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We provide a rigorous analysis of fault-tolerant quantum computation in the presence
of local leakage faults. We show that one can systematically deal with leakage by using
appropriate leakage-reduction units such as quantum teleportation. The leakage noise is
described microscopically, by Hamiltonian couplings, and the noise is treated coherently,
similar to general non-Markovian noise analyzed in Refs. [1] and [2]. We describe ways
to limit the use of leakage-reduction units while keeping the quantum circuits fault-
tolerant and we also discuss how leakage reduction by teleportation is naturally achieved
in measurement-based computation.
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1 Introduction

There has been much recent work in the theory of fault-tolerant quantum computation. The
foundations of this theory were initially developed in Refs. [3], [4], [5], [6], [7] and [8]. The
more recent work on fault-tolerance builds on, improves and extends these fundamental results
in various directions. First of all, there is research on finding good code architectures and
determining the corresponding threshold noise values and overheads (e.g., see [9, 10]). Current
threshold estimates for the [[7,1,3]] code range from O(103) [10, 11] to O(10~ %) [12] with
a O(10~®) lower bound established in Ref. [2, 13]. Recent work by Knill [14, 15] shows that
using small detection codes combined with extensive gate teleportation can lead to a threshold
of O(1072), albeit at a large overhead in resources.

Secondly, there is a growing body of work on estimating noise threshold values taking into
account the spatial architecture and means for qubit transportation [12, 16] or measurement
times [10]. Analyses pertaining to actual physical systems, such as ion traps [17] or optical
quantum computers [18] are starting to be developed.

Thirdly, there has been research extending the error models and methods used in the
theory of quantum fault-tolerance. In Ref.[1] a first fault-tolerance analysis was carried out
for local non-Markovian noise. This result was subsequently generalized in Ref. [2]. In the
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140 Fault-tolerant quantum computation for local leakage faults

last paper the foundations of quantum fault-tolerance were strengthened and a rigorous proof
of the threshold theorem for distance-3 codes was given.

In this paper we follow this third line of research. We will put some previously scattered
results and ideas on a rigorous footing and formulate a fault-tolerance analysis for leakage
faults. In many physical scenarios a two-level qubit is a subspace of a higher-dimensional
space. This can happen when we use encoded physical states as elementary qubits as in the
decoherence-free-subspace (DFS) formalism. More typically, the qubit is simply two low-lying
levels in a many-level physical system. Some examples are ion trap qubits, optical qubits based
on the KLM scheme [19] where the qubit is the dual-rail subspace of two photonic modes,
Josephson junctions where the qubit is formed by the lowest energy states in a double well
potential [20], and encoded electron-spin qubits in quantum dots [21, 22]. For such qubits,
leakage faults that transfer amplitude in and out of the qubit-subspace are likely to be an
important source of errors. In this paper we will refer to the qubit-subspace that is part of a
larger extended space as the system-space.

As with regular faults, the first protection against leakage faults is the use of ‘low deco-
herence’ qubit encodings and dynamical decoupling methods. The method of dynamically
decoupling leakage faults by sequences of pulses has been explored in Refs. [23, 24]. In this
paper we will analyze how the (remaining) leakage faults can be dealt with by means of error-
correction. The problem is that error-correction is not designed to deal with leakage faults
directly. Thus we need to convert leakage faults to regular faults, i.e. faults that occur in the
system-space and that can be corrected by error-correcting codes. The reduction to regular
faults can be of two kinds. One could detect that leakage occurred (using e.g. the circuit
presented in [7, 8]) and replace the leaked qubit by a new physical qubit in the system-space.
Alternatively, a leakage fault can be reduced to a regular fault without us learning whether
the leakage occurred. We will generally refer to this second tool as a Leakage-Reduction Unit,
or LRU. Quantum teleportation is the most natural implementation of a LRU [25].

In this paper we will focus on LRUs since they can be implemented universally by telepor-
tation. The ability to detect leakage on the other hand depends on the specific implementation
and the nature of the leakage space. We will discuss the use of leakage detection and how our
results can be used in leakage-detecting implementations in §6. Of course in our analysis we
assume that LRUs (or the more powerful leakage-detection units) are subject to regular and
leakage faults themselves.

Let us sketch an overview of the results in this paper. A fault-tolerant threshold analysis
consists of two fairly independent parts. First one needs to prove that if the computation is
good (i.e., has few faults), the logical dynamics of the encoded computation is correct under
some technical definition of good, few and correct. This analysis for leakage faults will be
the essential contribution of this paper. Secondly, one needs to show that the probability (or
amplitude or norm depending on which error model one uses) for a computation which is bad
(i.e., has many faults) can become as small as desired below the noise threshold. Putting these
two things together then gives rise to the threshold theorem, Theorem 1. The second part
depends on the error model that describes leakage faults. The treatment of leakage noise has
been informally discussed in previous literature [6, 8]. However, physical leakage noise cannot
be accurately captured by a simple Markovian noise model as in those works. In order to do a
complete analysis of the effect of leakage faults, in §2 we consider a microscopic Hamiltonian
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model in which leakage processes are treated coherently. In this sense the leakage error model
is very similar to the general non-Markovian model which was analyzed in Refs.[1] and [2].
We will use the results in these papers directly to bound the norm of the sum of bad fault
operators in the encoded computation.

In the analysis of leakage faults given in §3 we assume that LRUs are placed before every
elementary gate in the encoded circuit. Then in §4 we show that this frequent placement of
LRUs is unnecessary and we give conditions for when LRUs can be omitted. In Appendix A
we illustrate these concepts with circuits for the Steane [[7,1,3]] code.

Given a fault-tolerant circuit with LRUs before each gate, it is clear that, i¢f the LRUs
work without error, this circuit subjected to leakage faults is equivalent to a circuit without
LRUs subjected to regular faults. This is because LRUs replace any leaked input with a state
in the system-space before the next gate is applied. However a LRU can fail. It can fail due to
a regular fault, but it can also fail due to a leakage fault. For example, the Bell state that is
created for quantum teleportation of leaked qubits can itself be leaky on the outgoing qubit.
In order to deal with leaky LRUs, we will set-up an analysis that is very much like the rigorous
analysis in Ref. [2]. In particular, we need to show that good fault-paths with few leakage
or regular faults give correct answers since errors are being corrected and do not spread too
badly. The essential insight is that LRUs can be viewed as performing leakage-correction at
the lowest unencoded level.

