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We discuss quantum information processing with hyperentangled photon states - states
entangled in multiple degrees of freedom. Using an additional entangled degree of free-
dom as an ancilla space, it has been shown that it is possible to perform efficient Bell-
state measurements. We briefly review these results and present a novel deterministic
quantum key distribution protocol based on Bell-state measurements of hyperentangled
photons. In addition, we propose a scheme for a probabilistic controlled-not gate which
operates with a 50 % success probability. We also show that despite its probabilistic
nature, the controlled-not gate can be used for an efficient, nonlocal demonstration of
the Deutsch algorithm using two separate photons.
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1 Introduction

It has been shown that quantum mechanics offers a novel solution to several problems in
information processing. Quantum cryptography provides a secure method of sending classical
information, while quantum computation may solve some complex computational problems.
However, the fragility of the quantum state makes transmission, storage and processing of
quantum information difficult.

An interesting aspect of the photon as a carrier of quantum information is that it is
possible to create, with currently available techniques, “hyperentangled states” - multi-photon
states entangled in multiple degrees of freedom [1]. Using spontaneous parametric down-
conversion, it is possible to create entangled mulit-photon states in several degrees of freedom,
including linear momentum [2], polarization [3, 4], time-bin [5], orbital angular momentum
[6], transverse position and momentum [7, 8] and Hermite-Gaussian modes [9]. In all of these
examples it is possible to create and manipulate single qubits and in some cases arbitrary
dimensional qudits. The name “hyperentangled states” may be distasteful to some, as it may
imply that there is some added resource at hand. In some respects, this is true, since it is
possible to construct larger dimensional systems out of smaller systems. Consider the case of
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two photons a and b entangled in the following form:
_ |t -
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Here qubits 1 and 3 are represented by two degrees of freedom of photon a and qubits 2 and
4 are represented by two degrees of freedom of photon b. The states |¢*) are two of the usual
Bell states, which are given by

1
[$) = 73 (01 £11)10)) (2)
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The state (1) can of course be rewritten as

[¥)ap = 5 (100)15 [11)54 — [01)15 [10)34 + [10)15[01)54 — |11)45[00)5,) , (4)
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and defining |00) = |0), |01) = |1), |10) = |2), |11) = |3), gives
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which is a two qudit (dimension D = 4) antisymmetric singlet state [10]. It has been shown
that these larger dimensional two-photon systems can be used for “all-or-nothing” violation
of local realism [11] as well as efficient quantum cryptography [12]. Moreover, it has been
shown that these hyperentangled states may be advantageous in certain quantum information
tasks. There are several methods of using the additional degree of freedom provided by
hyperentangled photon states to perform a complete Bell-state measurement [13, 14], a task
that is at best 50% efficient with linear optics and single photon detectors [15, 16, 17]. In
section 2 we briefly describe the experimental generation of hyperentangled photon states and
in section 3 we describe the implementation of quantum logic gates on qubits encoded in the
same photon. Using these basic ingredients, we then review a recent Bell-state measurement
proposal in section 4 and discuss its utility for dense coding. In section 4.2 we show that
this type of Bell-state measurement can be used to implement a novel “dense” quantum key
distribution (QKD) scheme, which offers increased bit transmission rate as well as increased
sensitivity to eavesdropping. Hyperentangled states of this form have also been used to realize
quantum teleportation [18] and a destructive controlled-not (CNOT) gate between two photons
has been implemented by teleportation [19, 20]. In section 5 we present a similar scheme for a
hyperentangled CNOT gate which operates with a success rate of 1/2. We discuss the pros and
cons of our scheme and show that our hyperentangled CNOT gate can be used to implement
the two-qubit Deutsch algorithm on two separate photons. An interesting feature of this
scheme is that the algorithm can then be implemented non-locally.
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Fig. 1. A source of hyperentangled states using parametric down-conversion.

