
we would need the following commutation relations:

ScX = XcSc; ScZ = Zc−1
Sc. (18)

These relations mean that Sc (where c is a unit in Zd) is a member of the generalised local
Clifford group Cd, which we define by the normaliser of the generalised Pauli group Pd =
{ωaXbZc | a, b, c ∈ Zd} i.e.

Cd = {U ∈ U(d) | UPU † ∈ Pd ∀ P ∈ Pd}.

In this case, Sc corresponds to U , and products of powers of X and Z correspond to P . By
looking in this group, we may find more permutations that we can correct for. However, it
can be shown that in prime dimensions the operators Z,X, F, Sc and P defined by P : |j〉 →
ωj(j+1)/2 |j〉 are sufficient to generate Cd (see appendix C). Since our permutations are already
built out of products of X and Sc, we cannot obtain any more single qudit permutations from
the Clifford group. This strongly suggests (but does not prove) that we cannot correct for
any of the other single qudit permutation operators within cluster computation. It is harder
to specify the Clifford group more generally, and so it may be the case that in non-prime
dimensions one can implement further quantum gates by introducing other types of single
qudit permutation error operators.
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3.2.1 Adaptive computation using multi-level permutations

When working with multi-qudit quantum algorithms, we can similarly introduce multi-qudit
permutation operators. Given an n qudit state EU |Ψ〉, where E represents an error operator
on the n qudits, and U ∈ U(dn) the desired quantum evolution acting on an initial state |Ψ〉,
we can write

EU |Ψ〉 = EP.P−1U |Ψ〉

i.e. we let P−1 become part of the quantum evolution, and P part of the error operator E.
To allow us to maintain this form of error operator we need P to have appropriate relations
with F and tensor products of Z(a). For example, consider a two qudit permutation P . After
moving P left through (Z(a)⊗Z(b)), the operator to the right of P must be in tensor product
form, so the transformations can be implemented using single qudit measurements. Up to
permutations on individual systems, the only non-trivial permutation that does this is the
swap operator V , since V (A ⊗ B) = (B ⊗ A)V . This gives us a swap of two qudits for free
at any time, and the above relation for V can be used to both update leading error operators
and to calculate how measurement patterns need to be changed due to the introduction of the
swap operator. However, we again have an issue with interacting gates between logical qudits
changing form (for example, through the identity CZ1,2V23 = V23CZ1,3; the indices represent
the two systems each of these unitaries operates on). As before however, it could be that this
is a help rather than a hinderance if utilised correctly. The swap can be introduced even in
the qubit model, and, more generally, we can introduce any system swapping operator in this
manner for an arbitrary number of qudits.e

3.3 Example - a variation on Deutsch-Josza

Here we give an example of using one-dit teleportations to calculate the effect of a cluster
state computation, and how adaptive computation can be useful in implementing quantum
algorithms on qudit cluster states.

Suppose we have a function f : Z2
d → Zd; (x, y) �→ (x − a)(y − b), and we are interested

in finding a and b. Classically, this will require at least two evaluations of f . In this section
we will show that the quantum algorithm presented in Figure 7 can find (a, b) with one use
of the function f , and that it can be implemented on a cluster state of few qudits.

|+〉 • • F †
��

��� m1

|+〉 • Z−1 F †
��

��� m2

|+d−1〉 f |+d−1〉

Fig. 7. The quantum circuit for finding a, b.

Let Uf be the unitary gate corresponding to the controlled evaluation of f (the first gate

eHowever, at the end of a computation before the final computational basis measurement, any permutation
can be introduced in the above manner and corrected for classically, since there is no need to propogate the
intoduced operators through other operators.
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� � �

� � �

3 4 F

1 2 F

Fig. 8. The cluster state used to implement our quantum algorithm, complete with numbering
for qudits (see text). The qudits labelled F represent the final two qudits at the end of the
computation.

in Figure 7). It can easily be verified that

Uf |x1〉 |x2〉 |+d−1〉 = ωf(x1,x2) |x1〉 |x2〉 |+d−1〉
= ωab(Z−a ⊗ Z−b)CZ |x1〉 |x2〉 |+d−1〉

and using this result it is easy to verify that this quantum algorithm maps the first two qudits
to |−a〉 |−b〉 (up to a phase), and so the final measurements yield the values of (a, b).