In §5 we discuss how implementing gates by teleportation [26] provides an alternative
method for protecting against leakage faults. This is an approach which is naturally embodied
in measurement-based models of computation. We focus in particular on circuit simulations
in the graph-state model [27] and require that graph states of a certain ‘standard’ form are
used. Such graph states are of potential practical interest as they appear in several proposals
relating to quantum computation with non-deterministic gates (e.g., see [18, 28, 29]). We
would like to emphasize that our analysis for graph-states is suitable for leakage or qubit loss
that cannot be detected; for detectable qubit loss that is error-free there are more efficient
methods such as the ones described in [30].

1.1 Notation

The standard convention for circuit diagrams is that time moves from left to right. On the
other hand, the representation of a circuit as a sequence of mathematical operations applied
to an input is usually represented in reverse order, i.e. as Ay ... A3 A;|1). We will occasionally
also denote the operation Ay ...AsA; as Ay *x Ay x...* Ay, i.e. with a circuit diagram timing
convention. We also use the notation oy, oy and o, for the usual Pauli operators.

2 The Leakage Error Model
We begin by specifying our leakage error model. In this paper we focus on leakage faults, but
our analysis also permits mixed error models. We assume the following Hamiltonian

H = Hideal(t) + Hfaults(t)a (1)

where Heauies(t) = Hregular (t) + Hicak (). Hidea1(t) generates the ideal system dynamics imple-
menting the encoded computation. Hreguiar(t) = Hg(p)(t) + Hp(t) where Hg(p)(t) represents
a local Hamiltonian coupling to a (non-Markovian) environment as in Refs. [2] and [1] or faults
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not involving a bath. As in these papers we assume that

Hgss)(t) =Y Hs(m)a(t) » (2)

where Hg(py o(+) only acts on the set of qubits involved in a particular location® a(t) in the
ideal computation at time ¢ and potentially the bath or environment B.

Let Hs be the Hilbert space of the system qubits, with Hg[; the Hilbert space of qubit i.
There is an extension of each Hgpij, Hs,,,[) = Hspi) © Hipi) so that Hpp;) is the leakage space
of qubit i. We assume that Hy = ®;H[;, i.e. the leakage spaces of the individual qubits are
disjoint. The leakage part of the Hamiltonian Hje,y(¢) is of the form

Hieax(t) = Hspy(t) + HL(), (3)

where Hgy,(p)(t) is a linear combination of operators coupling the leakage and system spaces
and potentially some environment B. An example of leakage which includes a coupling to
an environment is a trapped ion in a cavity where transitions into or out of the two-level
subspace can create or annihilate photons in the cavity. Hp(¢) describes the evolution in the
leakage spaces and any coupling of the leakage space to the environment. We require that the
coupling Hamiltonian is local meaning that

Hspp)(t) =Y Hsp(m)a(t) (4)

where Hgp,(p) q(t) only leaks from/to the system/leakage space of the set of qubits involved
in a particular location a(t) in the ideal computation at time t.

We note that leakage can be an inherently non-Markovian process in particular when it
does not involve additional environments. Since the leakage-space and the system-space form
a direct sum and not a direct product, there is no meaning to the notion of loss of information
by tracing out a subsystem. Note that we restrict the leakage space to be local and different
for each qubit; this condition is fulfilled in most physical systems.

The interaction structure of the bath and the interaction among the leakage spaces in
Hiants(t) can be of two kinds. In the first one we assume that the leakage spaces of qubits 4
and j are disjoint and only interact during the time that qubits ¢ and j interact. For leakage
or regular faults involving a bath, we also assume each qubit ¢ has associated with it an
environment space Hp[;, with environment spaces also being disjoint and only interacting
when the corresponding qubits interact. This model is basically the natural generalization of
the non-Markovian model considered in Ref. [1] to leakage noise. In this scenario every location
o, involving, say, a single qubit ¢, can be described by a unitary operator U[i] acting on the
extended space of qubit ¢ and possibly its environment space, i.e. Uli]:Hs,,,[ij ® Hpp —
Hs...q @ Hppi)- We can write this operator as

Uli] = Uoli] + Ei], ()

where Up[i]: Hsp) @ Hppip — Hsi) ® Hpyy is the ideal gate on the system and Efi] is the
fault operator. As in Lemma 2 in [1], one can bound ||E|| < € = €reg + €leak, where? €reg =

@A location is an elementary operation in the fault-tolerant simulation, such as a qubit-preparation, a single-
qubit measurement or a quantum gate.

bHere to is the time to execute an elementary operation and || - || is the sup norm (see [1]). The factor 2 comes
from considering two-qubit gates.
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2tomax o ||Hg(p),al| and €eak = 2to max, ||Hsp(B),a||- The amplitude € is assumed to be
small and will enter the threshold theorem, Theorem 1.

In the second case, we let the local leakage spaces interact in an arbitrary manner and
assume a common environment for all locations. This is similar to the general non-Markovian
model that was analyzed in Ref. [2]. In this case we cannot identify a unitary operation per
location but one can prove the essential local noise Lemma 6 as in [1], namely

Lemma 1 (Local Noise Lemma) Consider the entire unitary evolution U of an (encoded)
quantum computation subject to local leakage or regular faults described by Heaus(t). Let
€leak De the leakage amplitude, and let €.eq be the amplitude for regular faults as defined above.
We expand U as a sum over fault-path operators which are characterized by a set of faulty
locations . A fault-path operator with k faults, denoted as Zy, has norm bounded by

|E(Th)|| < €*, with € = €jear + €reg - (6)

The fault-operator E[i] of Eq. (5) or the operators appearing in the fault-path expansion in
Lemmal can be expanded in terms of a basis of error operators. In our analysis we will use
the notions of a ‘regular’ and a ‘leakage’ error-operator, R and L respectively, whose action
on the extended space of a qubit has the form

e (48)0-(55)

Here A is an operator acting on the system-space alone, and B, C' are operators coupling the
system-space with the corresponding leakage-space.

