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The fastest quantum algorithms (for the solution of classical computational tasks) known
so far are basically variations of the hidden subgroup problem with f(Ulz]) = f(z).
Following a discussion regarding which tasks might be solved efficiently by quantum
computers, it will be demonstrated by means of a simple example, that the detection
of more general hidden (two-point) symmetries V{f(z), f(U[z])} = 0 by a quantum
algorithm can also admit an exponential speed-up. E.g., one member of this class of
symmetries V{f(z), f(U[z])} = 0 is discrete self-similarity (or discrete scale invariance).
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1 Introduction

Shor’s striking discovery [1], that quantum computers could accomplish tasks such as factoring
large numbers exponentially faster than the best (known) classical methods, motivates the
quest for further quantum algorithms exhibiting an exponential speed-up, see, e.g., [2] for
a review. Together with a number of black-box problems [3, 4, 5, 6], some of which also
admit an exponential speed-up, Shor’s algorithm can be generalised to the so-called “hidden
subgroup problem”: given a function f with the property

Vae,y : f(z) = fly) < yeUtz, (1)

for some transformation U, find U. le., f is constant on the co-sets of the subgroup
{z,Uz,U%z,U3z, ...} generated by U and assumes a different value at each co-set. (Here we
restrict our consideration to the case of one generator U only, for more than one generators,
the situation is analogous.) For example, in the case of Shor’s algorithm, the transformation
U is given by Ulz] = = + p, and for Simon’s [6] problem, it is Ulz] = z & p with & denoting
the bit-wise addition modulo two, e.g., 1001 @ 0101 = 1100. (Note that z®p dp = z.)
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84 Hidden symmetry detection on a quantum computer

Hence, in comparison with classical methods, the number of known quantum algorithms
which are (as far as we know) significantly faster is tiny — but one might hope that there are
many more to be discovered. The question we wish to examine is: which other problems — and
perhaps further expansions of the known tasks — could (also) admit an exponential speed-up?
More precisely, we shall investigate whether there are general features of problems which are
important for an exponentially fast quantum algorithm, and give a specific example (in which
such a speed-up is accomplished) via an extension of Simons’s and Shor’s problem.

In particular we shall consider problems which can be cast into the following form: given
a function f : * — f(z) on an exponential number of arguments z, where f is known to
possess some property (from a given class of properties), find that property — where the term
“property” can refer to any extracted information in general. Evaluating f(z) on a given
arbitrary argument z is assumed to be polynomially (in the length of z) implementable¢ We
shall investigate some features [7] of the class of properties with an (apparently) exponential
speed-up by a quantum computer over a classical one. We shall also show how such an
exponential speed-up can be achieved for a property we call a hidden symmetry.

Note that our discussion will not be concerned with the use of quantum computation
to simulate physical systems, nor with the application of quantum phenomena to transmit
information (quantum cryptography or super-dense coding, etc.) or to extract information
from an external physical system (such as quantum imaging, see, e.g., [8], or Elitzur-Vaidman-
type problems [9]), i.e., we only consider quantum information processing.

2 Relevance of arguments

One aspect which seems [7] to be important for an exponential speed-up is the relevance of
the arguments = with respect to the property under consideration.

Typically, sequential [10] quantum algorithms for solving problems as described above can
be formulated as black-box algorithms which can be cast into the following most general form

(W) = U Uy Upn—1 .. .Uy Uy Uy |0) (2)

where the unitary gate U calculates the (black-box) function f,i.e., Uy |z) |y) = |z) |y ® f(z)),
with the possible extension Uy — Uy ® 1; and additional unitary operations U ...Uy,. Even
if the algorithm originally contained an intermediate measurement, it could still be rewritten
in this form by using ancilla qubits and quantum-controlled operations.