The form of the transformation induced by Uf on the first two qudits is ideal for im-
plementation on a cluster state depicted in figure 8. The two rows will form the upper two
(logical) qudits, and the vertical interactions will form interacting gates. In place of the uni-
tary evaluation of f will be a measurement on qudits 1 and 3, since we can write Zk = Z(zk)
with (zk)l = 2πkl/d. We will hence measure these qudits in the basis defined by (FZ(zk))†.
To implement the F † gates, we then measure in the F † basis on qudits 2, 4, and use adaptive
computation in the form F = S−1F−1 = S−1F

†. Let mk be the result of the measurement
on qudit k. We can then calculate the evolution of the cluster state algorithm (ignoring any
overall phases), updating the error operators as we proceed using the relations established in
the previous section:

|+〉 |+〉 CZ→ CZ |+〉 |+〉 =
1√
d

∑
k

|+〉 |+k〉

measure 1,3→ (Xm1 ⊗Xm3)(FZ(z−a) ⊗ FZ(z−b))CZ |+〉 |+〉
= (X−a+m1 ⊗X−b+m3S−1)(F ⊗ F †)

1√
d

∑
k

|+〉 |+k〉

= (X−a+m1 ⊗X−b+m3S−1)CZ |+〉 |+〉
CZ→ CZ(X−a+m1 ⊗X−b+m3S−1)CZ |+〉 |+〉
= (X−a+m1Zb−m3 ⊗X−b+m3Za−m1S−1)C[Z−1]CZ |+〉 |+〉

measure 2,4→ (Xm2F ⊗Xm4F )(X−a+m1Zb−m3 ⊗X−b+m3Za−m1S−1) |+〉 |+〉
= (Xb+m2−m3Za−m1S−1 ⊗Xa+m4−m1Zb−m3)(F † ⊗ F †) |+〉 |+〉
= |−b−m2 +m3 mod d〉 |−a−m4 +m1 mod d〉

The values of a and b can then be read off from the final qudits. We note two things about
the above computation:

1. The measurement of qudits 1 and 3 introduce extra F gates on both logical qudits not
present in the original algorithm. However, because (F ⊗ F †)CZ |+〉 |+〉 = CZ |+〉 |+〉,
by using the identity F = S−1F

† on one qudit, these extra gates do not affect the rest
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of the computation, except for the fact that the first qudit corresponds to the value of
b rather than a as in the circuit of Figure 7 (and vice versa).

2. The original algorithm requires the use of a controlled-Z−1 gate, where as our cluster
state only has controlled-Z gate between the logical qudits. However, pulling through
the S−1 error operator (introduced in the previous step) to the left through the CZ
gate between qudits 2 and 4, the CZ gate changes into a C[Z−1] gate.

While this example thought of purely as a quantum algorithm is a bit of a toy example, it
does illustrates not only how adaptive computation can be helpful in the implementation of
algorithms on cluster states, but also how the non-trivial commutation relation between Sc

and CZ can actually prove to be of help rather than a hinderance.

4 The stabiliser formalism for cluster state QC

Up to this point, we have presented a completely self-contained approach to cluster state
computation. Most of the current papers [1, 2, 10] take a much more algebraic approach
using the stabiliser formalism, developed by Gottesman [17] in the context of error-correcting
quantum codes. The stabiliser formalism allows us to describe cluster states through sets of
eigenvalue equations, and manipulation of these eigenvalue equations leads to a theorem that
can be used to establish how a particular set of measurements can implement a quantum gate
on a particular cluster state. In this section we will briefly summarise this approach, and
compare the merits of the two.