We would like to add a comment concerning the identification of the error amplitude. In
our simplest error model the error-free evolution of a gate is of the form Uy = (Uy @ UF)@UE.
In principle we could generalize this notion of error-free evolution and say that a gate is
leakage reducing error-free if the following holds: (1) if the input is contained in the system-
space the gate performs the ideal unitary gate in the system-space and (2) for all inputs
that are not contained in the system-space, the leakage probability |3|? of the output state
[Yout) = altvs) + Blpr) is smaller or equal that the leakage probability of the input state.
When subjected to a state partially in the leakage space, such a gate would help reduce the
leakage fault to a regular fault. An example could be the physical process of decay of higher
excited states (in an ion, atom, quantum dot etc.) back to the lower-lying system states. One
has to be cautious in understanding the nature of such process. In general an operation such

(4 4)(29)

could both coherently reduce as well as amplify the leakage amplitude of any incoming state.

as

The amplification of the leakage amplitude can come about by negative interference between
Ug lvs) and C|ipr). If such negative interference can be excluded, for example, the processes
are incoherent and evolve other environments which prevent interference, then these processes
may be counted as part of the error-free evolution. Thus, depending on the particular imple-
mentation and modeling of physical processes involving leakage, it may be possible to use a
reduced error amplitude or probability, treating as beneficial those processes that naturally
reduce leakage faults to regular faults.



144  Fault-tolerant quantum computation for local leakage faults

3 Leakage Fault-Analysis

Consider the fault-tolerant simulation of some ideal computation. By a standard choice of
a universal set of operations, a location in a quantum circuit (0-Ga) is either an elementary
single- or two-qubit gate (including the identity gate which realizes a memory (wait) step), a
single-qubit preparation or a single-qubit measurement. To obtain the fault-tolerant simula-
tion, every 0-Ga in the ideal circuit is replaced in the level-1 simulating circuit by a rectangle
(1-Rec) which consists of a fault-tolerant encoded gate (1-Ga) followed by error-correction
(1-EC) on each encoded block. The preparation 1-Rec contains a fault-tolerant 1-preparation
circuit followed by 1-EC, whereas the measurement 1-Rec contains only the fault-tolerant
level-1 measurement.

Repeated application of the replacement rule gives rise to the level-k simulation. In this
way, each location in the ideal circuit gets replaced by a k-rectangle (k-Rec) which consists
of a fault-tolerant level-k gate (k-Ga) followed by error-correction at level k (k-EC). For
the analysis of the level-k circuit, Ref.[2] defines an extended k-rectangle, a k-exRec, as a
k-rectangle grouped together with the k-ECs preceding it on all its inputs.

Before proceeding, let us first discuss the essential difference between leakage and regular
faults. The problem with leakage faults that distinguishes them from regular qubit faults is
that, once a qubit has leaked, future interactions with other qubits, even if ideal, can cause
these other qubits to become erroneous as well. In the presence of leakage, a 0-Ga acting on
a leaked input will operate on the extended space of its input qubits even if it is executed
ideally. Therefore, leakage errors cannot be propagated in a simple way through ideal gates
in the circuit since this propagation depends on the particular gate implementation (i.e., the
specification of how gates operate on the extended space). As fault-tolerant circuit design is
guided by the particular ways in which errors propagate through the circuit, in the presence
of leakage errors the design of the circuit will in general no longer be effective in maintaining
fault-tolerance.

To ensure that ideal 0-Ga’s operate on the system-space of their inputs we will make
use of leakage-reduction units (LRUs) and place a LRU before every gate 0-Ga. We do not
place LRUs preceding measurement 0-Ga’s which achieve leakage reduction by themselves or
preceding qubit-preparation 0-Ga’s which have no input. LRUs, when executed without faults
themselves, guarantee that (a) if their input is in the system-space then the identity operation
is performed, and (b) if their input in the leakage-space, then their output is some state in
the system-space. Clearly, teleportation is a natural way to satisfy these two requirements.

LRUs can be viewed as performing ‘leakage correction’ at level 0 of the fault-tolerant
simulation, just as k-EC gadgets perform regular error-correction at level k. The strategy in
our analysis will be to prove the ‘LRU-reduction’ Lemma 2 that will allow us to transform
the initial simulation where level-0 leakage correction is performed by LRUs to an equivalent
simulation where this level of correction is removed and the effective faults are only regular
qubit faults. After this step, we can apply the threshold theorem for regular faults to this
equivalent simulation thus proving the threshold theorem for our leakage error model.

We first need to define new notions of goodness and correctness at level 0. In the case
of regular faults this would be trivial: a 0-Rec is just a 0-Ga and it is bad (and incorrect)
when it is faulty. Recall that to deal with leakage faults we have placed LRUs on every qubit
preceding every gate 0-Ga in the level-k simulation. In analogy to 1-Recs, we can now define
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LRU-0-Recs (see Fig.1).

Definition 1 (LRU 0-Rectangles) For a gate 0-Ga, a LRU-0-Rec is the 0-Ga preceded
by LRUs on all its inputs. For a qubit-preparation or measurement 0-Ga, the LRU-0-Rec
coincides with the 0-Ga.

— LRU [ —

0-Ga - 0-Ga

— LRU —

Fig. 1. To combat leakage faults, we insert LRUs on all inputs preceding every gate 0-Ga in the
level-k circuit. The combination of a 0-Ga with its preceding LRUs we call a LRU-0-Rec.

After LRUs are inserted in the level-k circuit, we can think of 1-exRecs as being transformed
to what we can call LRU-1-exRecs. Similarly, k-exRecs are transformed to LRU-k-exRecs,
etc. Inserting LRUs before 0-Ga’s intends to convert existing leakage faults to regular faults
before the 0-Ga is applied. However, LRUs can be faulty themselves and this fact motivates
the following definition.

