
Quantum Information and Computation, Vol. 6, No. 4&5 (2006) 382–399
c© Rinton Press

OPERATOR QUANTUM ERROR CORRECTION

DAVID W. KRIBS

Institute for Quantum Computing, University of Waterloo
Waterloo, ON, CANADA N2L 3G1

Department of Mathematics & Statistics, University of Guelph
Guelph, ON, CANADA N1G 2W1

RAYMOND LAFLAMME

Institute for Quantum Computing, University of Waterloo
Waterloo, ON, CANADA N2L 3G1

Perimeter Institute for Theoretical Physics
31 Caroline St. North, Waterloo, ON, CANADA N2L 2Y5

DAVID POULIN

School of Physical Sciences, The University of Queensland
QLD 4072, Australia

Institute for Quantum Computing, University of Waterloo
Waterloo, ON, CANADA N2L 3G1

MAIA LESOSKY

Department of Mathematics & Statistics, University of Guelph
Guelph, ON, CANADA N1G 2W1

Received September 26, 2005
Revised January 19, 2006
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1 Introduction

A unified and generalized approach to quantum error correction, called Operator Quantum
Error Correction (OQEC), was recently introduced in [1]. This formalism unifies all of the
known techniques for the error correction of quantum operations – i.e. the standard model
[2, 3, 4, 5], the method of decoherence-free subspaces [6, 7, 8, 9] and the noiseless subsystem
method [10, 11, 12] – under a single umbrella. An important new framework introduced as
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part of this scheme opens up the possibility of studying noiseless subsystems for arbitrary
quantum operations.

This paper is an expanded and more detailed version of the work [1]. We provide complete
details for proofs sketched there, and in some cases we present an alternative “operator”
approach that leads to new information. Specifically, we show that correction of the general
codes introduced in [1] is equivalent to correction of certain operator algebras, and we use
this to give a new proof for the main testable conditions in this scheme. In addition, we
discuss a number of examples throughout the paper, and introduce the notion of “unitarily
noiseless subsystems” as a relaxation of the requirement in the noiseless subsystem formalism
for immunity to errors.

2 Preliminaries

2.1 Quantum Operations

Let H be a (finite-dimensional) Hilbert space and let B(H) be the set of operators on H. A
quantum operation (or channel, or evolution) on H is a linear map E : B(H) → B(H) that is
completely positive and preserves traces. Every channel has an “operator-sum representation”
of the form E(σ) =

∑
a EaσE†

a, ∀σ ∈ B(H), where {Ea} ⊆ B(H) are the Kraus operators (or
errors) associated with E . As a convenience we shall write E = {Ea} when the Ea determine
E in this way.

The choice of operators that yield this form is not unique, but if E = {Ea} = {Fb}
(without loss of generality assume the cardinalities of the sets are the same), then there is
a unitary matrix U = (uab) such that Ea =

∑
b uabFb ∀ a. The map E is said to be unital

or bistochastic if E(1l) =
∑

a EaE†
a = 1l. Trace preservation of E can be phrased in terms of

the error operators via the equation
∑

a E†
aEa = 1l, which is equivalent to the dual map for E

being unital.

2.2 Standard Model for Quantum Error Correction

The “Standard Model” for the error correction of quantum operations [2, 3, 4, 5] consists of
triples (R, E , C) where C is a subspace, a quantum code, of a Hilbert space H associated with
a given quantum system. The error E and recovery R are quantum operations on B(H) such
that R undoes the effects of E on C in the following sense:

(R ◦ E) (σ) = σ ∀σ = PCσPC , (1)

where PC is the projection of H onto C.
When there exists such an R for a given pair E , C, the subspace C is said to be correctable

for E . The existence of a recovery operation R of E = {Ea} on C may be cleanly phrased in
terms of the {Ea} as follows [4, 5]:

PCE†
aEbPC = λabPC ∀ a, b (2)

for some matrix Λ = (λab). It is easy to see that this condition is independent of the operator-
sum representation for E .

2.3 Noiseless Subsystems and Decoherence-Free Subspaces

Let E = {Ea} be a quantum operation on H. Let A be the C∗-algebra generated by the Ea,
so A = Alg {Ea, E†

a}. This is the set of polynomials in the Ea and E†
a. As a †-algebra (i.e.,
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a finite-dimensional C∗-algebra [13, 14, 15]), A has a unique decomposition up to unitary
equivalence of the form

A ∼=
⊕

J

(MmJ ⊗ 1lnJ

)
, (3)

whereMmJ
is the full matrix algebra B(CmJ ) represented with respect to a given orthonormal

basis and 1lnJ
is the identity on CnJ . This means there is an orthonormal basis such that the

matrix representations of operators in A with respect to this basis have the form in Eq. (3).
Typically A is called the interaction algebra associated with the operation E .

The standard “noiseless subsystem” method of quantum error correction [10, 11, 12] makes
use of the operator algebra structure of the noise commutant associated with E ;

A′ =
{
σ ∈ B(H) : Eσ = σE ∀E ∈ {Ea, E†

a}
}
.