In order to achieve an exponential speed-up the number m as well as the realisations
of the unitary operations Uy ...U,, have to be polynomial. Consequently, if the number of
arguments z of the function f(z) that contain relevant information (for the solution of the
problem) is exponentially small, then the part of the output state |¥) corresponding to this
relevant information is apparently [7] also exponentially small, and therefore impossible to
extract with a polynomial number of measurements. Supportive (though not conclusive [7])
to this point is inserting the identity

uf = (Prel + Pirr) uf (Prel + Pirr) 5 (3)

into Eq. (2), where Pye and P;,, denote the (orthogonal) projections onto the subspaces of rele-
vant and irrelevant arguments x, respectively. Assuming that the unitary operations U . . .Uy,

¢I.e., the problem to be solved must be at least in PSPACE — remember that PC NP C PSPACE, see, e.g., [2].
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do not favour [7] the subspace spanned by Py, (we do not know in advance which arguments
x are going to be important and which not) the norm of (the sum of) all terms containing at
least one P, is exponentially small for the unitary operations are norm-preserving.

As a result, a function with an exponentially small number of relevant arguments z does
not seem suitable for an exponential speed-up. Of course, this feature crucially depends on the
particular way of encoding the problem to be solved by a function — e.g., a function defined as
f(z) =1if z is a factor of y and f(z) = 0 otherwise would not be the best choice for factoring
[11]. One should also bear in mind that the above arguments do not exclude polynomial
speed-up — the Grover search routine [12] achieves a quadratic speed-up by exploiting the
bilinear structure of quantum theory, i.e., the normalisation by 1/ VN instead of 1 /N.

The task of period-finding, for example, where all arguments x are equally relevant for the
solution, is therefore indeed (as it should be) a good candidate for an exponential speed-up
by a quantum algorithm. As counter-examples (which are probably not good candidates for
an exponential speed-up), we may quote the usual form of the travelling salesman problem
[with = being one particular route and f(z) the associated length] or the task of evaluating
the position in chess?where a posteriori almost all arguments z are completely irrelevant —
but we do not know a priori which.

3 Excess information

Since every quantum computation is (at least in principle) unitary and hence reversible, it is
impossible to lose any information during this process — except by the (final) measurement
(e.g., the phases are lost) or by transferring the information from the quantum system (com-
puter) alone to its entanglement with the “environment”. We want to extract only a certain
property of the function f — other details of f are irrelevant — and, therefore, we have to find
a way to dispose of this excess information. For example, in Shor’s problem f(z) = f(z + p),
we only want to know the period p, and not any other details of f. After the measurement
of the register | f) one is left with the state

L—-1
) = % > oo+ ip) (4)

This state contains very little information — basically just the starting point zy and the
period p — which, after a quantum Fourier transform, determine the phase and the value of
the wave-number, respectively.

Of course, here we have to explain the phrase “very little information”. To this end we
introduce the notion of the “classical information of a quantum state |¥)” as the information
required to reproduce the state |¥) starting from the state |0) in the computational basis
via elementary operations [7]. Note that this notion is obviously not a unitarily invariant
(quantum) information measure (as |¥) is still a pure state). But since we want to speed up
the solution of classical problems, we should consider the involved quantum operations from
a classical point of view.

91f & denotes one possible continuation of the game (a so-called “line”) and f(z) the outcome (win, loss, or
draw) then the vast majority of arguments x are irrelevant for accessing the position because almost all lines
with random moves are completely uninteresting.
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In summary, we arrive at an (admittedly rather vague [7]) additional condition — “not too
much excess information” — for a (classical) problem which is supposed to admit an exponential
(quantum) speed-up. As a counter-example, we might consider the average invertability check
(collision problem) of a function f(z) —i.e., for a given (representative) y in the co-domain, how
many z satisfy (in average) f(z) = y. (This problem is relevant for cryptography.) Although
obviously almost all arguments = are equally important, the state after the measurement
of f apparently still contains too much excess information®(the different and independent
coordinates z satisfying f(z) = y) to get rid of [14].