Definition 2 (LRU Good, Bad, Correct) A LRU-0-Rec is bad if it contains one or more
leakage or regular faults, otherwise it is good. A LRU-0-Rec is correct if the LRU-0-Rec
followed by the ideal LRU is equivalent to the ideal LRU followed by the ideal 0-Ga. (It
follows that a good LRU-0-Rec is correct, since it contains no faults and so its LRUs operate
as ideal ones.)

These definitions also hold for qubit-preparation and measurement LRU-0-Recs which do not
contain any LRUs. These LRU-0-Recs are good when they are faultless. This implies that
a good measurement LRU-0-Rec can be replaced by an ideal LRU followed by the corre-
sponding ideal measurement 0-Ga (see the details in §3.1) allowing us to create ideal LRUs.
Similarly, a good qubit-preparation LRU-0-Rec followed by an ideal LRU can be replaced by
the corresponding ideal qubit-preparation 0-Ga alone, thus annihilating the ideal LRU.

Consider a fault-tolerant level-k simulation with LRUs appropriately inserted in the circuit
as specified above. We can imagine first creating ideal LRUs out of measurement LRU-0-Recs
thereby transforming them to measurement 0-Ga’s. Next, we can imagine propagating these
ideal LRUs to the left through gate LRU-0-Recs thereby transforming them to gate 0-Ga’s.
Finally, we can imagine annihilating the ideal LRUs inside preparation LRU-0-Recs thereby
transforming them to preparation 0-Ga’s. Definition 2 establishes that, if the corresponding
LRU-0-Recs are good, the resulting 0-Ga’s will be the ideal 0-Ga’s being simulated. In §3.1
we show that each bad LRU-0-Recs can be transformed to a regular faulty 0-Ga (i.e., one
that operates on the system-space).

With the maneuver described above, which we can visualize as an ‘ideal-LRU wave’ prop-
agating from the right to the left of the level-k circuit, we can transform the level-k simulation
which is subject to leakage faults to an equivalent level-k simulation which is subject to regu-
lar faults alone. In effect, every bad LRU-0-Rec is replaced by a faulty 0-Ga where now faults
act on the system-space. Therefore, we can prove the following lemma.
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Lemma 2 (LRU Reduction) Consider a fault-tolerant level-k simulation C of some ideal
computation and let CLry denote the same simulation where now LRUs have been placed
preceding every elementary gate 0-Ga in C. Let CLry be subjected to both leakage as well as
regular noise. Then, for any pattern of bad LRU-0-Recs in CLry corresponding to a set of
0-Ga’s {a} in C, there exists a mapping to regular noise acting on C which produces the same
computation with regular faults occurring at 0-Ga’s in the set {a} alone.

In estimating the threshold for fault-tolerance against leakage noise we will need to bound the
norm of all the operators associated with bad fault patterns. Lemma 2 says that these fault-
paths are precisely those that are also bad in the regular noise model. The only difference
is that the 0-Ga’s derived from the LRU-0-Rec by the mapping in Lemma 2 are composite
objects with higher error amplitudes. For the simplest noise model with non-interacting
leakage spaces, the error operator E associated with the LRU-0-Rec can be bounded as
[|E|| < ae where a is the maximum number of location in a LRU-0-Rec. For the more general
noise model we can slightly modify the analysis in §11.2 in [2] in order to start at the LRU-
level. The effect is again that the basic error amplitude € gets modified to ae which has the
effect of reducing the threshold by a factor 1/a. Thus combining Lemma 2 with the threshold
theorem for regular local noise proves the threshold theorem for the noise model in §2 which
we formally state as:

Theorem 1 (Threshold Theorem for Local Leakage Faults) Consider the fault-tolerant
simulation including LRUs of some ideal computation which is subject to local noise as in §2
with strength € and let € be smaller than the threshold error strength €. = (eAa)™! where a
s the mazimum number of locations inside a LRU-0-Rec and A is the mazimum number of
pairs of LRU-0-Recs inside any LRU-1-exRec. Let s be the mazimum number of locations
and let d be the mazimum depth of our 1-Recs. Then, for any fized accuracy §, any ideal
computation of size S and depth D can be simulated by such noisy fault-tolerant circuit of

size O(S(logS)'92¢) and depth O(D(logS)'92¢).

The value of the constant a appearing in Theorem 1 depends on our method for realizing
LRUs. If r is the number of elementary operations in a LRU, then « is at most 2r + 1, since
LRU-0-Recs corresponding to two-qubit gates contain two LRUs. For example, if leakage
reduction is achieved via teleportation then r = 6 (two qubit-preparations and a CNOT to
create the Bell state, plus one CNOT and two measurements to implement a measurement
in the Bell basis). This implies that the threshold is diminished by at most a factor of 13
(assuming equal error rates for all locations) in comparison to the noise threshold for regular
errors. For example, the threshold lower bound €. > 2.73 x 10~ ° established in [2] would be
modified to a lower-bound of 2.1 x 1078 which is probably too pessimistic. In §4, we will
consider methods for potentially improving this threshold bound by omitting LRUs while still
maintaining fault-tolerance.

3.1 Converting Bad LRU-0-Recs to Faulty 0-Ga’s

One technical point in the proof of Theorem 1 concerns moving ideal LRUs to the left of
bad LRU-0-Recs, thus transforming them to faulty 0-Ga’s. Similar as in the analysis for
moving k-decoders past bad k-exRecs in Ref. [2] we need to use ideal LRUs that are invertible
operations. Both ideal LRUs as well as ideal decoders generate a syndrome. If the ideal LRU
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is perfect teleportation, the syndrome consists of Bell measurement bits. One can define a
coherent invertible teleportation in which one rotates to the Bell basis and performs controlled
oy and o, operations on the outgoing qubit. Furthermore, it is possible to define the action of
the controlled oy and controlled o, operation on the extended (leaky) input space such that
the target qubit only has support on the system-space. Therefore, even for leaky inputs, the
output qubit of the ideal coherent LRU has no leakage fault (leakage will be confined to the
qubits carrying the syndrome information).