Observe that when E is unital, all the states encoded in A′ are immune to the errors of E .
Thus, this is in effect a method of passive error correction. The structure of A given in Eq. (3)
implies that the noise commutant is unitarily equivalent to

A′ ∼=
⊕

J

(
1lmJ ⊗MnJ

)
. (4)

It is obvious from Eqs. (3,4) that elements of A′ are immune to the errors of A when E is
unital. In [16] the converse of this statement was proved. Specifically, when E is unital the
noise commutant coincides with the fixed point set for E ; i.e.,

A′ = Fix(E) = {σ ∈ B(H) : E(σ) =
∑

a

EaσE†
a = σ}. (5)

This is precisely the reason that A′ may be used to produce noiseless subsystems for unital
E . We note that the noiseless subsystem method may be regarded as containing the method
of decoherence-free subspaces [6, 7, 8, 9] as a special case, in the sense that this method makes
use of the summands 1lmJ

⊗MnJ
where mJ = 1, inside the noise commutant A′ for encoding

information.
While many physical noise models satisfy the unital constraint, the generic quantum oper-

ation is non-unital. Below we show how shifting the focus from A′ to Fix(E) (and related sets)
quite naturally leads to the notion of noiseless subsystems that applies to arbitrary quantum
operations.

3 Noiseless Subsystems For Arbitrary Quantum Operations

In this section we describe a generalized mathematical framework for noiseless subsystems that
applies to arbitrary (not necessarily unital) quantum operations and serves as a building block
for the OQEC scheme presented below. Note that a subsystem that is noiseless for a certain
map will also be noiseless for any other map whose Kraus operators are linear combinations
of the Kraus operators of the original map. Hence, for the purpose of noiseless encoding,
any map whose Kraus operators span is closed under conjugation is equivalent to a unital
map. The mathematical framework utilized in [10, 11, 12] produces noiseless subsystems for
precisely these kinds of operations, and so may effectively be regarded as restricted to unital
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channels. That being said, it is desirable to find a means by which noiseless subsystems can
be discovered without relying on the unital nature of an operation, or the structure of its
noise commutant. The main result of this section (Theorem 1) shows explicitly how this may
be accomplished.

Note that the structure of the algebra A given in Eq. (3) induces a natural decomposition
of the Hilbert space

H =
⊕

J

HA
J ⊗HB

J , (6)

where the “noisy subsystems” HA
J have dimension mJ and the “noiseless subsystems” HB

J

have dimension nJ . For brevity, we focus on the case where information is encoded in a single
noiseless sector of B(H), and hence

H = (HA ⊗HB)⊕K (7)

with dim(HA) = m, dim(HB) = n and dimK = dimH−mn. We shall write σA for operators
in B(HA) and σB for operators in B(HB). Thus the restriction of the noise commutant A′ to
HA⊗HB consists of the operators of the form σ = 1lA⊗ σB where 1lA is the identity element
of B(HA).

For notational purposes, assume that ordered orthonormal bases have been chosen for
HA = span{|αi〉}m

i=1 and HB = span{|βk〉}n
k=1 that yield the matrix representation of the

corresponding subalgebra of A′ as 1lA ⊗ B(HB) ∼= 1lm ⊗Mn. We let

Pkl ≡ |αk〉〈αl| ⊗ 1lB ∀ 1 ≤ k, l ≤ m (8)

denote the corresponding family of “matrix units” in A associated with this decomposition.
The following identities are readily verified and are the defining properties for a family of
matrix units:

Pkl = PkkPklPll ∀ 1 ≤ k, l ≤ m

P †kl = Plk ∀ 1 ≤ k, l ≤ m

PklPl′k′ =
{

Pkk′ if l = l′

0 if l 6= l′ .

Define the projection PA ≡ P11 + . . . + Pmm, so that PAH = HA ⊗ HB , P⊥A = 1l − PA and
P⊥AH = K. Further define a superoperator PA by the action PA(·) = PA(·)PA. The following
result is readily proved.

Lemma 1 The map Γ : B(H) → B(H) given by Γ = {Pkl} satisfies the following:

Γ(σ) =
∑

k,l

PklσP †kl = 1lA ⊗ (TrA ◦PA)(σ) ∈ 1lA ⊗ B(HB), (9)

for all operators σ ∈ B(H), so in particular Γ(σA ⊗ σB) ∝ 1lA ⊗ σB for all σA and σB.

Note. While we have stated this result as part of a discussion on a subalgebra of a noise
commutant, it is valid for any †-algebra B ∼= 1lA⊗B(HB) with matrix units {Pkl} generating
the algebra B(HA)⊗ 1lB .
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We now turn to the generalized noiseless subsystems method. In this framework, the
quantum information is encoded in σB ; i.e., the state of the noiseless subsystem. But it is
not necessary for the noisy subsystem to remain in the maximally mixed state 1lA under E ,
as is the case for noiseless subsystems of unital channels, it could in principle get mapped to
any other state.

In order to formalize this idea, define for a fixed decomposition H = (HA ⊗HB)⊕K the
set of operators

A = {σ ∈ B(H) : σ = σA ⊗ σB , for some σA and σB}. (10)

Notice that this set has the structure of a semigroup and includes operator algebras such
as A0 ≡ 1lA ⊗ B(HB) and |αk〉〈αk| ⊗ B(HB). We note that in the formulation below, the
operation E maps the set of operators on the subspace PAH = HA ⊗HB to itself.
Lemma 2 Given a fixed decomposition H = (HA ⊗ HB) ⊕ K and a quantum operation E
on B(H), the following four conditions are equivalent, and are the defining properties of the
noiseless subsystem B:

(1) ∀σA ∀σB , ∃τA : E(σA ⊗ σB) = τA ⊗ σB

(2) ∀σB , ∃τA : E(1lA ⊗ σB) = τA ⊗ σB

(3) ∀σ ∈ A :
(
TrA ◦PA ◦ E

)
(σ) = TrA(σ).

