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Entanglement has been termed a critical resource for quantum information processing
and is thought to be the reason that certain quantum algorithms, such as Shor’s factor-
ing algorithm, can achieve exponentially better performance than their classical coun-
terparts. The nature of this resource is still not fully understood: here we use numerical
simulation to investigate how entanglement between register qubits varies as Shor’s al-
gorithm is run on a quantum computer. The shifting patterns in the entanglement are
found to relate to the choice of basis for the quantum Fourier transform.
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1 Introduction

Quantum computation has the potential to provide significantly more powerful computers
than classical computation — if we can build them. There are numerous possible routes forward
for quantum hardware [1], however, progress in the development of algorithms has been slow,
in part because we don’t yet fully understand how the quantum advantage works. There are
two key characteristics of the quantum resources used for computation. The first is that a
general superposition of 2" levels may be represented in n 2-level systems [2], allowing the the
physical resource to grow only linearly with n (quantum parallelism). The second aspect is
best explained by considering the classical computational cost of simulating a typical step in
a quantum computation. If entanglement is absent then the algorithm can be simulated with
an equivalent amount of classical resources. Jozsa and Linden [3] showed that, if a quantum
algorithm cannot be simulated classically using resources only polynomial in the size of the
input data, then it will have multipartite entanglement involving unboundedly many of its
qubits — if it is run on a quantum computer using pure quantum states. However, the presence
of multipartite entanglement is not a sufficient condition for a pure state quantum computer
to be hard to simulate classically. As Jozsa and Linden point out, if the quantum computer is
described using stabilizer formalism [4, 5], there are many highly entangled states that have
simple classical descriptions. Moreover, a quantum computer using mixed states may still
require exponential classical resources to simulate even if its qubits are not entangled, and
it is not known whether such states may be used to perform efficient computation. In any
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case, being hard to simulate classically doesn’t imply the quantum process is doing any useful
computation. If we want to understand quantum computation, we will have to look more
closely at specific examples.

Few quantum algorithms provide an exponential speed up over the best known classical
algorithms, of those that do, Shor’s algorithm (order-finding) [6] is perhaps the most important
because it can be used to factor large numbers and hence has implications for classical security
methods. There is no proof that an equally efficient classical algorithm cannot exist for Shor’s
algorithm, and it is worth noting that a sub-exponential algorithm has been found recently
for the related problem of primality testing [7]. Proving a speed up is in general a tough task,
few such proofs exist for exponential speed up of quantum over classical, one example being
a quantum walk algorithm with a proven exponential speed up (w.r.t. an oracle) [8].

Assuming that Shor’s algorithm does provide an exponential speed up, and given that
multipartite entanglement is necessary (though not sufficient) for pure state quantum compu-
tation with an exponential speed up over classical computation, in this paper we investigate
what the entanglement is doing during the computational process, as it proceeds, gate by gate.
To be clear, we reiterate that we are not trying to prove whether entanglement is present,
we take it as given that there will be at least logr of entanglement entropy (where r is the
period being determined, and logs are in base 2 throughout this paper) at the mid-point of
Shor’s algorithm, as first shown by Nielsen and Chuang [9]. Instead, we would like to know
what role it plays in the computation. What we have in mind is a role comparable to the role
of entanglement in quantum communications, where a maximally entangled pair of qubits
can be used to perform specific communications tasks (such as teleportation of an unknown
quantum state [10], or transmission of two classical bits of information [11]), which consume
the entanglement in direct proportion to the amount of communication achieved. To date,
little has been said about what role entanglement actually plays in quantum computation,
the focus has been almost entirely on proving it is present, in sufficient quantities to make
classical simulation inefficient (besides [3], see, for example, [12, 13, 14, 15]). We aim to throw
some light on the question of what function it plays by calculating the entanglement as it
varies during the course of the execution of Shor’s algorithm, and looking at how it correlates
with the progress of the algorithm.

For this study, we are using a standard gate sequence for Shor’s algorithm using pure
quantum states. Use of mixed states and different gate sequences may produce different
entanglement patterns, but if there is a crucial role for entanglement in the computation,
it will be identifiable as a common feature of all implementations. Parker and Plenio [16]
have presented a version of Shor’s algorithm using only one pure qubit, the rest may start
in any mixed state. They confirmed (numerically) that entanglement was present when the
algorithm ran efficiently for factoring 15 and 21.