Let us denote an ideal LRU discarding its syndrome as LRU and the coherent version of
an ideal LRU as cLRU. First, consider those qubits inside the level-k simulation that are
measured. A measurement can be viewed as an ideal LRU followed by another measurement
on the qubit output from the LRU. In mathematical terms, before every measurement 0-Ga M
we can insert an ideal cLRU * cLRU ! and identify M’ = cLRU ! * M as a 0-measurement
which acts on the system-space (and the syndrome space). As we will explain below, we
can propagate these cLRUs created out of measurements 0-Ga’s to the left through good
LRU-0-Recs transforming them to the ideal 0-Ga’s they contain just as we would propagate
ideal LRUs which discard their syndrome. When we encounter a bad LRU-0-Rec, we proceed
by inserting a resolution of the identity in the form of an ideal (coherent) LRU and its
inverse, I = cLRU * cLRU™", preceding it in all its inputs. The leading cLRU(s) in the
cLRU * cLRU™" pair(s) can now be moved further to the left through the remaining LRU-0-
Recs, until we encounter another bad LRU-0-Rec and repeat the same trick.

It remains to justify why a bad LRU-0-Rec grouped together with the cL'RU_l(s) preced-
ing and the cLRU(s) (or LRU(s)) succeeding it can be interpreted as a faulty 0-Ga. In the
combined operation

cLRU™ « LRU % 0-Ga x cLRU , (9)

the cLRU™ to the left has an input in the system-space and also some input syndrome
coming from the cLRU pairing with it. Similarly, the cLRU on the right outputs a state in
the system-space of the corresponding qubit (since ideal) and some syndrome. For a good
LRU-0-Rec (i.e., one with no faults), this operation would be equivalent to applying the ideal
0-Ga on the input of the cLRU ™! in addition to acting on the syndrome. We have already
stated this property as the correctness of good LRU-0-Recs, for the case when ideal LRUs
discard their syndrome. However, note that, even with ideal LRUs retaining their syndrome,
the action on the system-space of the qubit and the syndrome has to be uncorrelated, otherwise
discarding the syndrome (e.g., the Bell measurement outcomes in teleportation) would have
destroyed the coherence of the teleported input contrary to our correctness property. For a
bad LRU-0-Rec instead, this operation can be viewed as some 0-Ga acting on the input qubit
of the ¢cLRU . Since this 0-Ga will not necessarily be equal to the ideal operation that is
simulated by the LRU-0-Rec, it corresponds to a regular faulty 0-Ga. Furthermore, faulty
0-Ga’s corresponding to different bad LRU-0-Recs may be correlated as they share access to
the syndrome generated by the ideal coherent LRUs.

4 Limiting The Use of LRUs

In the previous section we assumed that LRUs were inserted on all inputs of every elementary
gate in our fault-tolerant simulation. We did this in order to be able to interpret every good
LRU-0-Rec as an ideal 0-Ga irrespective of whether its input has leaked or not. In this section
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we would like to find out what happens when we omit LRUs between successive 0-Ga’s.

It is clear that it can be advantageous to omit LRUs since the error rate of a memory
location is typically less than the error rate of a LRU. In what follows we will give conditions
for when this omission is allowed and show how Theorem 1 can be proved in those cases.

We would like to note that the idea of omitting LRUs and the modified threshold analysis
that we will present is also of interest when dealing with regular errors. In that case it may be
similarly advantageous to omit error-correction between the application of successive encoded
gates. In particular, for low memory error rates it may be advantageous to replace a wait
location by a sequence of wait locations at the next level of concatenation instead of a wait
location on the block followed by error-correction on the block.

Let us begin by defining stretched LRU O-rectangles.

Definition 3 (Stretched LRU 0-Rectangles) A stretched LRU-0-Rec (LRU-0-StrRec) is
the union of two or more consecutive LRU-0-Recs with any LRUs between 0-Ga’s omitted.

An example of a stretched LRU-0-Rec is shown in the Fig. 2. If this circuit contains no faults,
then the LRUs on the inputs will operate ideally and the stretched LRU-0-Rec will be correct.
In this case omitting the intermediate LRU has no consequence. However, assume a leakage
fault only occurred in the first 0-Ga. Then we cannot interpret the second 0-Ga as an ideal
0-Ga although it is executed without fault. This is because if the input to that 0-Ga is not
in the system-space of the qubit, then its action can be in principle arbitrary in the extended
space of all its inputs. Thus we have to assume that if the first 0-Ga fails the second 0-Ga
will fail as well.

— LRU —
0-Ga

— LRU H — LRU —
0-Ga

— LRU — LRU —

Fig. 2. An example of a LRU-0-StrRec obtained by stretching two LRU-0-Recs.

This example shows that LRU-0-StrRecs will be allowed in our circuits if our fault-tolerant
design guarantees that arbitrary failures at all 0-Ga’s contained in it will not lead to an
encoded error and a crash. For instance, a case where LRUs can be omitted is a sequence
of single qubit gates and/or memory locations on a single qubit: instead of putting LRUs
between all locations it suffices to put a LRU at the beginning of the sequence. The reason
is that a sequence of failed single-qubit locations is no worse than just one of these locations
failing, since it can cause an error in at most one qubit within an encoded block.

The definition of goodness for LRU-0-StrRecs is the same as for LRU-0-Recs given in
Definition 2 (i.e., we will say that an LRU-0-StrRec is good if it contains no faults, and bad
otherwise). In order to achieve fault-tolerance, we need to be safe that a single bad LRU-0-
StrRec inside an LRU-1-exRec still makes, after the LRU-Reduction Lemma 2 is applied, for
a 1-exRec which is correct in the sense defined in Ref. [2]. As already discussed, this will not



P. Aliferis and B.M. Terhal 149

be true for arbitrarily stretched rectangles, since a leakage fault in a single location can cause
the failure of all subsequent locations inside the same LRU-0-StrRec.

