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We construct a quantum circuit for Shor’s factoring algorithm that uses 2n + 2 qubits,
where n is the length of the number to be factored. The depth and size of the circuit
are O(n®) and O(n®logn), respectively. The number of qubits used in the circuit is less
than that in any other quantum circuit ever constructed for Shor’s factoring algorithm.
Moreover, the size of the circuit is about half the size of Beauregard’s quantum circuit
for Shor’s factoring algorithm, which uses 2n + 3 qubits.
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1 Introduction

In 1994, Shor proposed an efficient quantum algorithm for factoring [1]. The main part of the
algorithm is a quantum algorithm for order-finding and it uses the quantum Fourier transform
(QFT) and modular exponentiation. These operations have been analyzed in depth and
efficient quantum circuits for order-finding have been constructed [2, 3, 4, 5, 6, 7, 8, 9]. Since
efficient quantum circuits for order-finding would be useful for performing Shor’s algorithm
on a quantum computer, there is great interest in constructing such circuits. In particular,
there is interest in reducing the number of qubits in circuits for order-finding since it seems
extremely difficult to realize quantum computers with many qubits.

Many studies of quantum circuits for order-finding have focused on reducing the number
of qubits [2, 3, 6, 8, 9]. The best known circuit is the one constructed by Beauregard [2],
which uses 2n + 3 qubits, where n is the length of the number to be factored. When the
approximate QFT [10] is used in the circuit, the depth and size of the circuit are O(n?)
and O(n3logn), respectively. To reduce the number of qubits, the circuit uses the quantum
addition proposed by Draper [5] and several techniques, such as the hardwiring of classical
values and the sequential computation of the QFT [9, 11].

In this paper, we construct a quantum circuit for order-finding that uses 2n + 2 qubits.
When the approximate QFT is used in the circuit, the depth and size of the circuit are O(n®)
and O(n®logn), respectively. The number of qubits used in the circuit is less than that in any
other quantum circuit ever constructed for order-finding. Moreover, the size of the circuit is
about half the size of Beauregard’s circuit. The key component of the circuit is a new quantum
circuit for the comparison of two numbers that uses “uninitialized” ancillary qubits. That is,
the circuit uses ancillary qubits that are not initialized to |0). In the following, we use the
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standard notation for quantum states and use the standard diagrams for quantum circuits
[12].

2 Construction of the Circuit for Order-Finding
2.1 Decomposition of Modular Exponentiation

Let N be an n-bit number to be factored and a be an n-bit number less than N such that
a is coprime to N. The quantum algorithm for order-finding finds the order of a modulo N,
where the order of @ modulo N is the least number 7 such that a” = 1 mod N. The algorithm
consists of the QFT and modular exponentiation. Thus, the usual circuit for order-finding
is constructed using the circuit for the QFT and the circuit for the modular exponentiation
operation that maps |z)|1) to |z)|a® mod N), where z is a 2n-bit number.

The construction method of our circuit for order-finding is similar to that of Beauregard’s
one [2]. We use the sequential computation of the QFT to reduce the number of qubits. In
doing so, it suffices to construct a quantum circuit for the controlled modular multiplication
operation MM(a?') for i = 2n — 1,...,0 (in place of the modular exponentiation operation),
where MM(a) is defined as

|c)|az mod N) ife=1,
le)|z) otherwise,

MM@[0le) = {

where c is a one-bit number and z is an n-bit number. The circuit for order-finding uses
MM(a?") for i = 2n —1,...,0 sequentially.

MM(a) is decomposed into the controlled modular product-sum operations MPS(a) and
MPS(a~'), where MPS(a) is defined as

| le)|z)|ax +bmod N) ifc=1,
MPs@llal = { |92 oruise
where c is a one-bit number and z and b are two n-bit numbers. Actually, MM(a) is computed

using MPS(a), MPS(a™!), and one swap operation as follows (We assume that ¢ = 1 and omit
the register containing c):

[£)[0) — |z)|az mod N)
— |az mod N)|z)
—  |az mod N)|z — a"'az mod N) = |az mod N)|0),
where the first operation is MPS(a), the second is the swap operation, and the third is
MPS(a~1!)~!. Note that a—!, which is the inverse of a modulo N, exists since a is coprime to
N, and a ! is computed using Euclid’s algorithm efficiently.