We should also add that, since we are investigating the logical functioning of the algorithm,
we are not concerned with any practical questions of imperfect gates, decoherence, etc., nor
with optimising the gate sequences given constraints on the number of qubits or the types of
gates available. Much valuable work has been done in these areas by many authors, notably
Vedral et al, [17], Gossett [18], and Van Meter and Itoh [19] on constructing efficient operations
from elementary gates; Zalka [20] and Beauregard [21] who optimise the overall operation of
Shor’s algorithm in fewer qubits; and Fowler and Hollenberg [22] who analyse scalability and
accuracy.

The organisation of this paper is as follows. We start with a brief overview of Shor’s
algorithm in §2, to set up our notation. This is followed in §3 by a discussion of how the
entanglement varies in an instance of factoring 15, which also serves to introduce the entan-
glement measures we are using. In §4 the pattern of entanglement in several examples of
factoring 21 is presented. Larger semiprimes are tackled in §5, from which we are able to
deduce our main conclusions, which are summarised in §6.

2 Shor’s Algorithm

We begin with a brief overview of how Shor’s algorithm works, in order to remind the reader
and to establish our notation. Suppose, for concreteness, we wish to factor a number N = pq
where p and g are prime numbers. Classical number theory provides a way to determine these
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Fig. 1. Schematic circuit diagram of Shor’s algorithm for factoring 15 implemented on a 12 qubit
quantum register. The initialisation I is done with single qubit Hadamard (H) and bit-flip (Z)
gates. Controlled-U;(j) gates are used to produce z®(mod N). The inverse quantum Fourier
transform (IQFT) uses controlled rotations (Rm). The last quantum step is the measurement
(M), which is followed by classical post-processing to obtain a factor of N.

primes with high probability (not unity generally) by finding the period r of the function
fz(a) = z%(mod N), (1)

where z is an integer chosen to be less than N and co-prime to it, and a € Z. It is efficient
to check whether z is co-prime to N using Euclid’s algorithm [23]. If z happens not to be
co-prime then their common factor gives a factor of V and the job is done, but this happens
only rarely for large N. Once the period r is found, the numbers

my =a"?+1 (2)

generally share either p or ¢ with IV as a common factor. Not all choices of x give periods r
which yields a factor p or q. For instance, sometimes the period r will be odd, whence the
numbers from eq. (2) can be non-integer. When the chosen z does not lead to a valid factor,
the procedure can be repeated with a different choice until a factor is found. This is efficient
since the probability of success is at least ; per trial for the case of semiprimes (see Shor [6]).

The hard part of the algorithm is determining the period r of the function f,(a) =
z*(mod N). Shor found a very elegant and efficient means of doing this quantum mechani-
cally, depicted schematically in fig. 1. Consider that one has two quantum registers (one of
size 2n where n = [log N'|] qubits and the second of size n qubits. We will denote the basis
states of a quantum register by |a), with a € {0...22" — 1}. The binary representation of a
indicates which register qubits are in the state representing zero and which are in the state
representing one. A general state of a 2n qubit register |1(¢)) at time ¢ can thus be written
as a superposition of basis states,

B = Y aut)a), (3)
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2n
where a,(t) is a complex number, normalised such that 222071 |aa(t)]? = 1. The algorithm

2n
begins by preparing the larger quantum register in an equal superposition (227)~1/2 ZZ:O_I |a)
of all possible 22" basis states while the smaller register is prepared in the definite state |1)

(=10...01)). The initial state of both registers is thus
22" -1

W) = 5 3 ) ()
a=0

The next step is a unitary transformation which acts on both registers according to Ula)|b) =
|a) |bz®(mod N)) giving the output state