2 Hyperentangled states

Through parametric down-conversion, it is possible to create two or more hyperentangled
photons [1]. Hyperentangled states of the form (1) have been experimentally created and
characterized [21, 22]. A simple scheme based on the two type-I crystal source [4] is shown in
Fig. 1. Polarization-entangled photons of the same wavelength can be collected around the
rim of a cone (Fig. 1). In this source, the first crystal emits pairs of horizontally-polarized
photons and crystal 2 emits pairs of vertically-polarized photons in superimposed emission
cones. Phase-matching conditions guarantee that photon pairs are emitted on opposite sides
of the cone, such as positions ag and b; or a; and by, for example. Let qubits 1 and 2 represent
the polarization degree of freedom and qubits 3 and 4 correspond to momentum degree of
freedom. The two-photon state corresponding to coincident photon pairs at positions ay and
by is (|0), |0), 4+ €*?|1), |1),)|0)5|1),, where horizontal (vertical) polarization represents the
0 (1) logical state. Similarly, the two-photon state corresponding to coincidences at a; and
bo is (|0); [0), + € |1); |1)5)|1)5]0),. If the interaction region of both crystals lies entirely
within a coherence volume of the pump laser beam, one can control the relative phase so
that a polarization- and momentum-entangled state of the form [¢),, = |¢T), [0 );, is
created by selecting the photon pairs at the two sets of regions agb; and aibg. One can
adjust the phase so that the momentum state is [1)™). Half- and quarter-wave plates can be
used to switch between the four polarization Bell-states [3]. It should be noted that because
there are also vacuum and higher-order terms present with this source, a hyperentangled
state is achieved only by post-selection: considering only those events which give two-photon
coincidence detections.

3 Single photon quantum computing

There has been considerable work in quantum computation using optical qubits defined in
multiple degrees of freedom of the same field [23, 24]. These implementations are physically
unary realizations of quantum computation which are not scalable [25]. However, small-
scale implementations may offer some advantages. For one, it is a simple matter to realize
controlled logic operations deterministically. For example, if polarization and spatial mode of
a photon are used to represent two qubits, a polarizing beam splitter can be used to perform
a CNOT as illustrated in Fig. 2 a). Nesting the PBS among Hadamard gates (beam splitters
and half-wave plates) switches the control and target qubits (Fig. 2 b) [26]. A much simpler
implementation of the CNOT operation in b) can be implemented using a HWP in one optical



S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken 339

path (Fig. 2 ¢). The HWP should be oriented at 22.5° so as to swap horizontal and vertical
polarization. A similar CNOT gate was performed using polarization and transverse spatial
degrees of freedom [27].

Another consideration is that two-qubit gates involving more than one photon operate
probabilistically, as will be discussed in further detail in section 5. To date the best gate
operates with a theoretical efficiency of 1/4 [53, 56]. In some cases, the probabilistic nature of
these gates does not present a problem. However, consider the simplest case of the Deutsch
algorithm involving two qubits, which provides a speedup of 1/2 and requires a two-qubit
controlled logic operation. Any speedup provided by quantum mechanics is lost due to ineffi-
ciency of the two-qubit gate. Using multiple degrees of freedom of the same photon, however,
the two-qubit Deutsch algorithm can be implemented efficiently and deterministically [28].

::::}géiéi::::

a)

HWP HWP

BS PBS BS

HWP HWP

b)
e
HWP

©)

Fig. 2. Controlled operations between qubits defined by different degrees of freedom of the same
photon can be implemented with simple linear optical elements. a) A polarizing beam splitter
(PBS) implements a CNOT operation where the polarization controls the spatial mode (target) of
the photon. b) Nesting the PBS among Hadamard rotations in both degrees of freedom imple-
mented by half-wave plates (HWP) and 50-50 beam splitters (BS) switches the role of the control
and target qubits. c¢) The CNOT operation in b) can also be implemented in a much simpler
arrangement using only a HWP in one optical path.