4.1 Representation of cluster states using stabilisers

Before we describe how stabilisers can be used to represent cluster states, let us give a more
formal definition of cluster states. Let G = (V,E) be a graph; the set V are the vertices
(this corresponds to a labelling of our physical qudits) and E ⊆ V × V are the edges of G
(corresponding to which pairs of vertices have a controlled-Z interaction between them). For
a ∈ V , let |.〉a represent the state of qudit a. Then our cluster state |φ〉C(G) can be written as

|φ〉C(G) =

⎛⎝ ∏
(a,b)∈E

CZ(a,b)

⎞⎠(⊗
a∈V

|+〉a
)

where CZ(a,b) represents the controlled-Z gate between qudits a and b.
It can be shown [2, 10] that |φ〉C(G) is uniquely determined (up to phase) by the eigenvalue

equations

X†
a ⊗

⎛⎝ ⊗
b∈N(a)

Zb

⎞⎠ |ψ〉 = |ψ〉

where Ua is the application of the unitary U to qudit a, and N(a) = {b ∈ V | (a, b) ∈ E}
represents the neighbours of qudit a i.e. the qudits b connected to a by an interaction (edge
in G). The operators S(a) = X†

a ⊗
(⊗

b∈N(a) Zb

)
are the stabilisers of the state |φ〉C(G), and

totally determine up to an irrelevant phase the cluster state.
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4.2 Measurement patterns in the stabiliser formalism

Before we can state the main result that shows how stabilisers can be used to help find
measurement patterns that implement useful quantum algorithms, we need to establish a few
definitions. Given a cluster state |φ〉C(G), let us break its graph up into three parts: an input
cluster CI(G) and output cluster CO(G), and the remaining body of the cluster, which we
will denote CM (G). We will number the n qudits in CI(G) and CO(G) from 1 to n, where
qudit i in the output cluster can be thought of as qudit i from the input cluster after the
quantum computation has concluded. We suppose further that the n qudits in CI(G) can,
before any interactions between qudits is applied, be initialised in the more general entangled
state |ψ(in)〉.

We define a measurement pattern on a cluster C(G) to be a set of the form of a func-
tion MC(G) : V → U(d), such that the columns of the unitary matrix MC(G)(a) form the
measurement basis on qudit a in the cluster.f If the measurement outcomes form a vector
m, let P (MC(G),m) represent the projector onto the states corresponding to the particular
measurement outcomes.

We are now ready to state the main theorem for cluster state QC and stabilisers:

Theorem 1 ([2, 10]). Suppose the state |ψ〉C(G) = (ICI (G) ⊗P (MC(G),m)⊗ ICO(G)) |φ〉C(G)

obeys the 2n eigenvalue equations

Xi,CI(G)(UXiU
†)CO(G) |ψ〉C(G) = ωλx,i |ψ〉C(G) (19)

Z†
i,CI(G)(UZiU

†)CO(G) |ψ〉C(G) = ωλz,i |ψ〉C(G) . (20)

Then, if MCI(G) = {(i, Fi) | i ∈ CI(G)}, and the measurement outcomes on CI(G) are
given by si, then after all measurements on CI(G) and CM (G) of |φ〉C(G), the final state
|ψ(out)〉CO(G) is given by |ψ(out)〉CO(G) = UUe |ψ(in)〉, where

Ue =
n⊗

i=1

(Zi)λx,i−si(Xi)λz,i .

The unitary gate U and the numbers λx,i, λz,i can all depend on the outcomes of the
measurements on the input and body parts of the cluster state. Many examples of the use of
this formalism can be found in [2, 10].

4.3 A comparison of the two approaches to cluster state QC

The two approaches to cluster state QC that we have mentioned are very different. The
stabiliser formalism is a powerful tool in establishing cluster states and measurements on
them to implement particular quantum gates, but as examples in [2] show, using it is an
involved and difficult process. The one-dit teleportation approach described here is a much
more elementary description of the model, and it has two important advantages over the
stabiliser approach. Since this approach is very closely linked to the circuit model for quantum
computation, it means that it is possible to use some of the intuition and results from this
line of thought in designing quantum algorithms using cluster states. This approach is also
fThis definition differs slighlty from that used in other papers but is completely equivalent.
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Fig. 9. An example of a cluster that we cannot evaluate using one-dit teleportations alone.

the easiest to understand as it uses no more than some basic linear algebra to establish the
theory behind the model.