4 Hidden symmetries

As one would reasonably expect, the hidden subgroup problem satisfies the above requirements
— all arguments x are equally relevant and the state after the measurement of f is basically
determined by one starting point zo and the generator U (e.g., p) of the subgroup. This
feature is ensured by the existence of the symmetry (1) connecting the values of the function
f at each two points = and U[z] with a certain relation, i.e., f(z) = f(U[z]). In view of
the above remarks, one might expect a similar effect for a more general hidden two-point
symmetry of the form

V{f(z),f(Ulz])} =0, (5)

where V is some relation generalising the equality in the hidden subgroup problem (1).

Of course, it remains to be shown whether it is possible to design a quantum algorithm
which determines U and V exponentially faster than classical methods. One of the major
benefits of quantum computation is the superposition principle allowing us to test all possible
values of z at once (“quantum parallelism”). In view of this observation one would expect that
it is advantageous to represent the symmetry operations in a (somehow [7]) linear fashion.
(This seems to be much easier for Abelian than for non-Abelian symmetry groups.) For this
reason, and for the sake of simplicity, we focus on Simon- and Shor-type symmetries in the
following.

5 Simon-type symmetry

As an expansion of Simon’s problem with the periodicity condition f(z®p) = f(x) we consider

V{f(z), fUl])} = f(@)© f(edp)©q=0 = f(zdp)=flz)Dq, (6)

with z, f(z),p,q € {0,1}", and the task is to find out p and ¢q. For convenience, we shall
identify bit-strings with integers {0,1}"™ < {0,...,2™ —1} via the usual binary representation
in the following. IL.e., z, f(z), p, q are treated as integers with 0 < z, f(z),p,g < N =2".

¢Note that our notion “classical information of a quantum state |¥)” is different from the generalisation of
the Kolmogorov complexity to the quantum case introduced in [13]. The latter quantity is bounded from
above [13] and its upper bound of approximately 2n (where n is the number of qubits) would just correspond
to the information contained in zo and p for Shors algorithm. In contrast, the “classical information of a
quantum state |¥)” introduced here can exceed this bound by far: For the collision problem, the different
and independent coordinates z satisfying f(z) = y typically contain much more information. Hence the
generalisation of the Kolmogorov complexity proposed in [13] cannot be used to discriminate between the two
cases (Shors algorithm and the collision problem).
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In complete analogy to Simon’s algorithm we apply the usual trick of inquiring all entries
at once (quantum parallelism) and obtain the state
(N/2)
o) — [z0) | f(20)) + |20 ® p) | f(20) © q) .
o) = : (7)
{0} VN

But instead of measuring the second register |f) we now perform a multiple application of
the Hadamard gate to both, the first |z) and the second |f) register

N/2)  (N?/2)

(
MO =SS (), ®)

{zo} {Y:R-Y=0}

where we have introduced the abbreviations | X) = |z¢) ® |f(z0)) and |R) = |p) ® |q) as well
as the scalar product modulo two given by

2n n
R.Y:ZRlYlmod2:@(plyl@‘ﬂyn-&-l) : (9)
1=0 =0

Assuming that the values f(z) are pseudo-randomly distributed, i.e., without any internal
order (cf. the next Section), the measurement of Y returns arbitrary values satisfying the
constraint R-Y = 0. Again in complete analogy to Simon’s algorithm, after O(n) runs we
have enough measured values of Y for determining R, i.e., p and ¢, with arbitrarily high
probability (exponential speed-up).

6 Requirements

In which cases can the above quantum algorithm fail, i.e., what exactly does the aforemen-
tioned condition ”without any internal order” imply?
As a counter-example — where the algorithm must fail — consider the function [15]

flz)=A-z®b, (10)

with a binary N X N-matrix A and the bit-wise scalar product modulo two as in Eq. (9).
This function exhibits a strong internal order and hence a plethora of symmetries: any p and
the corresponding g given by

g=A-p, (11)

satisfies Eq. (6).

On the other hand, as an example where the above quantum algorithm works, we might
construct the function f(x) as follows: After splitting up the set of all arguments {x} =
{0... N} into two disjoint sets of equal strength N/2 via {z¢} and {zo®p}, we assign all f(z)
random values between 0 and N and determine the remaining ones via f(z ® p) = f(z) ® q.
In this rather artificial way we can make sure that there is no additional internal order which
could spoil the above algorithm.

