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We consider the resource bounded quantum circuit model with circuits restricted by the
number of qubits they act upon and by their depth. Focusing on natural universal sets

of gates which are familiar from classical circuit theory, several new lower bounds for
constant depth quantum circuits are proved. The main result is that parity (and hence
fanout) requires log depth quantum circuits, when the circuits are composed of single
qubit and arbitrary size Toffoli gates, and when they use only constantly many ancillæ.
Under this constraint, this bound is close to optimal. In the case of a non-constant
number a of ancillæ and n input qubits, we give a tradeoff between a and the required
depth, that results in a non-constant lower bound for fanout when a = n1−o(1). We also
show that, regardless of the number of ancillæ arbitrary arity Toffoli gates cannot be
simulated exactly by a constant depth circuit family with gates of bounded arity.
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1 Introduction

It is clear that for the foreseeable future, realizable quantum computations will have very
limited duration, due to short coherence times. This has led to the investigation of parallelizing
quantum computation in the form of small-depth quantum circuits. Such models also yield
added insight into the nature of quantum computation, since they provide a setting in which
quantum analogs of classical computational models are provably more powerful.

There has been significant recent progress in understanding the power of constant depth
quantum circuits. Much of the progress in this area has been in showing that a variety of
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families of constant depth circuits are more powerful than their classical counterparts. These
models make use of (reversible, unbounded) quantum fanout gates. A fanout gate takes an
arbitrary number of bits and fans out one of them by taking its XOR with each of the others.

Fanout gates have proved to be unexpectedly powerful. Indeed, Høyer and Špalek [1]
have shown that, in a sense, fanout gates are universal for all sets of commuting gates. By
parallelizing commuting gates, fanout can be used to do simulations in constant depth. Thus,
for example, together with single qubit gates, fanout gates can be used to efficiently simulate
generalized Toffoli gates, which represent the simplest form of unbounded fanin gates.

Fanout gates might actually be feasible to build via ion trap or bulk NMR techniques.
The same is true of Toffoli gates (see [2] for one such proposal). Thus it is potentially of
practical importance to compare the power of the two. Here we seek to fill in a gap in our
understanding of circuits with Toffoli and fanout gates. Roughly speaking, we know that
given fanout, we can do fanin. Here we ask if, given fanin, we can do fanout. More precisely,
we ask if generalized Toffoli gates and fanout gates are equivalent in power, up to polynomial
size and constant depth.

In answering this question we find it necessary to grapple with another likely limitation
of real quantum computers. It is evident that they will be limited not only in their run-time
duration but also by the number of qubits used in the computation, due to the difficulty in
controlling the interactions of multiple qubits. It will be necessary to restrict that number
of work bits, or ancillæ, as much as possible. Thus we consider here the number of ancillæ
that a circuit uses as an additional computational resource and investigate cases where this
resource is limited as well.

To explain our results and motivations in greater detail, we review some of the history of
this investigation. Moore [3] first observed that fanout gates and parity gates, in the presence
of single qubit gates using 0 ancillæ, are equivalent up to depth 3. This was extended by
Green et al. [4]: fanout is also equivalent to any MODq function (for q ≥ 2), which determines
if the number of 1’s in the input is not divisible by q. Here the equivalence is again up to
constant depth, but using O(n) ancillæ. One may interpret this result by defining quantum
circuit classes analogous to classical constant-depth circuit classes. For example, a reasonable
analog of the classical unbounded fanin and fanout class AC

0 is QAC
0
wf , the class of constant

depth quantum circuit families composed of single qubit, generalized Toffoli, and fanout gates.
(Here the subscript “wf ” denotes “with fanout.”) Similarly one may define quantum analogs of
ACC(q) (called QACC(q)) and ACC (called QACC). Thus the equivalence of fanout with MODq

implies that, for any q > 2, QAC
0
wf = QACC(q) = QACC. Contrast this with the fact that