The fact however that the one-dit teleportation approach is so closely linked to the ciruit
model means that this approach is not suitable for considering all possible cluster states. Up to
this point, we have always implicitly considered clusters that are in a grid (two-dimensional),
such that each row of entangled qudits corresponds to a logical qudit, to which we apply
successive one-dit teleportations, and any vertical interactions (columns) form two-qudit gates
between logical qudits (as in Figure 4). However, clusters where a row does not form a logical
qubit of the computation, but forms part of an interaction between logical qudits, cannot
have one-dit teleportation ideas applied to it. The cluster in Figure 9 is an example of this.
The central qudit causes the problem: its presence means that there are not two disjoint
paths from left to right through the cluster such that every qudit is in one path, so we cannot
treat the cluster by implementing one-dit teleportations along the paths (to give single qudit
operations) and considering links between the paths as interacting gates.

Another issue with the one-dit teleportation approach is that of the timings of the mea-
surements. In all of our clusters so far, all measurements in a row of entangled qudits must be
taken ‘from left to right’ i.e. we must apply each teleportation in turn. While we could make
joint measurements of qudits where no adaptive measurements take place, we cannot measure
the qudits out of turn in the teleportation approach. Examples in [2] using the stabiliser
method however distinctly allow measurements to be taken in an arbitrary order (up to the
issue where some measurements may depend on other measurement results).

Importantly though, the tool of adaptive computation does not naturally arise within the
stabiliser formalism. It seems difficult to incorporate the extra operator errors that arise from
adaptive computation into the major theorem above (particularly as their deterministic origin
differs from the randomness of the origin of the Pauli operators), and it remains to be seen if
there is an elegant or natural way that these two methods could be combined. The fact that
the same quantum process is taking place but a different correction procedure is implemented
would somehow have to be reflected in any such grander theorem.

5 Universal gates

In this section we are going to discuss how we can implement any unitary evolution on a single
qudit using linear clusters of qudits. Universality for many qudits using multi-dimensional
clusters follows from the comments in section 2.

5.1 An approach to generating unitary gates

In this section we are going to present a couple of basic results that present a possible method
of generating unitary transformations on any QC system.

We start by quoting the following result:
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Lemma 2 (p48, [19]). Let Hk be a basis over the reals for the space of d × d Hermitian
matrices. Then any U ∈ U(d) can be formed by products of the matrices exp(iβkHk) for real
βk.

Now, given a matrix U , with eigenvectors |Uj〉, we will define

U(a) =
∑

k

eiak |Uk〉〈Uk|. (21)

Suppose we can find a (minimal) set of matrices U1, . . . , Um such that the projectors onto
the eigenvectors of these matrices form (over the reals) a spanning set for the space of d× d

hermitian matrices. It follows from lemma (2) that products of the unitaries from the set

C = {Uj(a)|j ∈ {1, . . . , d}, a ∈ [0, 2π]d}
is enough to generate any unitary in U(d).g

This result in itself does not specifically apply to our model of QC yet; we need to add
more constraints to the kinds of bases that we can use.

5.2 Mutually unbiased bases and Hermitian matrices

To motivate this discussion, we will state here (and prove later) that, using a linear cluster of
three qudits and two measurements, with the first (left-most) qudit in a given state |ψ〉, we
can implement the gates Z(a) and X(a) =

∑
k e

iak |+k〉〈+k| for any dimension d. The two
bases {|k〉}d−1

k=0 and {|+k〉}d−1
k=0 are what we call mutually unbiased, a property defined as such:

Definition 1. Two bases {|ak〉}d−1
k=0 and {|bk〉}d−1

k=0 are mutually unbiased if |〈ai|bj〉| =
1/

√
d for all i, j.

Indeed, if we accept one-dit teleportation as the basis of the cluster state model, the only
bases that we can measure are those that are mutually unbiased with respect to the standard
basis. We can take this connection further with the following observation:

Lemma 3. Let {∣∣ψk
j

〉}d
j=1 be d + 1 bases of Cd (with k = 1, . . . , d + 1), such that they are

mutually unbiased. Then real combinations of projectors of all these vectors span the space of
d× d Hermitian matrices.

This arises from the fact that mutually unbiased bases arise in the problem of quantum
state determination. In the limit of many measurements, measurements in each of a full set of
d+ 1 mutually unbiased bases are enough to specify any Hermitian matrix [20]. So mutually
unbiased bases are potentially a route into finding a basis of projectors for the set of Hermitian
matrices that are appropriate to our model.