(k) = o Y la)fe”(mod ) )
a=0

Then an inverse quantum Fourier transform (IQFT) defined by

22" 1
— 1 —2miyz /22"
QM) = 5 Do e/ (6)
z=0

is applied, which transform the state |¥(¢,)) from eq. (5) into

22n71 22n71

() = g Do O € 2 ) (mod N)). 7)

a=0 2=0

By measuring the larger register in the computational basis we obtain an integer number c.
Now ¢/22™ is a close approximation to the fraction k/r, where 0 < k < r, the value of k varies
depending on the particular value of ¢ that is measured, but both » and k& can be obtained
classically using continued fractions (provided ¢ # 0). Choosing the larger register to be 2n
qubits provides a high enough accuracy for ¢ such that r» can be determined from a single
measurement on all 2n qubits. It is possible to use fewer qubits in this first register but the
probability of correctly determining r decreases, and the algorithm may need to be repeated
correspondingly many more times. If 7 is not prime, and happens to share a factor p with k,
then one also fails to determine r correctly, instead obtaining r/p. Again, this only reduces
the probability of success by a factor polynomial in IV, so the exponential nature of the speed
up is maintained.

3 Factoring 15

We start our analysis of the entanglement by studying the circuit for factoring 15 (3x5),
though it is not necessarily typical of factoring larger numbers. Since many gates make no
change to the entanglement, rather than tracking the entanglement as each basic gate is
applied, we choose to look at certain key points in the algorithm. We restrict our attention
to controlled composite gates: the U,(j) gate which implements the operation z?(mod N)
for j € {1,2,4...22"}, and the rotations in the IQFT. Details of how to efficiently construct
these composite gates from a universal set of one and two qubit gates may be found in, for
example, [4]. There are 8 of the U,(j) gates (in general 2n, one for each larger register qubit),
which is manageable, but for the IQFT there are 27 (in general (2n+1)(n — 1) for a 2n qubit
register) rotation gates: for our purposes in this paper it is sufficient to treat the whole IQFT
as one unit. Along with single qubit gates as necessary, the circuit using these composite
gates is depicted in fig. 1.
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Fig. 2. Entanglement between the two registers (squares) and within the smaller register (circles)
in Shor’s 12 qubit algorithm as a function of gates sequence according to fig (1) with the co-prime
chosen as # = 13. The entanglement within the larger register is zero throughout.

As we are only considering the evolution of pure states we can measure the entanglement
between the two registers using the entropy of the subsystems

E.=—- Z Ailog A;, (8)

where the {)\;} are the eigenvalues of the reduced density matrix of either of the registers (both
have the same eigenvalues). The reduced density matrix of one of the registers is obtained
from the full pure state of the system by applying a partial trace over the other register,

pr(t) = Trs[¥(2)) (¥ (1)), (9)

and similarly ps(t) = Trr,|®(t))(¥(¢)|, where L and S denote the larger and smaller registers
respectively.

To quantify the entanglement within each register is not so straightforward. Most en-
tanglement measures for mixed states, such as pr and pg, are computationally intractable
in practice for more than a few qubits; we also need to consider all the possible divisions
of the qubits into different subsets in order to locate all of the entanglement. A reasonable
approximation to quantifying the entanglement within a register can be obtained by applying
a partial transpose to each possible subset of qubits and calculating the negativity [24, 25]
given by n = Tr|p”| — 1 i.e., the sum of the negative eigenvalues of the transposed matrix pT
or pg. If the negativity is zero for all possible subsets of qubits in the register, then we can
say that at most the register has bound entanglement [26], which is not generally considered
useful for quantum information tasks (though see [27]). Non-zero negativity for any subset of
qubits definitely indicates the presence of entanglement (across that particular division).

Finally, we use the entanglement of formation [28] to quantify the pairwise entanglement
between two qubits. The entanglement of formation quantifies how much entanglement is
needed to make the state from unentangled ingredients. In general it is hard to calculate
explicitly. However, Wootters [28] found an elegant formula for the case of two qubits in a
mixed state p. The concurrence C is given by C' = max(A\; — A2 — A3 — Ag,0), where the
A; are the square roots of the eigenvalues of pp = p 0;}®pr*0;’4®05, with A, B labels for
the two qubits, o, the Pauli spin operator, and p* denotes the complex conjugation of p in

the computational basis {|00),|01),]10), |11)}. The entanglement of formation E; = h(3 +
1v/1 — C?), where h(n) is the binary entropy function, h(n) = —nlog(n)—(1—n) log(1—n). We
use F to check for pairwise entanglement within and between the qubit registers. Note that

quantum states can be highly entangled even without containing any pairwise entanglement
[29, 30].
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Fig. 3. Pattern of entanglement during Shor’s algorithm factoring N = 15 with co-prime z = 13.
After the Uz (j) gates the top two qubits in the larger register (filled) are entangled with the four
qubits in the smaller register. After the IQFT, the entanglement is transfered to the lower two
qubits in the larger register. Qubits represented by open circles are not entangled. Time sequence
corresponds to fig. 1.