In summary, we do not allow additional (exact or average) symmetries apart from the one
in Eq. (6) which lead to another value R’ # R with the probability of measuring R'-Y =1
being strongly suppressed.
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Let us discuss the relation of the hidden symmetry discussed above to the hidden sub-group
problem. Defining new functions such as [17]

the symmetry f(z @ p) = f(z) @ g translates into periodicity

hl(way) = hl(w®p,y@ q)a hz(ﬁ,y) = h2($®pay®p) . (13)

However, this identification does not imply that the property in Eq. (6) can be mapped onto
the hidden sub-group problem as in Eq. (1) because the functions his : {1,...,N?} —
{1,..., N} are highly degenerate and hence not distinct on different co-sets.

The fact that one can nevertheless find p (and ¢) by a quantum algorithm (which is
not necessary for such a large degeneracy) is caused by the special underlying symmetry
f(z ®p) = f(z) ® q and the assumption discussed above (no additional internal order).
Therefore, this is a true expansion of the hidden sub-group problem [17] with the distinctness
on different co-sets being replaced by the pseudo-randomness requirement.

7 Shor-type symmetry

As a second example for a hidden (two-point) symmetry, we study the following expansion of
Shor’s problem f(z + p) = f(z)

fl@+p) = f(z) +q, (14)

with 0 < z, f(z) < N = 2™. Similar to the original period-finding algorithm, we demand that
p is much smaller than N, say p = O(IN¢) with a small but positive number 0 < ¢ < 1, which
will be determined below. In addition, we assume p >> ¢ (but still ¢ > 1) — otherwise we
would have to insert a “modulo N”, i.e., f(z +p) = f(z) + ¢ mod N.

In this situation, the usual superposition state after the application of the unitary gate
calculating the function f reads

p—1 [N/p]

Z Z ‘m0+lp |f $0)+lq>, (15)

:l)oOlO

where [N/p] denotes the integer part of N/p > 1 and the ~ sign is caused by the corresponding
neglect of a small number of arguments x and the fact that not all periods are complete
(remember p > q).

Again we do not measure the second register at this stage but apply a double quantum
Fourier transform, i.e., we Fourier transform each register

N1 N—1 =1 ami(aoke-+f(wo)ky)/N [N/l k
pks + gky
PO~ Y Z pog ) exp{zmT }|kz>|ky>. (16)
2=0 ky=0z0=0 =0

Although the measurements of k, and k, considered separately typically return almost random
numbers — provided that there is no structure (e.g., an additional periodicity, cf. the previous
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example as well as Sec. 8) in the values f(x() — these numbers k, and k, display an extremely
strong correlation: the above [-sum exhibits a constructive interference if and only if

Pk + qky P

T eN+O (N) (17)
holds; and, accordingly, a large fraction of the measured values for k; and k, will obey this
relation.

However (in contrast to Shor’s algorithm) one measurement of k, and k, may not suffice
for determining p and ¢ in general. To this end, it might be necessary to repeat the whole
process a few times — resulting in pairs of measured values (k2, k;) with a labelling the number
of the measurement. One possibility to derive p and ¢ is to find a set of A € poly(n) integers

aq € Z with |a,| < M < N which satisfy
A
D agky mod N =0(M). (18)
a=1
Inserting the above condition back into Eq. (17), we obtain (remember p >> q)

A
p a ApM
NE aakweN:I:(9<—N ) (19)

a=1

Having eliminated ¢ in this way, we may find p via the continued fraction expansion [2] of

A
1 N AM
== ce_to(EE 2
¢ Na:laakmep O<N>’ (20)

provided that the denominator p is small enough, ie., p < VN / VAM. There are two
limits on the size of the auxiliary number M: firstly, it should be small enough to allow the
detection of sufficiently large values of p with p < VN / VAM, and, secondly, M must be
adequately large such that a small number of measured pairs (k2, k‘;) will allow us to satisfy
Eq. (18) with the probability that all of these pairs obey the resonance condition (17) not
being exponentially suppressed.