Ref. [2] lists a set of properties that 1-EC and 1-Ga’s must satisfy in order to achieve fault-
tolerance against regular faults. Here, we generalize these properties to LRU-1-gadgets which
use (stretched) LRU-0-Recs. For simplicity we only state the properties for fault-tolerant
simulations protected by concatenated distance-3 codes.

Properties of LRU-1-gadgets for distance-3 codes

0',0. If a LRU-1-EC contains ezactly one bad LRU-0-(Str)Rec, then it takes an arbitrary
input to an output which deviates by at most a weight-one regular or leakage error-operator
from the code-space, and an input without errors to an output with at most one leakage or
one regular error.

1,2. If a LRU-1-EC contains no bad LRU-0-(Str)Recs, then it takes any input to an output
in the code-space, and an input with at most one leakage or one regular error to an output
with no errors.

3. If a LRU-1-Ga contains no bad LRU-0-(Str)Recs, then it takes an input with at most one
leakage or one regular error in all blocks to an output with at most one leakage or one regular
error in each block.

3'. If a LRU-1-measurement contains no bad LRU-0-(Str)Recs, then it produces the ideal
measurement outcome if its input has at most one leakage or one regular error.

4. If a LRU-1-Ga contains exactly one bad LRU-0-(Str)Recs, then it takes an input without
errors to an output with at most one leakage or one regular error in each block.

4'. If a LRU-1-preparation contains ezactly one bad LRU-0-(Str)Recs, then its output has
at most one leakage or one regular error. If a LRU-1-measurement contains ezactly one bad
LRU-0-(Str)Recs, then it produces the ideal measurement outcome if its input has no errors.
It is straightforward to check that these properties are sufficient for proving that a LRU-1-

exRec containing a single bad stretched LRU-0-Rec will result in a correct equivalent 1-exRec
after Lemma 2 is applied. Therefore, if stretching is done such that these properties are
satisfied, Theorem 1 can be proved as before. Let us now then consider the possible effects
of stretching on the value of the threshold.

One way of looking at stretching LRU-0-Recs is through the notion of benign and ma-
lignant faults introduced in Ref.[2]. A single fault inside a stretched LRU-0-Rec can cause
all subsequent 0-Ga’s inside it to fail and will thus correspond to multiple faulty 0-Ga’s after
applying Lemma 2. If these faults are benign, they will not cause an encoded error on the
data and one is allowed to stretch the rectangle while maintaining fault-tolerance.

The use of LRU-0-StrRecs necessitates a new analysis of which sets of leakage or regular
faults are benign in the LRU-1-exRecs (no modification would be needed for determining
malignancy at levels higher than the first). For example, it could be that for regular faults
two particular 0-Ga’s form a benign pair. Let us assume that each of these 0-Ga’s is the
first 0-Ga in a LRU-0-StrRec containing each, say, two 0-Ga’s as in Fig.2. A leakage fault
occurring in these 0-Ga’s also causes failure of the next 0-Ga that is part of the LRU-0-StrRec.
Reinterpreted as regular faults, we now have four regular faults, which may not form a benign
fault-pattern.

If benign fault-patterns for regular errors stay benign fault-patterns for leakage faults,
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we could say that our stretching is benign. Whether or not stretching is benign can only
be found out by carefully considering any particular stretched level-1 LRU-circuit. In this
paper we will not embark on such an analysis, even though we believe that most but not all
stretching is benign. Certainly, stretching in transversal parts of LRU-1-exRecs is benign and
the situation only becomes complex inside the non-transversal ancilla-preparation procedures
used for error-correction. If we refrain from carrying out this more detailed analysis, we can
only establish a threshold lower bound by simply counting all pairs of locations in a (worst-
case) LRU-1-exRec. For [[7,1,3]] and the stretched LRU-circuits® given in Appendix A, this
gives a lower bound of ¢, > (1247) -t ~ 1.28 x 1075. We believe however that the real threshold

2
will be closer to the threshold for regular noise.

5 Leakage in Measurement-Based Computation

Since not only quantum states but also quantum gates can be teleported [26] it is intriguing
to consider combining gate implementation with teleportation in a single computational step.
An embodiment of this idea is found in measurement-based models of computation. We will
focus on one such model, the graph-state model [27] and discuss computation using graph
states of a specific ‘standard’ form. Graph states of this form are of potential practical interest
as they correspond to states that can be prepared in several proposals relating to quantum
computation with non-deterministic gates (e.g.,[31, 28, 29]).

We consider quantum circuit stimulations by the graph-state model that proceed by prepar-
ing the appropriate graph state and simulating each quantum gate by executing single-qubit
measurements in the appropriate time-ordering and bases (these bases can change dynami-
cally and depend on previous outcomes during the simulation). In the presence of (leakage)
noise the corresponding fault-tolerant circuits can be simulated instead. A threshold theorem
for regular local (non-Markovian) noise has been proved for these fault-tolerant simulations
[32, 33] which is analogous to the threshold theorem for computation by quantum circuits.
Our goal in this section is to supplement these results and show that leakage reduction is
automatically achieved when the graph state is of a specific form.

To specify this ‘standard’ form, we consider building the graph state out of basic units
that simulate the two-qubit gate U = (U, (¢1)U,(01) ® Uy (¢p2)U,(62)) CPHASE. Here, U, (o)
(resp. U,(0)) is a single-qubit rotation around the z-axis (resp. z-axis) by an angle ¢ (resp.
6), and CPHASE acts in the computation basis as CPHASE|i) ® |j) = (—1)¥|i)®|5); 1,5 € {0,1}.
Clearly, any quantum computation can be efficiently realized by a sequence of these universal
gates. This basic unit is shown in Fig. 3(a). In Fig. 3(b) we give an example of the composition
of two units to simulate a sequence of two 0-Ga’s such as the ones in Fig. 2.