We will list briefly some known facts about mutually unbiased bases. It is known [20, 21]
that the maximum number of possible mutally unbiased bases in dimension d is d + 1. In
dimensions that are prime powers, a construction is known that gives this maximal possible
number of such bases [20, 21]. However, more generally no construction is known to find such
a maximal set in arbitrary dimension. For the first non-prime power case, d = 6, there are 3
known MUBs, but it is not known if any larger set exists.
gNote that we not using operators of the form e.g. exp(iαZ) for some real α, as is used for qubits. This is
because for d ≥ 3, Z,X are not hermitian, and so exp(iαZ), exp(iαX) are not unitary matrices.
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5.3 An explicit construction for prime dimensions

For dimension d a prime, it can be shown via a result of [21] that a set of d + 1 mutually
unbiased bases can be obtained via the eigenvectors of the d+ 1 matrices

Z,X,ZX,ZX2, . . . , ZXd−1.

The bases {|k〉}d−1
k=0 and {|+k〉}d−1

k=0 are the eigenvectors of Z and X respectively.
What we will show in this section is that we can generate the gates Z(a), X(a) and

ZXk(a) for prime dimensions on linear clusters. Then, by the results of the previous two
sections, this will establish single-qudit universality on linear clusters as required.

It is easy to implement Z(a) and X(a) in any dimension using two measurements on a
linear cluster of size three, because we may write

Z(a) = F †.FZ(a); X(a) = FZ(a).F †.

and hence by appropriate one-dit teleportations and use of adaptive computation we can
implement these gates.h We note that this scheme uses fewer measurements to implement
these gates than the one given in [10]. These two gates will be the building blocks for
implementing the gates ZXk(a). The following lemma is crucial in allowing us to do this:

Lemma 4. Let {∣∣ψk
j

〉}d
j=1 be the eigenvectors of ZXk for k = 1, . . . , p− 1, with eigenvalues

ωj. There exists a phase transformation Z(bk) such that

Z(bk) |+j〉 =
∣∣ψk

jk

〉
.

The index jk in the ket determines which eigenstate of ZXk the phase transformation
Z(bk) maps |+j〉 onto; importantly, the index is not solely j, and depends on k. The proof
of the lemma is a little technical and hence we postpone it to appendix B. The result of this
is that we may write

ZXk(a) = Z(bk)X(a(×,k))Z(bk)†

where a(×,k) is a permutation of the elements of a defined by a(×,k)
l = ak−1l. Hence we can

decompose ZXk(a) as

ZXk(a) = F †.FZ(bk).FZ(a(×,k)).F †Z(−bk)

and so we can implement these gates using four measurements and use of adaptive computa-
tion.

5.4 The d = 3 case

In this section we will give the above results in dimension 3 in more detail, to show explicitly
which measurements are needed to implement each gate.

In dimension 3, we have four primitive gates in our construction: Z(a), X(a), ZX(a)
and ZX2(a). We need the eigenvectors of each of the matrices Z,X,ZX and ZX2. The

hNote that the gate F † can be implemented without the use of adaptive computation with three one-dit
teleportations, since F † = F 3, but this takes up more resources.
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computational basis elements are the eigenvectors of Z. The eigenvectors ofX are the columns
of F i.e.

|+0〉 = 1√
3

(|0〉 + |1〉 + |2〉)
|+1〉 = 1√

3

(|0〉 + ω |1〉 + ω2 |2〉)
|+2〉 = 1√

3

(|0〉 + ω2 |1〉 + ω |2〉) ;

the eigenvectors of ZX are

|ZX0〉 = 1√
3

(|0〉 + |1〉 + ω2 |2〉)
|ZX1〉 = 1√

3

(
ω2 |0〉 + |1〉 + |2〉)

|ZX2〉 = 1√
3

(|0〉 + ω2 |1〉 + |2〉) ;

and the eigenvectors of ZX2 are∣∣ZX2
0

〉
= 1√

3
(|0〉 + ω |1〉 + |2〉)∣∣ZX2

1

〉
= 1√

3
(|0〉 + |1〉 + ω |2〉)∣∣ZX2

2

〉
= 1√

3
(ω |0〉 + |1〉 + |2〉) .