Proof. The implications 1. ⇒ 2. and 1. ⇒ 3. are trivial. To prove 2. ⇒ 1., first let
|ψ〉 ∈ HB and put P = |ψ〉〈ψ|. Suppose that {|αk〉} is an orthonormal basis for HA. Then∑m

k=1 |αk〉〈αk| = 1lA and by 2. and the positivity of E we have for all k,

0 ≤ E(|αk〉〈αk| ⊗ P ) ≤ E(1lA ⊗ P )

= τA ⊗ P

= (1lA ⊗ P )(τA ⊗ P )(1lA ⊗ P ).

It follows that there are positive operators σψ,k ∈ B(HA) such that E(|αk〉〈αk|⊗P ) = σψ,k⊗P

for all k. A standard linearity argument may be used to show that the operators σψ,k do not
depend on |ψ〉. Condition 1. now follows from the linearity of E .

To prove 3. ⇒ 2., first note that since E and TrA are positive and trace preserving, 3.
implies that

(PA ◦ E
)
(σ) = E(σ) for all σ ∈ A. Now fix |ψ〉 ∈ HB and put σ = 1lA ⊗ P where

P = |ψ〉〈ψ|. Then by 3. we have

TrA

(
(1lA ⊗ P ) E(σ) (1lA ⊗ P )

)
= TrA(σ).

It follows again from the trace preservation and positivity of TrA and E that σE(σ)σ = E(σ),
and hence there is a τA such that E(σ) = τA ⊗ P . The above argument may now be used to
show that τA is independent of |ψ〉, and the rest follows from the linearity of E . ¤
Definition 1 The subsystem B is said to be noiseless for E when it satisfies one — and hence
all — of the conditions in Lemma 2.

We next give necessary and sufficient conditions for a subsystem to be noiseless for a map
E = {Ea}.
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Theorem 1 Let E = {Ea} be a quantum operation on B(H) and let A be a semigroup in
B(H) as in Eq. (10). Then the following three conditions are equivalent:

(1) The B-sector of A encodes a noiseless subsystem for E (decoherence-free subspace in the
case m=1), as in Definition 1.

(2) The subspace PAH = HA ⊗ HB is invariant for the operators Ea and the restrictions
Ea|PAH belong to the algebra B(HA)⊗ 1lB.

(3) The following two conditions hold for any choice of matrix units {Pkl : 1 ≤ k, l ≤ m}
for B(HA)⊗ 1lB as in Eq. (8):

PkkEaPll = λaklPkl ∀ a, k, l (11)

for some set of scalars (λakl) and

EaPA = PAEaPA ∀ a. (12)

Proof. Since the matrix units {Pkl} generate B(HA)⊗ 1lB as an algebra, it follows that 3. is
a restatement of 2. To prove the necessity of Eqs. (11,12) for 1., let Γ : B(H) → 1lA ⊗B(HB)
be defined by the matrix units for A as above and note that Lemma 1 and Lemma 2 imply

(
Γ ◦ E ◦ Γ

)
(σ) ∝ Γ(σ) for all σ ∈ B(H). (13)

As in the proof of Lemma 2, the proportionality factor cannot depend on σ, so the sets of
operators {PkiEaPjl} and {λPk′l′} define the same map for some scalar λ. We may thus find
a set of scalars µkiajl,k′l′ such that

PkiEaPjl =
∑

k′l′
µkiajl,k′l′Pk′l′ . (14)

Multiplying both sides of this equality on the right by Pl and on the left by Pk, we see that
µkiajl,k′l′ = 0 when k 6= k′ or l 6= l′. This implies Eq. (11) with λakl = µkkall,kl.

For the second condition, as a consequence of Lemma 2 we have P⊥A E(PA(σ))P⊥A = 0 for all
σ ∈ B(H). Equation (12) follows from this observation via consideration of the operator-sum
representation (see § 2.1) for E .

To prove sufficiency of Eqs. (11), (12) for 1., we use the identity PA =
∑m

k=1 Pk to establish
for all σ = PAσ ∈ A,

E(σ) = (PA + P⊥A )
∑

a

EaσE†
a(PA + P⊥A )

=
∑

a

PAEaσE†
aPA

=
∑

a,k,k′
PkkEaσE†

aPk′k′ .

Combining this with the identity

σA ⊗ σB = PA(σA ⊗ σB)PA =
∑

l,l′
Pll(σA ⊗ σB)Pl′l′
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implies for all σ = σA ⊗ σB ∈ A,

E(σA ⊗ σB) =
∑

a,k,k′,l,l′
PkkEaPll(σA ⊗ σB)Pl′l′E

†
aPk′k′

=
∑

a,k,k′,l,l′
λaklλak′l′Pkl(σA ⊗ σB)Pl′k′ .

The proof now follows from the fact that the matrix units Pkl act trivially on the B(HB)
sector. ¤
Remark. In the case that the semigroup A is determined by a matrix block inside the noise
commutant A′ for a unital channel E = {Ea}, and hence arises through the algebraic approach
as in the discussion at the start of this section, the conditions Eqs. (11,12) follow from the
structure of A = Alg{Ea, E†

a} determined by the matrix units Pkl. However, Eqs. (11,12) do
not necessarily imply that the noiseless subsystem B is obtained via the noise commutant for
E . See [17] for further discussions on this point.

We now discuss a pair of non-unital examples of channels with noiseless subsystems.
Example. As a simple illustration of a noiseless subsystem in a non-unital case, consider
the quantum channel E : M4 → M4 with errors E = {E1, E2} obtained as follows. Fix γ,
0 ≤ γ ≤ 1, and with respect to the basis {|0〉, |1〉} let

F0 =
(√

γ 0
0

√
1− γ

)
and F1 =

(
0

√
γ√

1− γ 0

)
.