4 Bell State Measurements

A Bell-state measurement (BSM) is a necessary step in many quantum information schemes,
including quantum dense coding [29, 30], quantum teleportation [18, 31, 32] and entanglement
swapping [31, 33, 34]. However, it has been proven that a complete BSM (distinguishing
between the four states with 100% efficiency) is impossible using only linear operations and
classical communication [15, 16, 17, 35]. In fact, Ghosh et. al. [35] have proven that, if only
a single copy is provided, the best one can do is to discriminate between two Bell states.
Likewise, Calsamiglia and Liitkenhaus [17] have shown that the maximum efficiency for a
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linear Bell-state analyzer is 50%. It is possible to discriminate the four Bell states using
nonlinear processes [36, 37, 38] or two-photon absorption [39, 40]. However, these methods
suffer from low efficiency. It is also possible to implement a CNOT gate and consequently a
Bell-state measurement using the teleportation-based quantum computation model proposed
by Gottesman and Chuang [19] and further advanced by Knill, Laflamme and Milburn [50],
which requires linear optics, photo-detectors and N ancillary photons. The success probability
increases as N2/(N + 1)?; approaching unity for large N. The difficulty with this method
arises from the need for ancillary photons on demand. Currently, this is not possible for more
than a few photons.

Recently, it has been shown that one can increase the efficiency of a Bell-state measurement
by using hyperentangled states [13, 14, 42]. Utilizing the entanglement present in an additional
auxiliary degrees of freedom, it is possible to perform a complete BSM. Due to the enlarged
Hilbert space, this type of complete BSM is not restricted to the efficiency limits presented in
[15, 16, 17, 35]. We will first briefly review the BSM scheme presented in Ref. [14] and then
discuss application of this technique to dense coding and secure key distribution.

Consider hyperentangled product states of the form

[¥)ap = Bh1a ® [¢7)gy s (6)

where again 1 and 3 refer to photon a and 2 and 4 refer to photon b. Here |B) represents any
one of the four Bell states given in Egs. (2) and (3). Applying CNOT gates to qubits 1 and
3 and 2 and 4 respectively, where 1 and 2 are the control qubits and 3 and 4 are the target
qubits, the state given in Eq. (6) transforms as

9 ) 1 [ )5 — [ F) 1207 e (7)
65) 10 [ )5 — 165) 12 [0 )ss - (8)

Performing Hadamard transformations on qubits 1 and 2, we have

|¢+>12 ‘¢+>34 — ¢ ) 12 (67 )34
‘¢_>12 ‘¢+>34 — [P )12 (07 )34
(600 19 )50 — 167012 [T

) D12 [T )34 (9)

It is easy to see that it is possible to discriminate between the four states Eq. (9) by simply
measuring qubits 1-4 in the computational basis. Table 1 shows the appropriate measurement
results for each Bell state. A quantum circuit diagram for this scheme is shown in Fig. 3.
It is interesting to note that this BSM scheme can be implemented non-locally, provided the
two parties can communicate classically.

4.1 Dense Coding

In quantum dense coding [29], Alice and Bob are able to transmit two bits of information in
one quantum bit. To do so they each possess one photon of an entangled Bell-state (|4 ), for
example). Since the reduced density matrix for each photon is /2, where | is the 2 x 2 identity
matrix, there is no information present in either Alice or Bob’s photons alone. Suppose that
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Fig. 3. Quantum circuit for hyperentangled Bell-state analysis. SPDC can be used to create
hyperentangled photons. Single qubit operators U and V implement arbitrary local operations on
qubits 1 and 2. Single photon logic operations are then used to distinguish between the four Bell
states encoded into qubits 1 and 3, while qubits 2 and 4 form an ancilla space. The boxes “0/1”
are detectors in the computational basis.

some time later, Alice wishes to send 2 bits of information to Bob. She first switches among the
four Bell-states using local operations on her photon, and then sends it to Bob, who performs
a Bell-state measurement on the photon pair, and retrieves Alice’s message. Since there was
no information present in Bob’s photon, then the 2 bits of information was sent in Alice’s
photon. However, there is no information present in Alice’s photon alone: all information is
retrieved through correlations.

Using only linear optics, complete dense coding is impossible, since it is not possible to
distinguish between the four Bell states using only linear optics [15, 16, 17]. In fact, the
first experimental demonstration of dense coding [30] transmitted approximately 1.58 bits
of information in Alice’s photon and used symmetry of the two-photon state as an added
resource. Using hyperentangled states and the BSM technique described above, it is possible
to implement a “dense” coding protocol which transmits 2 bits per photon. However, each
photon must carry two qubits. The fact that neither Alice’s nor Bob’s photons alone contain
any information can be exploited to implement secure quantum key distribution protocols
[44, 45, 46, 47, 48]. Here we provide a key distribution protocol using hyperentangled states.