AC
0 6= ACC (Furst, Saxe and Sipser [5]), and, for any distinct primes q, p, ACC(q) 6= ACC(p)

(Razborov and Smolensky [6, 7]). Høyer and Špalek [1] have improved these results by proving
these same QAC

0
wf circuits can compute threshold functions. Thus QAC

0
wf = QTC

0
wf , an even

sharper contrast with the classical classes. Indeed, this result implies that we can approximate
the quantum fast Fourier transform in constant depth using fanout. Thus the “quantum part”
of Shor’s renowned quantum factoring algorithm [8] can be carried out with a quite simple,
constant depth quantum circuit that uses the fanout operator.

A theme running through these results is the following. In the classical setting, in the class
AC

0, we take both fanout and fanin for granted. (This is not realistic from a practical point of
view, since classical wires do have a thickness and can be fanned out only to a limited extent;
but it is a useful abstraction.) But it is evident that, in the quantum setting, we cannot take
either for granted. It is surprising indeed that the mere operation of fanning out a set of bits
is universal, in the sense mentioned above, and can even be used to implement powerful fanin
operations such as the threshold gate. Nothing remotely like this holds in the classical case.
We are thus led to ask if the quantum world is even more different than one might think, and
that if, given fanin, we can also do fanout. We may phrase the question in terms of complexity
classes. In [4], the class QAC

0 is the class of circuit families containing single-qubit gates and

unbounded fanin Toffoli gates. QAC
0
wf is the same class but with fanout gates allowed. In [4]

it is observed that AC
0 and QAC

0 are different. Here we ask if QAC
0 and QAC

0
wf are different.

We believe they are.
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Our main result, proved in Section 4, is that one cannot compute parity (and hence fanout)

with QAC
0 circuits using a constant number of ancillæ. This is the first hard evidence that

QAC
0 and QAC

0
wf may be different, and that fanout may be necessary for all the upper bound

results mentioned above (it certainly is if we limit our computations to only constantly many
ancillæ). The issue of the necessity of ancillæ in quantum computations is a murky one. It
is generally accepted that a limited number (polynomially many relative to the number of
inputs) are needed. This seems reasonable as it allows polynomial extra space in which to
carry out a computation. However, it is possible to approximate any unitary operator with a
small set of universal gates without ancillæ (although one apparently needs circuits of great
depth and size in order to do so). Furthermore, to our knowledge, no systematic investigation
into the absolute necessity of ancillæ for efficient quantum computation has been done. It
is a natural question as the number of qubits needed to carry out a computation is likely to
be a limiting factor in quantum computing. Ancillæ play a crucial role in the present result,
in which we find the lower bound to be difficult to obtain when more than sublinearly many
ancillæ are allowed.

To help clarify this problem, in Section 3 we provide a proof (implicitly stated in Cleve
and Watrous [9]) that quantum circuits with gates of bounded size must be of log depth to
compute parity (and hence fanout) exactly. In particular, we carefully address the problem
of including ancillæ, and show that in this case the depth of the circuit must be Ω(log n)
to compute parity, no matter how many ancillæ are used. This proof serves as a revealing,
though considerably simpler warm-up to our main theorem in Section 4. In this section we
consider circuits which include Toffoli gates of unbounded size. It is easiest to see the log-
depth lower bound in the case of zero ancillæ, so this result is given first, in Theorem 4.3. We
then explain how the proof yields a depth/ancillæ trade-off, showing that with fewer ancillæ
one needs greater depth to compute fanout.

We end with some open questions.

2 Preliminaries

In this section we set down most of our notational conventions and the circuit elements we
use. Some acquaintance with quantum computational complexity as described in [10] or [11]
is assumed.