Then define Ei = Fi⊗1l2, for i = 0, 1. That
∑

i E†
i Ei = 1l4 follows from

∑
i F †i Fi = 1l2, which

can be verified straightforwardly.
Decompose C4 = HA ⊗HB with respect to the standard basis, so that HA = HB = C2.

Then for all σ = σA ⊗ σB , we have

E(σ) =
1∑

i=0

Ei(σA ⊗ σB)E†
i =

( 1∑

i=0

Fiσ
AF †i

)
⊗ σB .

The operator τA from Lemma 2 is given by τA =
∑

i Fiσ
AF †i in this case. It follows that B

encodes a noiseless subsystem for E . Also observe that, as opposed to the completely error-free
evolution that characterizes the unital case, in this case we have E(1lA ⊗ σB) 6= 1lA ⊗ σB .
Example. We next present a non-unital channel with a pair of noiseless subsystems; one
that is supported by the noise commutant, and one that is not. We shall explicitly indicate
Eqs. (11,12) in this case. Let E = {E0, E1} be the channel on C4 = C2 ⊗ C2 with Kraus
operators defined with respect to the computational basis by

E0 = α
(|00〉〈00|+ |11〉〈11|) + |01〉〈01|+ |10〉〈10|,

E1 = β
(|00〉〈00|+ |10〉〈00|+ |01〉〈11|+ |11〉〈11|),

where 0 < q < 1 is fixed, and α =
√

1− 2q and β =
√

q. (Notice that E is non-unital;
E(1l) 6= 1l.)

Let HB1 = span{|01〉, |10〉} and HA1 = C, so that HA1 ⊗ HB1 = HB1 . We may regard
|0L〉 = |01〉 and |1L〉 = |10〉 as logical zero and logical one states in this case. Let Q =
|01〉〈01|+ |10〉〈10|. Then

E0Q = Q = QE0 = QE0Q
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E1Q = 0 = QE1Q.

Thus, Eqs. (11,12) are satisfied and it follows from Theorem 1 that B1 is a noiseless subsystem
(a subspace in this case) for E . To see this explicitly, let σ ∈ B(HB1) be arbitrary, and so

σ = a|01〉〈01|+ b|01〉〈10|+ c|10〉〈01|+ d|10〉〈10|,
for some a, b, c, d ∈ C. Then

E(σ) = E0σE†
0 + E1σE†

1 = σ,

and the conditions of Lemma 2 are satisfied for all σ ∈ B(HB1) = B(HA1⊗HB1). Observe that
a typical operator σ ∈ B(HB1) satisfies E1σ = 0 6= σE1, and hence this noiseless subsystem
is not supported by the noise commutant for E .

There is another noiseless subsystem for E which is supported by the noise commutant.
Decompose C4 = HA2 ⊗ HB2 into the product of a pair of single qubit systems HA2 =
span{|α1〉, |α2〉} = C2 and HB2 = span{|β1〉, |β2〉} = C2 such that

|α1〉 ⊗ |β1〉 =
|00〉+ |11〉√

2

|α1〉 ⊗ |β2〉 =
|00〉 − |11〉√

2

|α2〉 ⊗ |β1〉 =
|10〉+ |01〉√

2

|α2〉 ⊗ |β2〉 =
|10〉 − |01〉√

2
.

As noted below, |0L〉 = |β1〉 and |1L〉 = |β2〉 are logical zero and logical one states that remain
immune to the errors of E . For 1 ≤ k, l ≤ 2, let

Pkl = |αk〉〈αl| ⊗ 1lB2

= |αk〉〈αl| ⊗ (|β1〉〈β1|+ |β2〉〈β2|)
= (|αk〉 ⊗ |β1〉)(〈αl| ⊗ 〈β1|) + (|αk〉 ⊗ |β2〉)(〈αl| ⊗ 〈β2|)

be the matrix units associated with this decomposition, and notice that these operators are
given by

P11 = |00〉〈00|+ |11〉〈11| P12 = |00〉〈10|+ |11〉〈01|
P21 = |10〉〈00|+ |01〉〈11| P22 = |10〉〈10|+ |01〉〈01|.

We calculate to find:

P11E0P11 = αP11 P11E0P22 = 0P12

P22E0P11 = 0P21 P22E0P22 = P22

P11E1P11 = βP11 P11E1P22 = 0P12

P22E1P11 = 0P21 P22E1P22 = 0P22.

Thus, Eqs. (11,12) are satisfied and it follows from Theorem 1 that B2 is a noiseless subsystem
for E . As an illustration of the conditions from Lemma 2 in this case, one can check that

E(
1l2 ⊗ σ

)
=

( 1−q q
q 1+q

)⊗ σ ∀σ ∈ B(HB2),

where the tensor decomposition C4 = HA2 ⊗HB2 is given above.
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4 Operator Quantum Error Correction

The unified scheme for quantum error correction consists of a triple (R, E , A) where again R
and E are quantum operations on some B(H), but now A is a semigroup in B(H) defined as
above with respect to a fixed decomposition H = (HA ⊗HB)⊕K.
Definition 2 Given such a triple (R, E , A) we say the B-sector of A is correctable for E if

(
TrA ◦PA ◦ R ◦ E)

(σ) = TrA(σ) for all σ ∈ A. (15)

In other words, (R, E , A) is a correctable triple if theHB sector of the semigroup A encodes
a noiseless subsystem for the error map R ◦ E . Thus, substituting E by R ◦ E in Lemma 2
offers alternative equivalent definitions of a correctable triple. Since correctable codes consist
of operator semigroups and algebras, we refer to this scheme as Operator Quantum Error
Correction (OQEC). Observe that the standard model for error correction is given by the
particular case in the OQEC model that occurs when m = dimHA = 1. Lemma 2 shows that
the decoherence-free subspace and noiseless subsystem methods are captured in this model
when R = id is the identity channel and, respectively, m = 1 and m ≥ 1.