MPS(a) is decomposed into the doubly controlled modular addition operations MA (2a)
for i =0,...,n — 1, where MA(a) is defined as

| ler)|e2)la+bmod N) ifc; =cp=1,
MA@ e eal) = { |11 otherwioe,

where ¢; and c; are two one-bit numbers and b is an n-bit number. Actually, MPS(a) is
computed using the relationship

az +bmod N = (2" taz,_; + (--- (2*az; + (2%az + b mod N) mod N)---) mod N),
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where x,_1---xo is the binary representation for x. More precisely, we repeatedly apply
MA (2¢a) to the register containing b for i = 0,...,n — 1, where the first control bit of
MA (2¢a) is used as the control bit of MPS(a) and the second control bit of MA(2%a) is used
to see whether ; = 1 or not. Note that qubits for z;(j # ¢) are “idle”; that is, they are not
used during MA(2%a). As explained in the next subsection, our new idea is to use these “idle”
qubits as “uninitialized” ancillary qubits.

MA(a) is decomposed into addition (subtraction) and comparison operations since the

relationship
a+b—N ifa+b> N,

a+bmod N = { a+b otherwise,

holds. Our circuit for order-finding is different in the construction of the circuit for MA(a)
from Beauregard’s one. In the next subsection, we briefly review Beauregard’s circuit for
MA(a) and explain our new one.

2.2 New Idea for Efficient Modular Addition Circuit

Beauregard’s circuit for MA(a) is based on the following algorithm.

1. Add a to the initial content b. The resulting state is |b + a).
2. Subtract N from b + a. The resulting state is |b+a — N).

3. Write the high bit y of b4+a — N on one ancillary qubit to decide whether b+a — N < 0.
The resulting state is |b+a — N)|y), where y is 1 if b+a — N < 0 and 0 otherwise.

4. Add N tob+a — N if y is 1. The resulting state is |a + b mod N)|y).
5. Subtract a from a + b mod N. The resulting state is |(a + b mod N) — a)|y).

6. Write the negation of the high bit 2z of (a+b mod N) —a on the ancillary qubit to decide
whether (a + b mod N) —a < 0. The resulting state is |(a + b mod N) — a)|y & z & 1),
where z is 1 if (a + b mod N) — a < 0 and 0 otherwise.

7. Add a to (a + b mod N) — a. The resulting state is |a + b mod N)|0).
Note that y ® z @ 1 = 0 since the relationship
a+bmod N >a< a+b<N,

holds. Addition in the above algorithm is implemented by Draper’s quantum addition cir-
cuit using QFTs [5]. Comparison in the above algorithm is essentially subtraction and also
implemented by Draper’s.

Our algorithm is as follows. The point is that we directly compare b and N — a without
computing b+ a — N.

1. Compare the initial content b to N — a and write the result y on one ancillary qubit.
The resulting state is |b}|y), where y is 1 if b < N — a and 0 otherwise.

2. Add a to b if y is 1 and subtract N — a from b if y is 0. The resulting state is |a +
b mod N)|y).
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Fig. 1. The C gate. The gate consists of one CNOT gate and two Toffoli gates.

3. Compare a+b mod N to a and write the negation of the result z on the ancillary qubit.
The resulting state is |a + b mod N)|y ® z ® 1) = |a + b mod N)|0) as above.

The important difference between Beauregard’s and our algorithm is the number of qubits
for the register containing a+b mod N at the end of the computation. Beauregard’s algorithm
deals with intermediate results that may consist of n + 1 qubits (e.g. b+ a — N) and thus
needs n + 1 qubits for the register. On the other hand, our algorithm does not deal with such
intermediate results and thus only needs n qubits for the register.