4.2 Key Distribution

In section 4 we showed that an additional entangled state (|t)*) for example) in an auxilary
degree of freedom can be used as an ancilla space to discriminate between the four Bell-

Table 1. Detection signature of Bell states.

initial state measurement results
¢+>12 0000 or 0011 or 1100 or 1111
), 0100 or 0111 or 1000 or 1011

¢+>12 0010 or 0001 or 1110 or 1101
¢—>12 0110 or 0101 or 1010 or 1001
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states. Here we show that states of the form (6) can be used for quantum key distribution.
Two main goals in fundamental research in quantum cryptography are increasing the security
and transmission rate of a cryptographic protocol. Below, we show that hyper-entangled
photons can be used to achieve both of these objectives.

A schemtic of the key distribution protocol is illustrated in figure 4. Let |B;;) repre-
sent one of the four Bell states such that |Bpo) = [¢v7), |Bo1) = [¢T1), |B1o) = |¢~) and
IB11) = |¢T). Suppose that Alice and Bob share a pair of hyperentangled photons in the
state |Boo),s [T )5, Alice can perform local operations on one of her photons to transform
|Boo) to one of the four states |B;;). Thus, she can encode 2 bits of classical information into
the shared hyperentangled pair. The key distribution protocol goes as follows:

1. Alice generates two random bits ¢ and j and uses them to encode |Bj;),, |#/")s,. She
records each pair of random bits and keeps them secret.

2. Alice sends one photon of the hyperentangled pair to Bob.

3. Alice and Bob perform their respective parts of the BSM on the pair of hyperentangled
photons as discussed in section 4. Alice (Bob) records the measurement results of qubits
1 and 3 (2 and 4).

4. Alice and Bob repeat the above steps IV times.

5. Bob randomly chooses a fraction of his results and announces them publicly to Alice.
Call this set of results { Rcheck }-

6. Since Alice knows which state B;; was sent in each case, she checks each of Bob’s mea-
surement results in {Rcheck } With her’s to confirm that the correct set of measurements
was obtained, and calculate the maximum amount of information available to an eaves-
dropper (see below).

7. Confident that an eavesdropper on the quantum channel does not have access to an
excess of information, Alice publicly announces her set of results for all those measure-
ments not publicly announced by Bob in {Rcheck}. These results can then be used to
construct the secret key.

8. Knowing both his and Alice’s results, Bob knows which state B;; was sent, and thus
knows the secret key.

We note that the use of the ancilla space does not reduce the security of the key distribution
protocol, since it is straightforward to check that in all cases the reduced density matrix
of both Alice and Bob’s photons is l5/4, where |, is the 4 X 4 identity matrix. Thus, no
information can be obtained by either Alice or Bob revealing their measurement results.

Let us look briefly at the effects of an eavesdropper Eve. For simplicity, let us suppose
that Eve measures every hyperentangled photon sent from Alice to Bob, and furthermore
that she employs the same BSM detection system employed by Alice and Bob. Since in
every case each of Bob’s measurement results have an equal probability (= 1/4), Eve can
essentially extract no information. Moreover, her presence will be detected during Alice and
Bob’s check procedure (step 6 above). As an example, suppose that Alice sends the state
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|¥T) 5 ¥ T),, to Bob, and that Eve obtains measurement result 0204. Furthermore, suppose
that she employs a simple intercept-resend strategy: she sends a new photon in state |0), |0),
on to Bob. Bob and Alice’s joint state is then [1), |0),|1),]0),. After the CNOT gates and
Hadamard transformations, their joint state is |0000) + |0100) — |1000) — |1111), where the
qubit order 1-2-3-4 has been maintained. Comparing with the correct measurement results
in Table 4 shows that 50% of the time Eve’s eavesdropping will go unnoticed while the other
50% of the time Alice and Bob will detect the wrong state. The bit error rate (in the absence
of noise) induced by the presence of Eve is 50%, which can be detected by Alice and Bob.
We note that this is twice the error rate of the usual BB84 protocol, and equal to the upper
limit of the error rate for any two-basis protocol using a d-dimensional alphabet [43].