While we focus on the general setting of operator semigroups A as correctable codes, it
is important to note that correctability of a given A is equivalent to the precise correction of
the †-algebra

A0 = 1lA ⊗ B(HB)

in the following sense. (Note the difference between A0 just defined and A = {σ = σA ⊗ σB :
σA,B ∈ B(HA,B)}; in the former case the A sector is restricted to the maximally mixed state
while in the latter it is not.)

Theorem 2 Let E = {Ea} be a quantum operation on B(H) and let A be a semigroup
in B(H) as in Eq. (10). Then the B-sector of A is correctable for E if and only if there is a
quantum operation R on B(H) such that

(R ◦ E)(σ) = σ ∀σ ∈ A0. (16)

Proof. If Eq. (16) holds, then condition 2. of Lemma 2 holds for R ◦ E with τA = 1lA and
hence the B-sector of A is correctable for E . For the converse, suppose that condition 2. of
Lemma 2 holds forR◦E . Note that the map Γ′ = { 1√

m
Pkl} is trace preserving on B(HA⊗HB).

Thus by Lemma 1 we have for all σB ,

(Γ′ ◦ R ◦ E)(1lA ⊗ σB) = Γ′(τA ⊗ σB) ∝ 1lA ⊗ σB . (17)

By trace preservation the proportionality factor must be one, and hence Eq. (16) is satisfied
for (Γ′ ◦R) ◦ E . The map Γ′ may be extended to a quantum operation on B(H) by including
the projection P⊥A onto K as a Kraus operator. As this does not effect the calculation Eq. (17),
the result follows. ¤

We next derive a testable condition that characterizes correctable codes for a given channel
E in terms of its error operators and generalizes Eq. (2) for the standard model. We first glean
some interesting peripheral information.
Lemma 3 Let E = {Ea} be a quantum operation on B(H) and let P be a projection on H.
If E(P ) = P , then the range space C for P is invariant for every Ea; that is,

EaP = PEaP ∀a.
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Proof. Let |ψ〉 belong to C = PH. Then by hypothesis and the positivity of E , for each a we
have

Ea|ψ〉〈ψ|E†
a ≤

∑

b

Eb|ψ〉〈ψ|E†
b = E(|ψ〉〈ψ|) ≤ E(P ) = P.

Thus P⊥(Ea|ψ〉〈ψ|E†
a)P⊥ ≤ P⊥PP⊥ = 0 and so P⊥Ea|ψ〉 = 0. As both |ψ〉 and a were

arbitrary the result follows. ¤
An adjustment of this proof shows that more is true when E is contractive (E(1l) ≤ 1l).

Specifically, E(P ) ≤ P if and only if EaP = PEaP for all a in this event. In the special case
of unital operations one can further obtain the following [16].
Proposition 1. If E = {Ea} is a unital quantum operation and P is a projector, then
E(P ) = P if and only if the range space for P reduces each Ea; that is, PEa = EaP for all a.

We now prove necessary and sufficient conditions for a semigroup A to be correctable for
a given error model. Sufficiency was first proven in [18]. We assume that matrix units {Pkl}
inside B(HA)⊗ 1lB have been identified as above.

Theorem 3 Let E = {Ea} be a quantum operation on B(H) and let A be a semigroup in
B(H) as in Eq. (10). Then the B-sector of A is correctable for E if and only if for any choice
of matrix units {Pkl} for B(HA)⊗ 1lB as in Eq. (8), there are scalars Λ = (λabkl) such that

PkkE†
aEbPll = λabklPkl ∀a, b, k, l. (18)

Proof. To prove necessity, by Theorem 2 we can assume there is a quantum operation R on
B(H) such that R◦E acts as the identity channel on A0 = 1lA⊗B(HB) ⊆ B(H). For brevity,
we shall first suppose that R = id is the identity channel.

Let C = PAH be the range of the projection PA = P11 + . . . + Pmm. Then since PA ∈ A0

we have E(PA) = PA and so Lemma 3 gives us PAEa|C = Ea|C for all a.
With B(C) naturally regarded as imbedded inside B(H), define a completely positive map

EC : B(C) → B(C) via
σ 7→ EC(σ) = PAE(σ)|C = PAE(PAσPA)|C

for all σ ∈ B(C). Then we have
∑

a

(PAEa|C)†(PAEa|C) =
∑

a

PAE†
aEa|C = PA1lH|C = 1lC ,

and so EC defines a quantum operation on B(C). Moreover, EC is unital as

EC(1lC) = PAE(PA)|C = 1lC .

Thus by hypothesis and Eq. (5) we have

A0|C ⊆ Fix(EC) = {PAEa|C , PAE†
a|C}′,

where the latter commutant is computed inside B(C). It follows that

B(HA)⊗ 1lB = (A0|C)′ ⊇ {PAEa|C , PAE†
a|C}′′ = C∗({PAEa|C}).