In fig. 2 we plot the entanglement in Shor’s algorithm using the entropy of the subsystem
where possible (full state is pure) and the negativity where the single register state is mixed.
The negativity turns out to be zero for both registers throughout the algorithm (except the
measurement leaves the smaller register entangled, but this cannot be useful for the remaining
classical steps of the algorithm). The entanglement between the registers builds up to a
maximum during the first two U,(j) gates, then stays constant until the measurement. We
also note (from calculating the entanglement of formation for appropriate pairs of qubits) that
there is no pairwise entanglement between any pair of qubits at any of the sampled points in
this instance of the algorithm, neither within nor between the registers.

Since the IQFT is the crucial step for finding the period, we looked in more detail at
how the distribution of the entanglement changes over the operation of the IQFT. Unitary
operations can only alter entanglement within the elements they are applied to. Applying this
principle to the circuit in fig. 1, we note the entanglement within each register is zero (strictly
speaking, zero apart from possible bound entanglement) after the modular exponentiation. It
is thuse clear that entanglement cannot decrease during the IQFT, since no further gates act
where the only significant entanglement is located, between both registers. Furthermore, since
each pair of qubits in the upper register has an entangling (2-qubit) gate applied to it only
once during the algorithm, entanglement within the upper register can only be generated or
shifted around, not decreased. And indeed our numerical calculations show the distribution
of entanglement between the individual qubits does change in our example of factoring 15
with z = 13. By examining the entropy of each possible subset of qubits in each register, we
can deduce that only two of the eight qubits are entangled with the four qubits in the smaller
register. During the action of the IQFT, this entanglement is transfered from the top two
qubits to the bottom two in the larger register. We represent this schematically in fig. 3.

However, we should remember that 15 is actually extremely easy to factor. It is straight-

forward to see that at least one of 2"/2 +1 is divisible by 3 or 5 for almost any random choice
of z,r > 1, regardless of whether z is co-prime to N or whether r is the period of z%(mod N).
To learn anything significant, we need to look at more examples.

4 Factoring 21

We next look at factoring 21 (3 x 7). To do this on a quantum computer in the same manner
as the circuit for factoring 15 shown in fig. 1 requires a total of 15 qubits, 10 in the larger
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Table 1. Average entropy of subsystems for factoring 21 with z = 2, and average negativity (after
the IQFT) for different sized subsystems of the larger register.

size of large register large register large register
subsystem small register after U after IQFT difference AF; negativity

1 qubit 0.811 1.000 0.938 -0.062 0.172

2 qubits 1.538 1.600 1.599 -0.001 0.397

3 qubits 2.151 1.843 2.020 +0.177 0.591

4 qubits 2.585 1.972 2.283 +0.311 0.678

5 qubits 2.585 2.081 2.447 +0.366 0.749

6 qubits 2.184 2.547 +0.363

7 qubits 2.285 2.602 +0.318

8 qubits 2.385 2.589 +0.204

9 qubits 2.485 2.619 +0.134

register and 5 in the smaller. For co-prime z = 13, we find a similar pattern of entanglement to
that shown in fig. 3 for 15 with z = 13, except that for 21 there is only entanglement between
one qubit in the larger register and two qubits in the lower register. Similarly, the IQFT step
shifts the entanglement from the top qubit to the bottom qubit in the larger register. Again,
there is no pairwise entanglement, so the three entangled qubits are in a GHZ type of state
[31], i.e., one that can be rotated into the form «|000) + 3|111).