By utilising the proof of lemma 4 in appendix B (or indeed by direct verification) defining
b1 = (0, 0, 4π/3)T and b2 = (0, 2π/3, 0)T , so that

Z(b1) =

⎛⎝ 1 0 0
0 1 0
0 0 ω2

⎞⎠ Z(b2) =

⎛⎝ 1 0 0
0 ω 0
0 0 1

⎞⎠
we have that

Z(b1) |+0〉 = |ZX0〉
Z(b1) |+1〉 = ω |ZX1〉
Z(b1) |+2〉 = |ZX2〉

and

Z(b2) |+0〉 =
∣∣ZX2

0

〉
Z(b2) |+1〉 = ω2

∣∣ZX2
2

〉
Z(b2) |+2〉 =

∣∣ZX2
1

〉
.

From these relations we can deduce that

ZX(a) = Z(b1)X(a)Z(b1)†

and
ZX2(a) = Z(b2)X(a′)Z(b2)†

where a′ is defined by
a′1 = a1; a′2 = a3; a′3 = a2

and using the measurement patterns in the previous subsection we can implement these gates
on linear clusters.
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The issue of adaptive computation in this dimension is simple, because only when c = −1
is Sc unitary and not equal to the identity. So we can implement the gates FZ(a) and
F †Z(a) in this dimension, and by doing so we only introduce one new kind of error, namely
that introduced by S−1.

Furthermore, it is easy to show that the shift permutation (312) and the transposition
(23) generate the whole of the permutation group S3; these permutations correspond to X

and S−1 and so when d = 3 we can in fact correct for all possible permutation errors.

5.5 Other cases

As noted above, constructions for full sets of mutually unbiased bases exist in all prime power
dimensions, but their constructions are not as simple as the one listed above. In [21], an
explicit description for a set of mutually unbiased bases in d = 4 is given, and can be seen by
inspection that a relationship similar to that for prime dimensions given by lemma (4) can
be given. It remains to be seen whether this relationship exists more generally.

Furthermore, these mutually unbiased bases should be compatible with our scheme for
generating universal gates in the cluster state model. Ideally one of the bases should coincide
with the Fourier basis (1), to fit in with the F transformation from one-dit teleportation.
This is not the case in the example in [21], which makes the task of generalising the ideas in
this paper to non-prime dimensions more difficult.

It is clearly not the case however that non-existence of a full set of MUBs implies that
our cluster state model is not universal. It is established in [10] that our given model is
universal for all dimensions. They also prescribe a method which is equivalent to finding a
set of projectors that is not only a basis for the set of Hermitian matrices, but also suitable
for the cluster state model. It remains to be seen whether the model can be described more
directly as in this paper.

6 Conclusion

In this paper we have developed a framework for quantum computation using cluster states
with qudits as our basic physical resource, and while we have recovered all of the features of
the qubit model, we have found that the extra degrees of freedom in using qudits allows us to
control the quantum computation using adaptive computation in a way that is not possible
(for single qudit operations) when using qubits. The cases of prime dimension lend themselves
particularly well to a simple description, and as a result it is hopeful that these ideas could
be taken further and used to design quantum algorithms on qudits.

One important issue we have not covered in this paper is that of fault tolerance. There
are a number of works on this issue specifically pertaining to the qubit cluster state model
[8, 23, 25], and given the similarities between this and the qudit model, it seems likely that
a number of the results may well jump across to the qudit model. How the issue of adaptive
computation will fit into the picture could however be a sticking point for generalising these
results.

The most technologically advanced physical implementation of cluster state QC is an
optical solution as proposed by Nielsen [4] and refined by Browne and Rudolph [22]. A
photon can be thought of as a qubit by treating the polarisation of the photon as the relevant
degrees of freedom, and in [24] Knill, Laflamme and Milburn presented a scheme for entangling
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photons using measurement. This idea is at the center of Nielsen’s proposal; Browne and
Rudolph present another optical scheme that is more efficient in its use of resources (linear
optical elements).iHowever, by using other degrees of freedom present for photons, they could
be potentially thought of as qudits. It would most definitely be interesting if one could find
a scheme that is similar to any of the above proposals, but within which photons are treated
as qudits, and furthermore, whether this idea lends itself to a scheme for qudit cluster state
quantum computation.