Since the Pkl form a set of matrix units that generate (PAA0|C)′ = B(HA) ⊗ 1lB as a vector
space, there are scalars µakl ∈ C such that

PkkEaPll = Pkk(PAEa|C)Pll = µaklPkl.
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We now turn to the general case and suppose R = {Rb}. The noise operators for the
operation R ◦ E are {RbEa} and thus we may find scalars µabkl such that

PkkRbEaPll = µabklPkl ∀a, b, k, l.

Consider the products
(
PkkRbEaPll

)†(
Pk′k′RbEa′Pl′l′

)
=

(
µabklPlk

)(
µa′bk′l′Pk′l′

)

=
{

(µabklµa′bkl′)Pll′ if k = k′

0 if k 6= k′ .

Noting that C is invariant for the noise operators RbEa by Lemma 3, for fixed a, a′ and l, l′

we use
∑

b R†bRb = 1l to obtain
( ∑

b,k

µabklµa′bkl′
)
Pll′ =

∑

b,k

(
PllE

†
aR†bPkk

)(
PkkRbEa′Pl′l′

)

=
∑

b

PllE
†
aR†bPARbEa′Pl′l′

= PllE
†
a

( ∑

b

R†bRb

)
Ea′Pl′l′

= PllE
†
aEa′Pl′l′

The proof is completed by setting λaa′ll′ =
∑

b,k µabklµa′bkl′ for all a, a′ and l, l′.
For sufficiency, let us assume that Eq. (18) holds. Let σk = |αk〉〈αk| ∈ B(HA), for

1 ≤ k ≤ m, and define a quantum operation Ek : B(HB) → B(H) by Ek(ρB) ≡ E(σk ⊗ ρB).
With P ≡ PA and Ea,k ≡ EaP |αk〉, it follows that Ek = {Ea,k}. We shall find a quantum
operation that globally corrects all of the errors Ea,k.

To do this, first note that we may define a quantum operation EB : B(HB) → B(H) with
error model

EB =
{ 1√

m
Ea,k : ∀a, ∀1 ≤ k ≤ m

}
.

Then Eq. (18) and P =
∑

k Pkk give us

1lBE†
a,kEb,l1lB = 1lB〈αk|PE†

aEbP |αl〉1lB

=
∑

k′,l′
1lB〈αk|Pk′k′E

†
aEbPl′l′ |αl〉1lB

=
∑

k′,l′
λabk′l′ 1lB〈αk|Pk′l′ |αl〉1lB = λabkl1lB .

In particular, Standard QEC implies the existence of a quantum operationR : B(H) → B(HB)
such that (R ◦ EB)(ρB) = ρB for all ρB .

This implies that

(R ◦ E)(1lA ⊗ ρB) = R
( ∑

k

Ek(ρB)
)

= mR
( ∑

k,a

1
m

Ea,kρBE†
a,k

)

= mR ◦ EB(ρB) = mρB .
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Hence we may define a channel IA : B(HB) → B(H) via IA(ρB) = 1
m (1lA ⊗ ρB). Thus, on

defining R′ ≡ IA ◦ R, we obtain
(R′ ◦ E)

(1lA ⊗ ρB) = 1lA ⊗ ρB ∀ ρB ∈ B(HB).

The result now follows from an application of Theorem 2. ¤
Remark. The necessity of Eq. (18) for correction was initially established in [1]. Here we
have provided a new operator algebra proof based on Eq. (5) and Theorem 2. In the original
draft of this paper, we established sufficiency of Eq. (18) up to a set of technical conditions.
More recently, sufficiency was established in full generality in [18]. In [18], two proofs of
sufficiency were given; the first casts this condition into information theoretic language, and
a sketch was given for the second. Here we have presented an operator algebra version (based
on Theorem 2) of the proof of sufficiency sketched in [18].

Let us note that Eq. (18) is independent of the choice of basis {|αk〉} that define the family
Pkl and of the operator-sum representation for E . In particular, under the changes |α′k〉 =∑

l ukl|αl〉 and Fa =
∑

b wabEb, the scalars Λ change to λ′abkl =
∑

a′b′k′l′ ukk′ul′lwaa′wbb′λabkl.
Equation (18) generalizes the quantum error correction condition Eq. (2) to the case where

information is encoded in operators, not necessarily restricted to act on a fixed code subspace
C. However, observe that setting k = l in Eq. (18) gives the standard error correction condition
Eq. (2) with PC = Pkk. This leads to the following result.

Theorem 4 If (R, E ,A) is a correctable triple for some semigroup A defined as in Eq. (10),
then (Pk ◦ R, E , PkkAPkk) is a correctable triple according to the standard definition Eq. (2),
where Pkk is any minimal reducing projection of A0 = 1lA⊗B(HB), and the map Pk is defined
by Pk(·) =

∑
l Pkl(·)P †kl.

Proof. Let σ ∈ |αk〉〈αk| ⊗ B(HB), so that σ = PkkσPkk. Let E = {Ea} and R = {Rb}. By
Theorem 1 there are scalars λabkl such that PkkRbEaPll = λabklPkl ∀ a, b, k, l. It follows that

(Pk ◦ R ◦ E)(σ) =
∑

a,b,l

PklRbEaPkkσPkkE†
aR†bPlk

=
∑

a,b,l

(λablkPkk)σ(λablkPkk)

=
( ∑

a,b,l

|λablk|2
)
σ.

Thus (Pk ◦R◦E)(σ) ∝ σ for all σ ∈ |αk〉〈αk|⊗B(HB), the proportionality factor independent
of σ. In fact, this factor is one. To see this, fix k and note that Theorem 1 shows that

RbEaPkk = RbEaPAPkk = PARbEaPAPkk = PARbEaPkk ∀ a, b.