If we use circuits for addition, subtraction, and comparison that use no new ancillary
qubits, the above difference implies that the number of qubits used in our circuit for order-
finding is less than that in Beauregard’s by one. We implement addition and subtraction in our
algorithm by Draper’s quantum addition circuit since the circuit does not need new ancillary
qubits. Thus, the only problem is to construct such a circuit for comparison. More precisely,
the problem is to construct a quantum circuit for the comparison operation COMP (a) with
no new ancillary qubits, where COMP(a) is defined as

COMP(a)|b)|2) = |b)|z ® ),

where b is an n-bit number and z is a one-bit number and y is 1 if @ > b and 0 otherwise.

Our idea for constructing a quantum circuit for COMP(a) is to introduce a circuit for
computing only the high bit of the sum that uses not new ancillary qubits but “uninitialized”
ancillary qubits. Roughly speaking, the output y is the high bit of a — b = a + (=b). Thus,
we can construct a quantum circuit for COMP(a) by modifying the conventional ripple-carry
adder in [8] if we use n new ancillary qubits. By modifying the adder slightly, this can be
done if we use n — 1 new ancillary qubits. The important point is that all we need to do is
compute not the sum of two numbers but only the high bit of the sum of two numbers. Thus,
we can use n — 1 “uninitialized” ancillary qubits in place of n — 1 new (initialized) ancillary
qubits. That is, we can use ancillary qubits that are not set to |0) if the ancillary qubits are
reset to their original values at the end of the computation. Fortunately, such n — 1 qubits
are available in the other (mostly idle) register as noted in the previous subsection. The exact
construction of the circuit for COMP (a) that uses n— 1 uninitialized ancillary qubits is shown
in the next subsection.
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PreC| =
1 -

Fig. 2. The PreC gate. The gate consists of two CNOT gates and one Toffoli gate.

2.3 Circuit for Comparison

First, we construct a quantum circuit for computing only the high bit of the sum. Let a and
b be two n-bit numbers less than N and a,,_1 - -a¢ be the binary representation for a, where
ag is the low-order bit. Similarly, let b, _;---by be the binary representation for b. Let A;
and B; be the memory locations where a; and b; are initially located (0 < 7 < n —1). Let
R; be the ancillary memory location where some value 7; is initially located (1 <7 <n —1).
Let Z be the output memory location where some value z is initially located. At the end of
the computation, A; will contain a;, B; will contain b;, R; will contain r;, and Z will contain
z @y, where y is the high bit of a + b.

The main components of the circuit are the C gate and the PreC gate, which are depicted
in Figs. 1 and 2, respectively. The C gate is defined in [8] and used to compute carry bits in
the circuit for addition. When we input the four bits

ri1 @ ci)lai)|bi)|ri @ (@i @ bi)ri—1)
to the C gate, it is easy to check that the gate outputs
|Ti—1 @ ci)|as)|a; © by)|r; © ciya),

where ¢; is the i-th carry bit and 2 < % < n — 1. Note that c;; is computed using the
relationship
Cit1 = azb; @ bic; ® c;a;,

where ¢g = 0 and 0 < i < n — 1. Since the ancillary memory locations in our circuit contain
some values, in contrast to those in the circuit for addition in [8], we use the PreC gate before
we use the C gate. When we input the four bits

|ri—1)lai)|bs) rs)
to the PreC gate, it is easy to check that the gate outputs
ri—1)lai)|bs)|rs © (@i @ bi)ri1),

where 2 <i<n-—1.
The circuit for computing only the high bit of the sum is defined as follows.

1. Apply a CNOT gate to a pair of memory locations R,,_; and Z.
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Fig. 3. The HIGHBIT gate for n = 5.
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2. Apply a PreC gate to a tuple of memory locations R, _;_1, An_i, Bn_;, and R,,_; for

i=1,...,n—2.