The following notation and terminology will be convenient. Let H denote the 2-dimensional
Hilbert space spanned by the computational basis states |0〉, |1〉. Let H1, . . . ,Hn be n copies
of H. By B{1,...,n} (or simply “Bn” when the set notation is clearly understood) we denote the
2n-dimensional Hilbert space H1 ⊗ · · · ⊗Hn spanned by the usual set of computational basis
states of the form |x1, . . . , xn〉, where each xi ∈ {0, 1}. We also consider “quotient spaces of
B{1,...,n} over m bits,” defined as B{i1,...,im} = Hi1 ⊗ · · · ⊗Him

, where 1 ≤ i1 < · · · < im ≤ n,
which obviously have dimension 2m. A “state over a set of m bits” is a state in such a quotient
space. A quantum gate G corresponds to a unitary operator (also denoted G) acting on some
quotient space B{i1,...,im} of Bn. We will say that G involves the bits i1, . . . , im. We will freely
identify G with any “extension by the identity” that acts on a bigger quotient space BA for
any set of bits A ⊇ {i1, . . . , im}, that is, G can be identified with the operator G⊗ I, where I
is the identity on BA−{i1,...,im}. If we fix a state |Ψm〉 over m bits {i1, . . . , im}, we are effec-

tively restricting B{1,...,n} to the 2n−m-dimensional linear subspace |Ψm〉⊗B{1,...,n}−{i1,...,im}.
The space B{1,...,n}−{i1,...,im} is referred to as the quotient space of B{1,...,n} complementary

to |Ψm〉.
A single-qubit gate is a 2×2 unitary matrix (e.g., acting in B{1}). For example, the

Hadamard gate H is the single-qubit gate,

H =
1√
2

[

1 1
1 −1

]

.

A generalized Toffoli gate, which we refer to in this paper as simply a Toffoli gate T , transforms
computational basis states as follows:

T |x1, ..., xn, b〉 = |x1, ..., xn, b ⊕ ∧n
i=1xi〉
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A generalized Z-gate, which we refer to as a Z-gate for brevity, has the following effect:

Z|x1, ..., xn, b〉 = (−1)
∧

n

i=1
xi∧b|x1, ..., xn, b〉.

It is not hard to show that, T = HbZHb where the Hadamard gate Hb in this equation
is applied to the target bit b of T , and the Z-gate is acting on |x1, ..., xn, b〉. Hence we
may substitute Z-gates for T -gates in any circuit that allows Hadamards (which will be true
throughout the paper). Z-gates are useful for our purposes since they are bosonic (that is,
completely symmetric over their bits), and thus have no preferred target bit.

The fanout gate F and the parity gate P are defined, respectively, by

F |x1, ..., xn, b〉 = |b ⊕ x1, ..., b ⊕ xn, b〉,

P |x1, ..., xn, b〉 = |x1, ..., xn, b ⊕
n

⊕

i=1

xi〉.

There is no obvious a priori relation between these operators, but as was observed by Moore,
F is conjugate to P via an (n + 1)-fold tensor product of Hadamards applied to all the bits:

F = H⊗(n+1)PH⊗(n+1) (1)

Although our gates T, Z, F , and P are defined with n + 1 total input bits (including the
target bit b), our results are more clearly stated with circuits of n total inputs.

Recall that Hadamard, phase, CNOT (Toffoli gates for n = 1), and π/8 gates are a
universal set of gates in that any unitary operator can be approximated to an arbitrary
degree of precision with them. Our lower bound techniques work against arbitrary single-
qubit gates combined with Z-gates, which together also form a universal set by the above
discussion.