Hence, trace preservation of R ◦ E yields
( ∑

a,b,l

|λablk|2
)
Pkk =

∑

a,b,l

(PkkE†
aR†bPll)(PllRbEaPkk)

= Pkk

( ∑

a,b

E†
aR†bPARbEa

)
Pkk

= Pkk

( ∑

a,b

E†
aR†bRbEa

)
Pkk = Pkk.
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As k was arbitrary, the result follows. ¤
Remark. Theorem 4 has important consequences. Given a map E , the existence of a cor-
rectable code subspace C — captured by the standard error correction condition Eq. (2) —
is a prerequisite to the existence of any known type of error correction or prevention scheme
(including the generalizations introduced here and in [1]). Moreover, Theorem 4 shows how
to transform any one of these error correction or prevention techniques into a standard error
correction scheme. However, while OQEC does not lead to new families of codes, it does allow
for simpler correction procedures. See [19, 20] for further discussions on this point.
Remark. As a special case, Theorem 4 demonstrates that to every noiseless subsystem,
there is an associated QEC code obtained by projecting the A-sector to a pure state. This is
complementary to Theorem 6 of [10] which demonstrates that every QEC scheme composed
of a triple (R, E , C) arises as a noiseless subsystem of the map E ◦ R.

We conclude this section by exhibiting the 2-qubit case of a new class of quantum channels,
together with correctable subsystems, that is covered by OQEC, but for which the recovery
operation does not fit into the Standard QEC protocol.

First, let us recall briefly that the motivating class of channels E = {Ea} which satisfy
Eq. (2) occur when the restrictions Ea|PCH = Ea|C of the error operators to C are scalar mul-
tiples of unitary operators Ua such that the subspaces UaC are mutually orthogonal. In fact,
this case describes any error model that satisfies Eq. (2), up to a linear transformation of the
error operators. In this situation the positive scalar matrix Λ is diagonal. A correction opera-
tion here may be constructed by an application of the measurement operation determined by
the subspaces UaC, followed by the reversals of the corresponding restricted unitaries UaPC .
Specifically, if Pa is the projection of H onto UaC, then R = {U†

aPa} satisfies Eq. (1) for E on
C. The following is a generalization of this class of channels to the OQEC setting. For clarity
we focus on the 2-qubit case.
Example. Let {|a〉, |b〉, |a′〉, |b′〉} and {|a1〉, |b1〉, |a2〉, |b2〉} be two orthonormal bases for C4.
Let P1 be the projection onto span{|a〉, |b〉} and P2 the projection onto span{|a′〉, |b′〉}. Let
Qi, i = 1, 2, be the projection onto span{|ai〉, |bi〉}. Define operators U1, U ′

1, U2, U ′
2 on C4 as

follows: 



U1|a〉 = |a1〉
U1|b〉 = |b1〉

U ′
1|a′〉 = |a1〉

U ′
1|b′〉 = |b1〉





U2|a〉 = |a2〉
U2|b〉 = |b2〉

U ′
2|a′〉 = |a2〉

U ′
2|b′〉 = |b2〉

,

and put U1P2 ≡ U ′
1P1 ≡ U2P2 ≡ U ′

2P1 ≡ 0. Then these operators are “partial isometries”
and satisfy U1 = U1P1, U ′

1 = U ′
1P2, U2 = U2P1, U ′

2 = U ′
2P2. The operators E = {E1, E2}

define a quantum channel where

E1 =
1√
2
(U1P1 + U ′

1P2)

E2 =
1√
2
(U2P1 − U ′

2P2).

The action of E1 and E2 is indicated in Figure 1.
Here the matrix units are given by

P1 = P11 = |a〉〈a|+ |b〉〈b|



D. W. Kribs, R. Laflamme, D. Poulin, and M. Lesosky 395

Fig. 1.
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For trace preservation, observe that

E†
1E1 =

1
2
(
P1U

†
1 + P2(U ′

1)
†)(U1P1 + U ′

1P2

)

=
1
2
(
P11 + P12 + P21 + P22

)
.

Similarly, we compute

E†
2E2 =

1
2
(
P11 − P12 − P21 + P22

)
.

Thus we have E†
1E1 + E†

2E2 = P11 + P22 = 1l4. Equations (18) are computed as follows:

PkE†
i EiPk =

1
2
Pk for i, k = 1, 2,

PkE†
i EjPl = 0 for i 6= j and k, l = 1, 2,

P1E
†
1E1P2 =

1
2
P12 =

(1
2
P21

)† =
(
P2E

†
1E1P1

)†
,

P1E
†
2E2P2 =

−1
2

P12 =
(−1

2
P21

)† =
(
P2E

†
2E2P1

)†
.