In addition to increased security, there is an increased transmission rate, since each photon
sent from Alice to Bob can be used to establish two bits of information. Furthermore, we
stress that this protocol is deterministic, in the sense that every photon sent from Alice to
Bob is used in either {Reheck } Or as part of the secret random key. In other words, there is no
basis reconciliation or sifting procedure, which would decrease the efficiency of the protocol.

Alice Bob
qubits 1,3 qubits 2,4
00— g — 00
- = | |3 quantum channel @ o1
7ulE source 7]
10 — m o z L 10
11 — g L

Fig. 4. Key distribution with hyperentangled Bell-states. “Source” represents the source of hy-
perentangled product states. BSM is the Bell-state measurement device discussed in section 4.

5 Two-photon quantum logic gates

It is well known that universal quantum computation can be performed using only single qubit
rotations and two-qubit CNOT operations [26]. Using photons to encode qubits, it is a simple
matter to implement single qubit rotations using phase shifters, beam splitters and wave
plates. However, controlled logic operations involving two or more photons is a much more
difficult task. Early proposals utilized non-linear materials to couple two or more fields [49]
and consequently suffered from low efficiency. More recently, Knill, Laflamme and Milburn [50]
(KLM) have shown that universal quantum computation can be performed using only linear
optical elements, single-photon sources and photo-detectors. Their work utilizes the earlier
results of Gottesman and Chuang [19], who showed that controlled quantum logic operations
can be implemented using modified quantum teleportation procedures and ancillary entangled
states. An interesting feature of the Gottesman-Chuang idea is that controlled quantum logic
gates can be implemented non-locally, provided that parties involved share a certain amount
of ancillary entangled states and can communicate classically [51, 52]. Several more recent
proposals of two-photon controlled logic gates have followed [53, 54]. In all of these schemes
the required nonlinearity is provided by post-selection of measurement results, and thus the
gates operate probabilistically. For example, the (local) controlled-not (CNOT) gate proposed
by Ralph et. al [54] and realized by O’brien et. al [55], which requires no ancillary photons,
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operates with a success rate of 1/9, while the (non-local) CNOT gate proposed by Pittman et. al
[63] and realized by Gasparoni et. al [56] has a success rate of 1/4, but requires an ancillary
pair of entangled photons. Yoran and Reznik have proposed a method for deterministic
quantum computation using single photons and components of the KLM scheme, however,
their proposal requires entangled multi-photon “chain” states, which are currently difficult to
realize experimentally [57].

Let us now present our hyperentangled CNOT gate. Consider an arbitrary two-photon
hyperentangled state of the form

o) = (a |00>12 +0 |01>12 + |10>12 +4 |11>12) ‘¢7>34- (10)

Here we show that the ancillary entangled state |1y~ ),, can be used to implement a CNOT
gate between qubits 1 and 2 with a 50% probability of success. We note that this gate is
not scalable, since it requires post-selection of measurements on qubits 3 and 4. Qubits 3
and 4 are encoded into the same two photons as qubits 1 and 2, so measurement of qubits
3 and 4 inadvertently destroys qubits 1 and 2. Despite the fact that the gate presented here
is probabilistic and non-scalable, there are still some interesting applications. For one, we
show that our gate can be used to implement a two-photon version of the Deutsch algorithm.
An interesting feature of this implementation is that due to the entanglement present in the
initial state, the algorithm can be implemented non-locally.

For notational convenience, we will label two qubit gates with two subscripts, the first
one is the control and the second is the target qubit. For example, CNOT;3 is a CNOT gate
where qubit 3 is flipped when qubit 1 is the logical 1 state. Single qubit gates will be labeled
with a single subscript. For example, X; is the usual Pauli operator acting on qubit 1. For
simplicity, we will use X; to represent X; = X; @ s ® I3 ® I4.

] 'S]

=21

photon a

photon b

4

Fig. 5. Quantum circuit diagram of hyperentangled ¢NOT gate. All the quantum gates used are
single photon (one and two qubit) gates and are defined in the text. The curvy line is used to
show that qubits 3 and 4 are entangled.