A number of other interesting questions arise from this model. One immediate question
is whether the computational paradigm that arises from adaptive computation lends itself to
solving a particular class of problems. Furthermore, we have not explored the potential for
designing clusters with controlled-Zk interactions, as was mentioned in section 3. Finally,
we have not made any attempt here to consider fundamentally the role of entanglement
within the cluster state model. This encompasses a large number of potential questions, and
further investigation could lead to some insight into the relationship between computation
and entanglement.
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Appendix A Maximal connectedness of cluster states

This appendix establishes the result that if any one qudit in a cluster is measured, the re-
maining qudits form a cluster state up to some Pauli Z errors. As mentioned in the body of
the text, for cluster of qubits this issue was first discussed in [12]; here we give a different but
elementary proof of the same fact.

Let |ψ〉 be a cluster state. Since all the controlled-Z interactions between pairs of qudits
commute, we can write this as

|ψ〉 = S |+〉 |ψ′〉
where |ψ′〉 is the cluster state of all but one of the qudits, and S represents the controlled-Z
interactions with the remaining |+〉 qudit. We can write the above as

|ψ〉 =
1√
d
S

d−1∑
k=0

|k〉 |ψ′〉

=
1√
d

d−1∑
k=0

|k〉 (Zk ⊗ . . .⊗ Zk ⊗ I ⊗ . . .⊗ I) |ψ′〉

where the Zk operators act only on the qudits that are immediately connected to the final
qudit (that is, those that have been made to interact with the final qudit by a controlled-Z
operation). It is clear from this form that measuring this qudit in the computational basis
and obtaining result j will project the rest of the state onto a cluster state with Pauli Zj

errors on all qudits that were adjoined to the measured qudit in the original cluster.
Since the cluster state of two qudits is equivalent (up to unitaries on the individual qudits)

to a Bell state, our notion of maximal connectedness is identical to that discussed for linear
clusters in [12].

Appendix B Proof of lemma 4

To prove the lemma, we first need to compute the eigenvectors of ZXk in prime dimensions
d ≥ 3.

Lemma 5. Define
∣∣α(k)

〉
by ∣∣∣α(k)

〉
=

1√
d

d−1∑
l=0

ωαl |l〉
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where α satisfies αl+k + l ≡ αl mod d (with mod d arithmetic in indices also). Then
∣∣α(k)

〉
is an eigenvector of ZXk with eigenvalue 1.

Proof. Rewrite
∣∣α(k)

〉
as

∣∣∣α(k)
〉

=
1√
d

d−1∑
l=0

ωαl+k |l + k〉

(with modulo d addition as appropriate). Then

ZXk
∣∣∣α(k)

〉
=

1√
d

d−1∑
l=0

ωαl+k+l |l〉

=
1√
d

d−1∑
l=0

ωαl |l〉

=
∣∣∣α(k)

〉
.

.
The other eigenvectors of ZXk are then given by X−m

∣∣α(k)
〉
, since

ZXk.X−m
∣∣∣α(k)

〉
= ωmX−m.ZXk

∣∣∣α(k)
〉

= ωmX−m
∣∣∣α(k)

〉
For definiteness, we define the phases of the eigenvectors by letting

∣∣ψk
0

〉
=
∣∣α(k)

〉
, with

α
(k)
0 = 0, and

∣∣ψk
j

〉
= X−j

∣∣α(k)
〉
. The following lemma is equivalent to lemma 4:

Lemma 6. Let {∣∣ψk
j

〉}d−1
j=0 be the eigenvectors of ZXk for k = 1, . . . , p− 1 as defined above.

Then there exists a phase transformation Z(bk) such that

Z(bk) |+j〉 = ω
1
2 j(j+1)k

∣∣ψk
jk

〉
.

Proof. By the above lemma,

∣∣ψk
m

〉
=

1√
d

d−1∑
l=0

ωαl |l +m〉

where αl+k + l ≡ αl mod d. Define bk by (bk)l = αl. Then

Z(bk) |+−j〉 =
1√
d

d−1∑
l=0

ωαl−jl |l〉 .