3. Apply a Toffoli gate to a tuple of memory locations A;, By, and R;. Then, apply a
CNOT gate to a pair of memory locations A; and B;. Then, apply a C3NOT gate to
a tuple of memory locations Ay, By, Bi, and Ry, where a C3NOT gate is a NOT gate

with three control qubits.

4. Apply a C gate to a tuple of memory locations R;, A;i1, B;+1, and R;;q for i =
1,...,n—2.

5. Apply a CNOT gate to a pair of memory locations R,,_; and Z.

6. Undo the previous steps.

Note that Step 3 can be eliminated by adding one PreC gate and one C gate if we can use n
uninitialized ancillary qubits. However, we can use only n — 1 uninitialized ancillary qubits
and thus need the step.

The first CNOT gate writes z ® 7, 1 into Z. The PreC gates write r; ® (a; ® b;)r;_; into

(2@ 7Tr-1)® (rn—1®cn) =2Dcy

R; for 2 < i < n—1. The Toffoli, CNOT, and C3NOT gates write a; ®b; into B; and r; & co
into R;. The C gates write a; @ b; into B; and 7; @ ¢;41 into R; for 2 < i < n — 1. Thus,
Tn_1 ® cp, is written into R,, 1. The CNOT gate after the C gates writes

into Z. Here, c,, is the last carry bit and thus the high bit of @ + b. Then, we apply these
operations in reverse order to write the initial values into all memory locations except Z. The
circuit is called the HIGHBIT gate and is depicted in Fig. 3 for n = 5.



190 A guantum circuit for Shor’s factoring algorithm using 2n + 2 qubits

|ao) I ag)
[bo) [bo)
lay) ——— — lap)
|by) |by)
Ir1) ——— — )
|as) — la)
) )
|r9) ——— HIGHBIT ——  |r2)
|a3) —  a3)
[b3) [b3)
|73) — ra)
|ad) — lay)
[64) [64)
|74) |74
2) —— lzoy)

Fig. 4. The circuit for comparison for n = 5.

Representing the changes of the values of memory locations R; caused by PreC and C
gates in Fig. 3 would be helpful to readers. The changes of the values caused by the three
PreC gates are as follows, where the first arrow corresponds to the first PreC gate, the second
to the second PreC gate, and the third to the third PreC gate:

T1 T2 T3 T4
- T2 T3 T4 @ (ag © ba)rs
- T T2 rs ® (a3 B b3)re T4 D (as @ ba)rs

— r1 ro® (az &5) bz)Tl r3 D (a?, 5] b3)7'2 T4 D (a4 ® b4)7'3

The changes of the values caused by the three C gates are as follows, where the first arrow
corresponds to the first C gate, the second to the second C gate, and the third to the third C

gate:
ri@®cy ra®(az®ba)r1 r3® (a3 D b3)ra ra D (ag B by)rs

— r1dco ro D C3 rs @ ((13 5] b3)r2 rq4 D ((14 (&) b4)r3
— r1Pco ro D C3 rs D Cq re D ((14 (&) b4)r3
— r1dec T2 @ cs r3Dcy T4 D cs

Then, we construct a quantum circuit for comparison of ¢ and b that outputs 1 if a > b
and 0 otherwise. The circuit for comparison is defined as follows.

1. Apply a NOT gate to memory location B; for i =0,...,n — 1.
2. Apply a HIGHBIT gate to a tuple of all memory locations.
3. Apply a NOT gate to memory location B; for i = 0,...,n — 1.

The HIGHBIT gate computes only the high bit of ' +a, where b’ is the bitwise complement
of b. It is shown that the high bit of (b’ + a)’ is 1 if b > a and 0 otherwise [13]. Thus, the
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negation of the high bit of (b’ +a)’, that is, the high bit of ¥’ +a, is 1 if @ > b and 0 otherwise.
Thus, the whole circuit writes z @y into Z, where y is 1 if a > b and 0 otherwise. The circuit
for comparison is depicted in Fig. 4 for n = 5. X represents a NOT gate.