We now present our hyperentangled CNOT gate. A quantum circuit diagram is shown
in Fig. 5. The gate consists of single qubit operations and 3 controlled-logic operations
on qubits encoded in the same photon. Thus, all the necessary gates can be implemented
deterministically and are well within the bounds of current quantum optics experiments, as
discussed in section 3.
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ei7r/4 0
( 0 e—i7r/4 ) . (11)

Applying this gate to the second qubit, the state |¥y) becomes

THw) — |¥) (12)
= (Oée_iw/4 00,5 + /66”/4 01),5 + ’Ye_iw/4 110}, + s’/ 111)},) |¢_>34 :

We use the TT gate, where

T

We then perform a pair of controlled-Z gates (CZ) on qubits 1 and 3 and 2 and 4, where Z is
the usual Pauli operator [26]. The state evolves as

02130224 |\I’1> — |\I/2>
= ae /4 |00>12 ‘¢7>34 - 562”/4 |01>12 |¢+>34
+ e A 10), [T, — 0T 1LY, B ), - (13)
The next step is a CNOTy4, gate, which gives
CNOTys |\IJ2> — |‘I’3>
o —im
= ﬁe /4(|01>12 ‘01>34 - ‘00>12 |10>34)
18 T
+ ﬁe /4 (— 100),5101)5, — [01),,[10)3,)
Y _ir
+ Ee /4(|11)15 |01) g + [10) 5 [10)4,)

+ EGMM(_ [10)15 [01) 34 + [11)15 [10)54)- (14)
Rewriting qubit 2 in the |+) = (|0) £ |1))/+/2 basis, the above expression becomes
Wa) = e A(04) 1 [ ) g = 0 [97)5)
- \55 “r/4 (101, |1,/1 >34+ 0+)15 W >34
- \’/yg _“r/4 |1 12 |1/) >34 ‘1+>12 ‘¢+>34)
- \j_ W/4 |1+ 12 |¢ >34+ ‘1 12 W >34 (15)

Performing a Hadamard rotation Hs rotates qubit 2 back to the computational basis, which
gives
Q i/ —
|‘I’4> = ﬁe / (|00>12 |71/) >34 - ‘01>12 |¢+>34)

B %eiw/4(01>12 |¢7>34 + ‘00>12 |¢+>34)

D) )y, 10 )50

- %e”/‘*u% 97 Ys, + 11015 [, (16)
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Using the gates S; ® Tg, where

results in

|Ws) = (@]00),5 — B01);5 — v[11)}5 + 3 [10),,) ‘¢7>34

2
+

S

(a |01>12 -8 |00>12 +7 ‘10>12 -4 |11>12) ‘¢+>34- (18)
A final Z5 gate gives the required result:

1
Vo) = E(al00>12+5|01>1z+7\11>12+5|10>12)\¢’>34
1

V2

Inspection shows that post-selecting the |¢)~),, portion of the state (19) results in a CNOT
operation on qubits 1 and 2. Similarly, post-selecting the |1/1+>34 portion results in the
Z1X1CNOT12X; gate up to a global phase. X;CNOT;2X; is a logic operation similar to the
usual CNOT gate, however the target bit is flipped when the control is in the logical 0 state.
In summary, the CNOT gate is composed of the following sequence of logic operations: (i)
single-qubit T} gate, (i) (single photon controlled gates) controlled—Z;3 ® controlled—Za4,
(#¢) (single photon) CNOT4g, (iv) single qubit Hadamard gate Ha, (v) single qubit S; and T,
gates, (vi) single qubit Z, gate.

The hyperentangled CNOT gate has a success probability of 1/2. However, despite the fact
that the gate is probabilistic, we will show that it can be used to implement a two-photon
version of the Deutsch algorithm deterministically.

(a]01);, +B100),, — v [10);5 — §[11)},) ‘¢+>34- (19)

5.1 Deutsch Algorithm

qubit 1 —JH]
qubit2 —H]

Fig. 6. Quantum circuit used to implement the Deutsch algorithm.