The larger register is now at the limit of our computational resources for calculating the
full analysis of the negativity. Instead of calculating the negativity for all possible subsets
of qubits in a register, we used randomly sampled subsets, from which we deduce that with
high probability for co-prime = 13 there is no entanglement within either register at any
stage of the algorithm. For other choices of co-prime such as ¢ = 2 and = = 4, there is no
entanglement within either register by the end of the modular exponentiation (U,(j) gates),
but entanglement is generated within the larger register during the IQFT. For these co-primes
we also find a more complex pattern in the entropies of the subsystems: the entanglement now
involves all of the register qubits. The details for z = 2 are shown in table 1. Essentially the
entanglement becomes more multipartite: the average entropy reduces slightly for one and
two qubit subsets, while for larger subsets it increases. Examination of the entanglement of
formation for pairs of qubits taken one in each register shows there is also a significant amount
of pairwise entanglement (average 0.261 per pair before the IQFT) contributing to the total
entanglement in the system. The average pairwise entanglement of formation between the
registers decreases slightly (from 0.261 to 0.242) after the IQFT. This change is possible
because entangling gates on the upper register can convert the pairwise entanglement into
something more multipartite involving more than two of the upper register qubits. We will
discuss what these entanglement patterns can tell us in the next section after we examine
larger examples.

5 Factoring larger numbers

In order to examine examples with prime factors larger than 3 or 5, we pushed our numerical
studies as far as we could with this gate model, by analysing semiprimes 32 < N < 64 and
64 < N < 128, which require 18 and 21 qubits respectively for the quantum registers. In these
cases, though we cannot easily calculate a full entanglement analysis, we have calculated the
entropy between one qubit and the rest of the qubits in both registers, this corresponds to
the quantities in the third and fourth columns in the top line of table 1. The difference in
the average entropy AFE; before and after the IQFT (corresponding to the first entry in the
fifth column in table 1), is shown in table 2 grouped by the period r, as a total for the whole
upper register (so the entry for N = 21, r = 6 is 0.624 = 10 x 0.062 from table 1).

The pattern that emerges is that the closer the period r is to a power of 2, the smaller
the value of AE;. For r = 2™, the IQFT is exact giving AE; = 0 in all cases. This can
be understood by looking at the measurement results on the larger register, from which the
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Table 2. Average decrease in entanglement —(AFE;) between one qubit and the rest during the
IQFT step (total for upper register, see text for details).

N r (number of co-primes with this 7)
pxgq —(AEy)
15 2(3) 44
3x5b 0.0 0.0
21 2(3) 3(2 6 (6)
3xT7 0.0 0.706 0.624
33 | 2(3) 54 10(12)
3x11 0.0 0.285 0.256
35 2(3) 3(2 4 (4) 6 (6) 12 (8)
5x7 0.0 0.869 0.0 0.788 0.706
30 | 2(3) 3@ 4(d) 606 128
3 x13 0.0 0.869 0.0 0.788 0.706
51 | 2(3) 4(4) 8(3) 16(16)
3 x 17 0.0 0.0 0.0 0.0
55 | 2(3) 4(4)  5(4) 10(12) 20 (16)
5x11 0.0 0.0 0.285 0.256 0.226
57 1 2(3) 32  6(6 96 18 (18)
3 x19 0.0 0.869 0.788 0.080 0.071
77 | 23) 3(2) 5(4) 66 10(12) 15(8) 30 (24)
7x11 0.0 1.033 0.343 0.951 0.314 0.034 0.031
91 2(3) 3(8) 4(4) 6(24) 12(32)
7x 13 0.0 1.033 0.0 0.951 0.869
119 | 2(3) 3(2) 4(4 6(6) 8(8) 12(8) 16(16) 24 (16) 48 (32)
7x 17 0.0 1.033 0.0 0.951 0.0 0.869 0.0 0.788 0.706
"= o= om omoEomomoEoEoEomoEowomom
0.06 = —
0.04 — =
0.02 - —
2 |
g 0 0 20‘48 40‘95 61‘44 8].‘92 10‘240 12‘288 14‘336 16384
gO.OGJ T T T T T T T ]
ooalm . . . . . . .
MR S AT R R R N R
0 (‘) ' .20‘48. .40‘96. .61‘44. .81‘92. .10‘240. .12‘288. .14:‘336. .16384