For example, choosing M = /N, we may find A = 2 numbers |a;| < v'N and |az| < VN
via the continued fraction expansion of the ratio k; / kz truncated at order v/N which then
satisfy az/ay + ky/k2 = O(1/N) and thus a1k} + azk? = O(v/N). This allows us to find
periods p satisfying p < v/N in two runs of the quantum algorithm with high probability.
Note the difference of the above method to Shor’s algorithm which requires p < /N instead.

More generally, if p = O(N®) is small enough (e.g., € < 1/4, see the above example), we
are able to determine p (i.e., U) and thereby also g (i.e., V) in polynomial time (exponential
speed-up).

8 Discrete self-similarity

Let us give an example where the above algorithm could be useful. Starting from the Shor-
type symmetry f(z + p) = f(z) + ¢ in Eq. (14) and setting

f=log(¢), = =log(x), (21)
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with respect to some base(s), we arrive at

dlax) =Bé(x), (22)

i.e., the function ¢(x) is discretely self-similar. Discrete self-similarity — also called discrete
scale invariance — is a characteristic feature of some non-linear systems (e.g., in condensed
matter) exhibiting critical phenomena, see, e.g., [18].

For example, let us assume that the unitary gate U represents some characteristic pa-
rameter in the quantum simulation of a condensed matter system in the critical régime and
that this parameter ¢ displays a discretely self-similar but otherwise chaotic dependence on
some input x. For the sake of simplicity, let us further assume that we can calculate the log-
arithms of the output ¢ and the input x with respect to suitable bases within an appropriate
discretisation (either artificial or natural, e.g., physical lattice). In this way the accomplished
generalisation of pure periodicity f(z + p) = f(z) < d(ax) = ¢(x) to discrete self-similarity
in Eq. (22) in the presented quantum algorithm allows us to detect the discretely self-similar
behaviour exponentially faster than any (known) classical method.

9 Summary

By means of a simple example, it has been demonstrated that the task of finding hidden
(two-point) symmetries of a given function described by Eq. (5) — as an expansion of the
hidden subgroup problem in Eq. (1) — can also be accomplished exponentially faster by a
(probabilistic) quantum algorithm than by classical methods.

There are two main possibilities for generating NP-problems (i.e., the solution is potentially
hard to find but easy to verify, at least probabilistically) in this way — either both, U +> p and
V + g, are unknown or V « ¢ is given and we have to find “only” U « p [16]. (Of course, if
p was known, the problem would be trivial.)

Note that the task under consideration is very similar to an inverse problem where the
input(s) and the output(s) of a function depending on a parameter are given and one has
to find the fitting parameter. We consider the main importance of our result in its being a
small step towards the goal of better understanding the class of problems which can be solved
exponentially faster by quantum algorithms.

10 Outlook

Eq. (5) does not represent the most general (explicit) two-point symmetry, which can be
written as

Viz, f(2), f (Ule, f(2)])} = 0. (23)

In this case there is no f-independent co-set in general and it would be interesting to study the
possibilities of speeding up these more complicated (consistency, etc.) problems by quantum
algorithms. As another extension of Eq. (5), it appears quite natural to ask about relations
involving more, say (m + 1), points

VA{f(z), f(Uslz]),..., f(Unlz])} = 0. (24)
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Further interesting symmetries’could include other transformations U and relations V —
think of gauge symmetries, for example, or permutations (and other possibly non-Abelian
groups).

Another point is that, in the examples considered above (and in the hidden subgroup
problem, of course), V was invertible, i.e., one could solve the relation Eq. (5) for f(z).
Relaxing this invertability condition would be another interesting object of study. As a very
simple example, one might consider the following symmetry

P fi(z) ® filz @ p) =0, (25)
=0

where one can determine p (again assuming appropriate conditions) via defining a new func-

tion F(z) = é fi(@).
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