Ur

A simple example of the utility of the hyperentangled CNOT gate is the experimental imple-
mentation of Deutsch’s algorithm [59, 60], one of the first examples of a quantum algorithm.
The general problem is as follows. Suppose that one is in possession of a black box which
takes a bit  into another bit f(z). There are four possible outcomes: two corresponding to
each of the two possible input bits 0 and 1. Now suppose that it would suffice to know if f
is constant: f(0) = f(1) or balanced: f(0) # f(1). Obviously, to characterize the function f
using classical computation requires two black-box computations, one to compute f(0) and
one to compute f(1). However, as Deutsch showed, using quantum computation we can run
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Table 2. Controlled logic operations Uy and U’f associated to the possible values of f(z).

f(=z) Us
f(0) = f(1) = 0 (constant) h ®l2
f(0) = f(1) = 1 (constant) i ® Xo
f(0) =0, f(1) =1 (balanced) CNOT;2
f(0) =1, f(1) = 0 (balanced) X;CNOT;2X;

the black box only one time. To do so requires a quantum oracle operator which implements
the unitary transformation

Uslz)ly) — lz) [y ® f(=)) - (20)

In order for Uy to implement f(x) and still be unitary, it is necessary that Uy act on two qubits.
However, we note that f(z) is evaluated for only one input qubit. In general, implementation
of Uy is non trivial, since it is a controlled logic operation. Table 2 shows the controlled logic
operations Uy required for the possible values of f(z). Using the quantum circuit shown in
Fig. 6, it is a simple matter to show that the initial state |0}, |1), evolves as [26]

@) = UgHiH; 0}, ]1),
= e+ O] o), (21)

If £(0) = f(1), we have
@) = £ [+)1])2> (22)

while if f(0) # f(1) then

[8) = £ |-}, |-, (23)
Thus, measuring qubit 1 in the |+) basis provides information as to whether the function f
is constant or balanced in only one run of the quantum black box operator Uy.

We will now show that the CNOT gate described in section 5 can be used to implement the
Deutsch algorithm deterministically, with 100% success probability. If the initial hyperentan-
gled state is |¥;) = |0), |1), [t~ )5,, implementing the initial H; and H, gates along with the
four possible values of the Uy operator listed in Table 2 gives the following output states:

[Peon) = £ |+)1 =)z [¥ g4 (24)
if f(z) is constant and
1 1
|‘I’bal> = iﬁ |_>1 ‘_>2 |¢_>34 + E |+>1 |_>2 ‘¢+>347 (25)

if f(z) is balanced. Detecting qubit 1 in the |+) state and qubits 3 and 4 in the |1)~) state
indicates that f(z) is constant while detecting qubit 1 in the |—) state and qubits 3 and 4 in
the |1y ) state or qubit 1 in the |+) state and qubits 3 and 4 in the |¢p) state implies that
f(z) is balanced. Thus, despite the fact that the CNOT gate operates probabilistically, the
Deutsch algorithm can be implemented deterministically.

It is interesting to notice that the Deutsch algorithm can in principle be implemented
non-locally, provided that it is possible to implement a non-local oracle operator Us. Using
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the CNOT gate proposed in section 5, all operations in Uy are single-photon operations. Thus,
a non-local oracle can easily be constructed provided the two parts (one which operates on
photon a and one which operates on photon b) can communicate classically. The cost of a
non-local oracle is 2 bits of classical communication, since it is necessary to determine the
operator U, which can take one of four values.

6 Conclusion

Hyperentangled multi-photon states can be used to construct larger dimensional systems.
Here we have shown some possible applications of these types of states to quantum information
tasks such as Bell-state measurements and quantum dense coding. We have proposed a
quantum key distribution protocol based on Bell-state measurement of hyperentangled states,
as well as a two-photon controlled-not (CNOT) gate which operates probabilistically with a
success rate of 50%. Despite its probabilistic nature, we have shown that this gate can be used
to implement a two-photon version of the Deutsch algorithm. A two-photon implementation
may be interesting in quantum communication as it can be realized non-locally. Experimental
realization of this protocol is well within the bounds of current quantum optics experiments
and is underway in our laboratory.
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