number measured in output register
Fig. 4. Distribution of measurement outcomes for factoring 119 with = 92 (upper) and = = 93
(lower) which have periods r = 16 and 24 respectively. Symbols show the probability of measuring
the number on the ordinate as the outcome of the algorithm; drop lines are for clarity. The
upper figure has just 16 peaks, while the lower figure shows a significant probability for measuring
neighbouring numbers to the minor peaks.
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period r is calculated. Figure 4 shows the probability of measuring each possible number ¢
in the larger register at the end of running the algorithm for two examples: factoring 119
with co-prime 92 (period r = 16), and with co-prime 93 (period » = 24). When the period
is exactly a power of two, the fraction ¢/2?" gives the period r exactly, whereas when r is
not a power of two, the peak probability tries to fall between two possible numbers and thus
spreads the wavefunction over several adjacent numbers. This spread corresponds to increased
entanglement in the upper register. We should note that the case where r is a power of two is
rare for large semiprimes, so the different behaviour for » = 2™ does not help to find a factor.
In fact [32], if N is odd and r = 2™ for all &, it means that the only primes that can divide N
are one more than a power of 2. There are only 5 such odd primes known: 3, 5, 17, 257 and
65537. It is somewhat weakly conjectured that this is the complete list. But even if there are
more, factoring such a number is simple: one just trial divides by numbers one more than a

power of 2, more precisely, of the form 22" + 1. There are approximately loglog N of them
to test, so this is clearly efficient classically.

6 Discussion

First, let us summarise what we have found, since there are several steps to the deductions,
necessitated by the limitations of classical computational power available to us. In this par-
ticular gate model, the first half of Shor’s algorithm, the modular exponentiation, generates
approximately log r units of entropy of entanglement between the two registers [9]. Our simu-
lations suggest that this is the only entanglement at this point, the entanglement within each
register being zero. By examining the gate sequence within the IQFT we then observed that
the IQFT can only generate entanglement within the upper register, or, move entanglement
around between the upper register qubits. Our simulations detected both these possibilities:
for N =15 and N = 21 with co-prime z = 13, the entanglement between the registers moves
around the upper register qubits, while for N = 21 and x = 2, there is entanglement gener-
ated within the upper register during the IQFT (detected by the calculating the negativity).
From examining the entropy of subsets of qubits, we deduced that the overall entanglement
becomes more multipartite, because the entanglement entropy of one and two qubit subsys-
tems decreased, while that of three to nine qubit subsystems increased. We then moved on
to larger semiprimes, for which we could only calculate the one qubit subsystem entropy.
Based on the pattern for N = 21 just described, we expect this to decrease during the IQFT,
corresponding to increasing multipartite entanglement, and this is what we observed, except
where the period r is a power of two, when it remains equal to zero.

The correlation we observe is between entanglement changes in the upper register during
the IQFT, and how close the period 7 is to a power of two. We can explain this quite easily in
terms of the fraction ¢/2%" ~ k/r that is being represented in a binary register of size 2n. If r
is not a power of two, c is trying to fall between two integers, and this results in a spread in the
wavefunction in the final state of the quantum register, as shown in fig. 4. Extra terms in the
decomposition of the final state, c.f. eq. (3), correspond to more multipartite entanglement.
Now suppose we performed the IQFT in some other base than two — for example, in base three,
perhaps using a quantum register made up of qutrits (three-state quantum systems) rather
than qubits — the entanglement pattern would change completely. The entanglement pattern
we have found is thus implementation dependent, it does not correlate with the success of the
algorithm, or the number being factored. Nor is any entanglement used up during the course
of the computation.

Our results support the view that entanglement is not used in a quantitative way to
achieve a quantum computation faster than classical computation. While entanglement is
certainly generated in significant quantities during pure state quantum computation, this is
best understood as a by-product of exploiting the full Hilbert space for quantum parallelism
[2, 3, 33, 34]. Most of Hilbert space consists of highly entangled states [30, 35], so generation
of entanglement during quantum computation is simply unavoidable.

This is to be viewed in contrast with the quantitative use of entanglement in quantum
communications tasks. Maximally entangled pairs of qubits can be used to perform a specific
amount of communication, using up the entangled pairs in direct proportion to the communi-
cation achieved. We also note that many practical proposals for implementations of quantum
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computing make extensive use of entanglement for communications tasks between the differ-
ent elements of the computer. Our result is applicable only to the logical qubits performing
the computation, and not to their locations within a physical computer, nor to any error
correction, read-out or other associated tasks.
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