However, it is easily seen (e.g. by induction) that, for any r, s,

αl ≡ αl+jk + jl +
1
2
j(j − 1)k (B.1)
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and hence

Z(bk) |+−j〉 =
1√
d

d−1∑
l=0

ωαl+jk+ 1
2 j(j−1)k |l〉

= ω
1
2 j(j−1)k 1√

d

d−1∑
l=0

ωαl+jk |l〉

= ω
1
2 j(j−1)k 1√

d

d−1∑
l=0

ωαl |l − jk〉

= ω
1
2 j(j−1)k

∣∣ψk
−jk

〉
So we have that

Z(bk) |+j〉 = ω
1
2 j(j+1)k

∣∣ψk
jk

〉
and since the dimension here is prime, as j runs over all values 0, . . . , k − 1, so does jk. .
We can recover lemma 4 from this by the phase transformation

∣∣ψk
j

〉 �→ ω
1
2 j(jk−1+1)

∣∣ψk
j

〉
,

hence removing the phase that appears in the above lemma.
The eigenvectors of ZX for d = 2 are given by |ψ±〉 = 1√

2
(|0〉 ± i |1〉). The above proof

fails because (B.1) is only self-consistent when d is odd: By substituting j for d, then modulo
d, we obtain that αl ≡ αl+dk + dl + 1

2d(d − 1)k ≡ αl + 1
2d(d − 1)k mod d i.e. we require

1
2d(d − 1)k ≡ 0 mod d, which is true if and only if d is odd. However, lemma 4 still holds:
let b = (0, π). Then Z(b) = |0〉〈0| + i|1〉〈1|, and it is easy to verify that

Z(b) |+0〉 = |ψ+〉 ; Z(b) |+1〉 = |ψ−〉 .

Appendix C The Clifford group in prime dimension

The sole result of this appendix is a result of Gottesman [18]:

Lemma 7. The Clifford group Cd (normaliser of the generalised Pauli group Pd) is, when d

is a prime, generated by the operators Z,X, F, Sc and P defined by P : |j〉 → ωj(j+1)/2 |j〉.

Proof. The one-qudit Pauli group consists of elements of the form ωaXbZc. Let us (for
now) ignore the preceding powers of ω. Then, under conjugation by a Clifford group operation
(i.e. for U ∈ Cd, the transformation is the conjugation P �→ UPU †), we must have that (up
to phases) X �→ X iZj and Z �→ XkZ l. For A,B ∈ Pd, define α(A,B) by AB = ωα(A,B)BA.
Under conjugation by a Clifford operation, this commutation relation is preserved and so we
must have that α(X iZj , XkZ l) = α(X,Z) = 1. Furthemore,

α(X iZj, XkZ l) = α(Zj , Xk) + α(X i, Zl)

= jkα(Z,X) + ilα(X,Z) = il− jk

and so a general Clifford operation is an element of Pd (to choose the phases for the images
of X and Z) times some operation from some class of operations labelled by (i, j, k, l), with
il− jk = 1. We know that the Pauli operators are in the Clifford group, and so we can ignore
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any phases as the Pauli operators can correct for these. We split up considering the full set
of operations into two groups. First let us assume that i �= 0. It can be shown via elementary
methods that if we define C(i,m, n) = SiP

mQn (where Q = FPF †), then, under conjugation
by C(i,m, n),

X �→ X iZ−i−1m; Z �→ X inZi−1(1−mn)

(note that since i �= 0, i always has an inverse). By choosing m = −ij and n = i−1k, we
find that X �→ X iZj and Z �→ XkZ l, with l = i−1(1 + jk) as required. This gives us all
Clifford operations for i �= 0. For i = 0, we must then have jk = 1, and so j �= 0. We wish
to implement the operation X �→ Zj and Z �→ XkZ l. We can do this by first performing
X �→ X−j and Z �→ ZkX−l (which can be done from the calculations above) and then
conjugating by F to implement the required transformation. This gives us all Cifford group
operations. .

The above proof does not work for non-prime dimensions because of the need for inverses
of all non-zero elements in Zd, which only exist if d is prime.