The basic unit of Fig. 3(a) can now be viewed as a new type of LRU-0-Rec. Indeed, if its
two input qubits are in the system-space, the computation realized by a basic unit is formally
equivalent to applying a CPHASE gate followed by the teleportation of single-qubit gates on
each qubit (see e.g., [34, 35, 36]). Let us call each such sub-pattern realizing a single-qubit
gate teleportation a 0-Ga-LRU, where the 0-Ga should be understood to be the gate being
teleported. 0-Ga-LRUs do in fact act as LRUs since, even if one of their input qubits is in the

¢Qur CNOT 1-exRec contains 575 locations as in Ref. [2]. In the cNOT LRU-1-exRec, LRUs need only be placed
inside the four 1-EC circuits as shown in Fig. A.1. Each of our LRU-1-ECs contains 4 x 7 = 28 LRUs, and in
turn each LRU contains 6 locations if it is implemented by teleportation.
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Fig. 3. Circles represent qubits initialized in the state |+). Edges denote CPHASE gates, and M.,
denotes a measurement of the observable cos(w)ox+sin(w)oy. (a) The basic unit in the graph-state
‘standard’ form which simulates the gate (Uz(¢1)U-(01) ® Uz(¢2)U-(02)) CPHASE. The =+ signs
on the measurement angles are determined by the measurement outcomes obtained at previous
times. (b) The composition of two basic units to simulate a sequence of two two-qubit gates.

leakage-space, fresh qubits in the system-space are always produced at the output as a result
of teleportation.

This observation shows that we should consider each basic unit as realizing a LRU-0-Rec
where the 0-Ga (i.e., a CPHASE gate here) is succeeded by 0-Ga-LRUs. Moreover, if this LRU-
0-Rec contains no faults, it realizes the ideal operation if its input is in the system-space. In
order to give conditions for this to be the case, we will need to define LRU extended rectangles
(LRU-0-exRecs) that include an LRU-0-Rec grouped together with its preceding 0-Ga-LRUs.
We can therefore modify Definition 1 as follows (see Fig. 4).

Definition 4 (LRU-0-Recs (revised) and LRU-0-exRecs) A LRU-0-Rec is a 0-Ga suc-
ceeded by 0-Ga-LRUs on all its outputs. A LRU-0-exRec is a LRU-0-Rec preceded by 0-Ga-
LRUs on all its inputs.

— 0-Ga-LRU — — 0-Ga-LRU [—
0-Ga

— 0-Ga-LRU — 0-Ga-LRU [—

Fig. 4. An example of an LRU-0-exRec corresponding to a two-qubit 0-Ga.

Similar to Definition 2, we can now define LRU-0-exRecs to be good when they contain no
faults. Then, it is easy to see that the LRU-0-Rec contained in a good LRU-0-exRec is correct,
in the sense that applying the LRU-0-Rec and then passing the outputs through ideal LRUs
is the same as applying the ideal LRUs first, succeeded by the ideal 0-Ga that the LRU-0-Rec
simulates. Here are the revised definitions of goodness and correctness.

Definition 5 (LRU Good, Bad, Correct for LRU-0-exRecs) A LRU-0-exRec is bad if
it contains one or more leakage or reqular faults, otherwise it is good. Two bad LRU-0-exRecs
are independent if they are nonoverlapping or if they overlap and the earlier LRU-0-exRec is
still bad when the shared 0-Ga-LRUs are removed. A LRU-0-Rec is correct if the LRU-0-Rec
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followed by ideal LRUs is equivalent to the ideal LRUs followed by the ideal 0-Ga it simulates.
(1t follows that the LRU-0-Rec contained in a good LRU-0-exRec is correct, since the good
LRU-0-exRec contains no faults and so its leading LRUs operate ideally.)

The notion of independence is needed to guarantee that for two successive (and therefore
overlapping) LRU-0-exRecs to be bad there need to be at least two faults.

With these new definitions we can now prove a lemma analogous to Lemma 2 in a similar
way as in §3. The proof will again proceed via the LRU-wave maneuver. As the ideal LRUs
march to the left, they map every LRU-0-Rec contained inside a good LRU-0-exRec to the
ideal 0-Ga that the LRU-0-Rec simulated and they transform every LRU-0-Rec inside a bad
LRU-0-exRec into some faulty 0-Ga. These faulty 0-Ga’s can be correlated as they share
access to both the syndrome that is generated by our ideal LRUs and to the actual syndrome
information that is generated by the measurement outcomes of the graph-state simulation
itself. Formally treating the case of bad LRU-0-exRecs can be done in the same way as in
§3.1 with the difference that now cLRU  cLRU ' pairs are inserted preceding the entire bad
LRU-0-exRec and not just the LRU-0-Rec contained in it. This will result in the truncation
of one of the trailing 0-Ga-LRUs of the preceding LRU-0-exRec. Provided this truncated
LRU-0-exRec is good, we can next move the ideal LRUs to the left thereby transforming
the (truncated) LRU-0-Rec to the ideal 0-Ga that it simulates? Because the LRU-0-Rec is
truncated, this ideal 0-Ga differs from the ideal 0-Ga that the full LRU-0-Rec simulates by
the gate being teleported in the truncated 0-Ga-LRU. However, we can insert these single
qubit rotations and their inverses and absorb the inverses in the faulty 0-Ga that replaced
the bad LRU-0-exRec. Therefore the entire LRU-wave maneuver can be completed without
change.

Consider now applying the LRU-wave maneuver described above to a fault-tolerant circuit
simulation in the graph-state model subject to our leakage noise model. In the resulting
equivalent simulation, all LRU-0-Recs contained in bad LRU-0-exRecs are mapped to regular
faulty 0-Ga’s while LRU-0-Recs contained in good LRU-0-exRecs are mapped to the ideal 0-
Ga’s that the LRU-0-Recs simulate. For LRU-0-Recs containing regular faults (or no faults)
this mapping is justified by the proofs given in Refs. [32] and [33] and we will not give the full
details here. Thus, using the LRU-wave maneuver we can map the problem of fault-tolerance
in a graph-state simulation subject to local (leakage) noise to the problem of fault-tolerance in
the circuit model under local regular noise for which the proof in Ref. [2] applies. This proves
the existence of an accuracy threshold for fault-tolerant circuit simulations using graph states
in the standard form of Fig. 3 in the mixed local error model specified in §2.