Define
V11 = U1P1, V12 = U ′

1P2, V21 = U2P1, V22 = U ′
2P2

and observe that
V11V

†
11 = U1P1U

†
1 = Q1 = U ′

1P2(U ′
1)
† = V12V

†
12

V21V
†
21 = U2P1U

†
2 = Q2 = U ′

2P2(U ′
2)
† = V22V

†
22.
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Then a calculation shows that the channel

R =
{ 1√

2
V †

jkQj : 1 ≤ j, k ≤ 2
}

corrects for all errors induced by E on A0
∼= 1l2 ⊗ M2. Specifically, (R ◦ E)(σ) = σ for

all σ ∈ B(C4) which have a matrix representation of the form σ =
(

σ1 0
0 σ1

)
, σ1 ∈ M2,

with respect to the ordered basis {|a〉, |b〉, |a′〉, |b′〉} for C4. That is, (R ◦ E)(σ) = σ for all
α11, α12, α21, α22 ∈ C and all

σ = α11

(|a〉〈a|+ |a′〉〈a′|) + α12

(|a〉〈b|+ |a′〉〈b′|)

+α21

(|b〉〈a|+ |b′〉〈a′|) + α22

(|b〉〈b|+ |b′〉〈b′|).
Thus R corrects all σ = 1l2 ⊗ σ1 that are “equally balanced” with respect to the standard
bases for the ranges of P1 and P2. Further, by Theorem 2 we know R corrects the associated
semigroup A in the sense of Definition 2.
Remark. We note that recent work [19] presents physically motivated examples in which
correction of subsystems is accomplished within the OQEC framework. Furthermore, a gen-
eral class of recovery procedures based on the stabilizer formalism was recently presented in
[20]. In particular, this work builds on OQEC to demonstrate how certain stabilizer codes can
be simplified by incorporating gauge qubits. These have the effect of reducing the number of
syndrome measurements required to correct the error map and extend the class of physical
realizations of the logical operations on the encoded data.

5 Unitarily Noiseless Subsystems

In this section we discuss error triples (R, E , A) such that the restriction of R to E(A) is a uni-
tary operation. Consideration of this case leads to a generalization of the noiseless subsystem
protocol that falls under the OQEC umbrella. Let us first consider a direct generalization of
the fixed point set algebraic approach as in Eq. (5). Here we have the equation

E(σ) = UσU† ∀σ ∈ A0 = 1lA ⊗ B(HB), (19)

for some unitary operator U . When A0 satisfies Eq. (19) for a unitary U we shall say that
A0 is a unitarily noiseless subsystem (UNS) for E . Of course, a subsystem A0 that satisfies
Eq. (19) is not noiseless, but it may be easily corrected by applying the reversal operation
U†(·)U . As we indicate below, this can lead to new non-trivial correctable subsystems not
obtained under the noiseless subsystem regime. If E is a unital operation, it is possible to
explicitly compute all UNS’s for E .

Theorem 5 If E = {Ea} is a unital quantum operation on B(H) and U is a unitary on
H, then the corresponding unitarily noiseless subsystem A0 is equal to the commutant of the
operators {U†Ea};

A0 =
{
σ ∈ B(H) : E(σ) =

∑
a

EaσE†
a = UσU†} =

{
U†Ea

}′
.

Proof. The set of σ that satisfy Eq. (19) is equal to the set of σ that satisfy U†E(σ)U = σ.
Thus, here we are considering the fixed point set for the unital operation U†E(·)U , which has
noise operators {U†Ea}. The result now follows from Eq. (5). ¤
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Let us consider a simple example of how this scheme can be used to identify new correctable
codes for a given channel.
Example. Let Z1 = Z ⊗ 1l2 and Z2 = 1l2⊗Z with the Pauli matrix Z =

(
1 0
0 −1

)
. Then, with

respect to the standard orthonormal basis {|00〉, |01〉, |10〉, |11〉} for C4, we have

{Z1, Z2}′ =








a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d


 : a, b, c, d ∈ C





,

Hence there are no non-trivial noiseless subsystems for the corresponding channel E = {Z1, Z2}.
However, if we let U ∈ B(C4) be the unitary

U |ij〉 =
{ |ij〉 if i 6= 1 or j 6= 1
−|11〉 if i = 1 and j = 1 ,

then we compute

{U†Z1, U
†Z2}′ =








a 0 0 b
0 c 0 0
0 0 d 0
e 0 0 f


 : a, b, c, d, e, f ∈ C





.

In particular, the †-algebra A0 = {U†Zi}′ is unitarily equivalent to A0
∼= M2 ⊕C⊕C. Thus,

a single qubit code subspace may be corrected. Specifically, all operators σ ∈ A0 may be
corrected by applying U†(·)U since they satisfy E(σ) = UσU†.

In a similar manner we can extend this discussion to the case of noiseless subsystems for
arbitrary quantum operations. The analogue of Eq. (19) in this case is

∀σA ∀σB , ∃τA : E(σA ⊗ σB) = U(τA ⊗ σB)U†, (20)

where U is a fixed unitary on H. In effect, this is the special case of the OQEC formulation
Eq. (15) where the recovery R is unitary. In this context the conditions of Lemma 2 yield
the following.

Theorem 6 Given a fixed decomposition H = (HA ⊗HB)⊕K, a map E on B(H) and a
unitary U on H, the following three conditions are equivalent:

1. Eq. (20) is satisfied.

2. ∀σB , ∃τA : E(1lA ⊗ σB) = U(τA ⊗ σB)U† .

3. ∀σ ∈ A :
(
TrA ◦PA ◦ U−1 ◦ E)

(σ) = TrA(σ).

where U−1(·) = U†(·)U .

6 Conclusion

We have presented a detailed analysis of the OQEC formalism for error correction in quantum
computing. This approach provides a unified framework for investigations into both active
and passive error correction techniques. Fundamentally, we have generalized the setting for
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correction from states to operators. The condition from standard quantum error correction
was shown to be necessary for any of these schemes to be feasible. Included in this formalism is
a scheme for identifying noiseless subsystems that applies to arbitrary (not necessarily unital)
quantum operations. We also introduced the notion of unitarily noiseless subsystems as a
natural relaxation of the noiseless subsystem condition.
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