When a = an_1---ag is classical and we know what a is beforehand, we do not need to
prepare memory location A; where a; is initially located for 0 < ¢ < n — 1. This is because
the memory locations contain only classical values and the classical values are used only for
controlling some gates. The circuit for COMP(a) is constructed as the circuit for comparison
without memory locations for a. Note that the circuit uses 2n qubits.

3 Complexity Analysis

We compute the exact number of qubits used in our circuit for order-finding and the orders
of the depth and size of the circuit. The size of the circuit is defined as the total number of
elementary gates, where the elementary gates are single-qubit gates and CNOT gates. The
depth of the circuit is defined as follows. Input qubits are considered to have depth 0. For
each gate G, the depth of G is equal to 1 plus the maximal depth of a gate that G depends
on. The depth of the circuit is equal to the maximal depth of a gate in the circuit.

The circuit for COMP(a) uses 2n qubits as noted in the previous section. The depth and
size of the circuit are O(n). The circuit for MA(a) uses 2n + 2 qubits since it uses the circuit
for COMP(a) with two control qubits. The depth and size of the circuit are O(n) and O(n?),
respectively, since it uses one QFT and one inverse of it for quantum addition. The circuit
for MPS(a) uses 2n + 2 qubits and the depth and size of the circuit are O(n?) and O(n3),
respectively, since it uses MA(2%a) for i = 0,...,n — 1 sequentially. The circuit for MM(a)
uses 2n+2 qubits and the depth and the size of the circuit are O(n?) and O(n?), respectively.
The circuit for order-finding uses 2n + 2 qubits. The depth and size of the circuit are o(n®)
and O(n*), respectively, since the circuit uses MM(a?') for i = 2n — 1,...,0 sequentially.

For a threshold m, the circuit for the approximate QFT (AQFT,,) is defined as the QFT
except that Ry is ignored when k > m [10]. When the AQFT,, is used in the circuit for
addition of two m-bit numbers by Draper in place of the QFT, the probability of error is
roughly bounded above by 7(n —m)-2~™ - /2 [14]. This shows that the circuit for addition
that uses the AQFT,, is a good approximation of the circuit for addition that uses the QFT
when m = O(logn). Thus, our circuit for order-finding can use the AQFT,, in place of the
QFT when m = O(logn). The size of the resulting circuit is O(n®logn) since the size of the
AQFT,, is O(nlogn) when m = O(logn).

The number of the QFTs and their inverses in our circuit for order-finding is 8n2. On
the other hand, the number in Beauregard’s circuit is 16n? + 8n. Roughly speaking, the
difference is implied by the fact that the number in our circuit for MA(a) is half that in
Beauregard’s. Each number determines the coefficient of the leading term of the polynomial
representing the size of each circuit because of the construction of each circuit. Thus, the
coeflicient of the leading term of the polynomial that represents the size of our circuit is half
that of Beauregard’s circuit. That is, the size of our circuit is about half that of Beauregard’s.

4 Conclusions and Future Work

We constructed a quantum circuit for order-finding that uses 2n + 2 qubits. When the
approximate QFT is used in the circuit, the depth and size of the circuit are O(n®) and
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O(n®logn), respectively. The number of qubits used in the circuit is less than that in any
other quantum circuit ever constructed for order-finding. Moreover, the size of the circuit is
about half that of the circuit for order-finding constructed by Beauregard.

An interesting challenge would be to construct an O(n?®)-size quantum circuit for order-
finding that uses 2n + O(1) qubits. It seems difficult to construct such a circuit if we use
the circuit for addition using the QFT. Linear-size quantum circuits for addition would be
useful for constructing such circuits. For example, using the circuit for addition in [15], we
can construct an O(n®)-size quantum circuit for order-finding that uses 3n + 2 qubits. The
number of qubits can be decreased to 2n + O(1) without increasing the size of the circuit if
we have a linear-size quantum circuit for computing a + b that uses a constant number of
ancillary qubits and that does not need to prepare qubits for @ when a is classical and we
know what a is beforehand. Can we construct such a circuit for addition?
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