6 Discussion

Our fault-tolerance analysis has been based on LRUs implementable by quantum teleporta-
tion. In various experimental schemes it may also be possible to detect leakage faults. For
instance, in optical quantum computation, parity-measurements of the photon occupation
number in different modes can be performed which will indicate whether photon loss has
occurred [19]. Another example is the detection of photons from a cavity with trapped ions
[37]. Some leakage detection is also present in the solid-state scheme where a qubit is encoded

dMoving ideal LRUs through good truncated LRU-0-exRecs is analogous to moving ideal k-decoders through
good truncated k-exRecs (see [2]) and can be accomplished in essentially the same way.
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in a two electron-spin state of a double quantum dot [22]. Such leakage detection can be used
in the following ways.

Leakage detection acting on single or multiple qubits will tell us whether leakage occurred
but not necessarily which qubit was affected. If leakage detection is used on ancillae, we can
throw away the leaked qubits and repeat the ancilla preparation circuit a fixed number of
times. If leakage detection is used on data qubits, we can follow by applying teleportations on
all qubits that potentially leaked. Or, if leakage detection specifically points to one qubit, we
can replace the qubit simply by a fresh physical qubit. Otherwise, if no leakage is detected, we
can omit teleportation or qubit replacement. Leakage detection may of course fail, i.e. qubits
can leak but this leakage can go undetected. This case of unsuccessful leakage detection
is similar to having a leaky LRU. Thus leakage detection performed before each gate or
continuously during gates provides a fault-tolerant way of dealing with leakage.

More accurately, if leakage detection per qubit is possible, we can define a Leakage Detec-
tion Unit or LDU. The LDU acts as a LRU and in addition gives us a bit that says whether
leakage occurred or not. So the idea is to replace LRUs by LDUs inside the LRU-0-Recs or
LRU-0-StrRecs. Since all single leakage-fault events will thus be detected, and because faults
in the LDUs themselves can either incorrectly signal leakage detections or at worst cause the
LRU-0-Rec in which they are contained to fail, Definition 2 still applies and Lemma 2 can be
proved without modification.

It is clear that leakage reduction implemented by teleportation may require frequent mea-
surement. This could potentially be problematic in situations where measurements are slow
compared to fundamental gate-times, as e.g. in many (solid-state) implementations of quan-
tum computation. However, data qubits do not always need to wait for the measurements to
finish. As with regular error-correction where measurements are used, the Pauli corrections
that result from teleportation can in many cases be kept in a classical memory and they need
only be used to adapt the non-Clifford parts of the computation. In fact, since non-Clifford
gates are used in logical parts of the computation and not during error-correction, the mea-
surement outcomes of teleportations can be combined with the results of error-correction to
give a joint Pauli correction operator. Therefore, assuming classical computation is fast and
robust, leakage reduction via teleportation will not suffer any additional time overheads than
the overheads already associated with regular error-correction that uses measurements.
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Appendix A  Leakage-resistant circuits for the [[7,1,3]]

In this section, we consider 1-EC circuits associated with the Steane [[7,1,3]] code in order
to illustrate the idea of stretching LRU-0-Recs. Our discussion can in fact be applied to error-
correction circuits for a much wider variety of CSS codes but we will not give such general
exposition here.

Fig. A.1(a) shows the 1-EC circuit diagram with error-correction performed according to
Steane’s method [38]. In Fig. A.1(b), LRUs are placed in this circuit to deal with leakage
faults. The resulting LRU-1-EC contains eleven LRU-0-StrRecs in total: Each of the four
ancilla-encoding circuits constitutes a separate LRU-0-StrRec (containing no LRUs), and
in addition there are seven LRU-0-StrRecs containing the succeeding transversal operations
acting in parallel.

The circuit in Fig. A.1(b) satisfies the properties in §4 due to the ancilla verification method
we have chosen (e.g., see §7.2.1 in Ref. [2] for a recent review). This method consists in
encoding two identical logical ancillae (i.e., two |0) states or two |+) states) and checking
suitable parities before connecting the verified ancilla with the data. Because verification
succeeds as long as one of the ancilla-encoding circuits contains no faults independently from
the number of faults in the other encoder, it is sufficient in the presence of leakage faults
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data data =
block block —

Fig. A.1l. (a) A 1-EC circuit. Ancilla verification is done by comparing two identical logical
states and rejecting whenever an error is detected. CNOT gates and measurements are realized
transversally. (b) The corresponding LRU-1-EC circuit. Transversal LRUs are indicated by ‘hook’
arrows. The encoding circuits for the logical states |0) and |+) contain no LRUs and are suppressed

(e.g., see [2]).
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Fig. A.2. (a) An alternative 1-EC circuit. A logical Bell-state is prepared using verified logical
|0) and |+) ancillae. Transversal measurements in the Bell basis are then performed between the
input data block and one half of the logical Bell-state. (b) The corresponding LRU-1-EC circuit.
Note that no LRUs are required on the input data block.

to ensure that the state that comes out of the two encoders is in the system-space. This
is achieved by placing LRUs immediately after the ancilla-encoding circuits. LRUs are also
placed in the data block before it is connected to the ancillae in order to convert existing
leakage errors to regular errors before error-correction is performed.

An alternative 1-EC circuit due to Knill [14] is shown in Fig.A.2(a). In Fig. A.2(b)
LRUs are placed to deal with leakage faults resulting in eleven LRU-0-StrRecs similarly to
Fig. A.1(b). This ‘teleported error-correction’ method is especially advantageous against leak-
age as it includes the teleportation of the logical state in the input code block in a natural
way: no LRUs need to be placed in the input block since the encoded input state is naturally
teleported to a fresh block at the output. However LRUs still need to be inserted immediately
after the ancilla-encoding circuits just as in Fig. A.1(b).