A quantum circuit is constructed out of layers. Each layer L is a tensor product of a
certain fixed set of gates (in our main theorems, these will consist of single-qubit and Z-
gates). A circuit is simply a (matrix) product of layers L1L2 · · · Ld. (Observe that the
“last” layer Ld is actually the one that is applied directly to the inputs, and L1 is the output
layer.) The number of layers d is called the depth of C. A circuit C over n qubits is then a
unitary operator in the 2n-dimensional Hilbert space B{1,...,n}. Clearly, C computes a unitary
operator U exactly if for all computational basis states, C|x1, ..., xn〉 = U |x1, ..., xn〉. This is
in general too restrictive, however. One must allow for the presence of “work bits,” called
ancillæ, that make extra space available in which to do a computation. In that case, in order
to exactly compute the operator U we extend the Hilbert space in which C acts to the 2n+m-
dimensional space spanned by computational basis states |x1, ..., xn, a1, ..., am〉, where again
xi, ai ∈ {0, 1}, the ai serving as ancillæ. Then we say that C cleanly computes U if, for any
x1, ..., xn and y1, ..., yn,

〈y1, ..., yn, 0, ..., 0|C|x1, ..., xn, 0, ..., 0〉 = 〈y1, ..., yn, 0, ..., 0|(U ⊗ I)|x1, ..., xn, 0, ..., 0〉,

where I is the identity in the subspace that acts on the ancillæ, and the number of 0’s in each
state above is m. That is, C does a clean computation if the ancillæ begin and end all as 0’s.
We assume all of our circuits perform clean computations. This is a reasonable constraint,
since only then is it easy to compose the circuits.

Lastly, all circuits should be understood to be elements of an infinite family of circuits
{Cn|n ≥ 0}, where Cn is a quantum circuit for n input qubits.

3 Fanout Requires Log Depth with Bounded Size Gates

It is easy to see that, by an obvious divide-and-conquer strategy, we can compute parity in
depth O(log n) using just CNOT gates and 0 ancillæ. In this section we prove that Ω(log n)
bits are required for circuits with any bounded size multi-qubit gates, and furthermore that
no number of ancillæ help to reduce the depth of the circuit. Note that to perform a clean



50 Quantum lower bounds for fanout

computation, the target bit must be copied and the original circuit run backward. We can
thus get an exact upper bound on the depth of a circuit that computes parity of 2 log n + 1.
In the following section we obtain a lower bound of about 1.44 logn in the case of a constant
number of ancillæ; the techniques in this section do not seem sufficient to determine the exact
multiplicative factor.

The intuition behind the proof of the next Lemma seems quite obvious. Namely, if a depth
d circuit is composed of only one- and two- qubit gates, then any output qubit of the circuit
can depend on at most 2d input qubits. Furthermore, the Lemma and following Theorem
provide formal verification of the intuitive fact that a quantum circuit must connect all the
qubits on which its output depends to the qubit we will measure for the output. However,
as is often the case in this field, a formal proof of this fact is less obvious than first appears,
and the techniques we use here form the basis for the proof of the lower bound theorem of
the next section.

Let C = L1 · · · Ld consist entirely of arbitrary two-qubit gates and single-qubit gates.
(The extension to arbitrary, but fixed, size gates is straightforward.) Further suppose that M
is an observable on a single qubit in the last layer. Let L′

1 denote the gate whose output M
is measuring. L′

1 could be a two-qubit or a single-qubit gate. In either case, L1 = L′
1 ⊗ R1,

where R1 is the tensor product of all the other gates in that layer, if any. More generally, we
decompose layer i similarly, writing Li = L′

i ⊗ Ri, where L′
i is a transformation that acts on

some subset of the bits, and Ri acts on the rest.

Lemma 3.1. For each d, there are layers L′
1, ..., L

′
d such that

L†
dL

†
d−1 · · · L

†
1ML1 · · · Ld−1Ld = L′†

dL
′†
d−1 · · · L′†

1ML′
1 · · · L′

d−1L
′
d

where, for each i, L′
i acts on at most 2i bits. Furthermore, for each i, L′

i acts on bits with
indices in some set Si such that Sd ⊇ Sd−1 ⊇ ... ⊇ S1.

Figure 1 makes the notation a little clearer. Note that the input will, as usual, be on the
left, but it doesn’t enter the claim (or the following argument) at all.

.   .   .   .   .   .
L
′

d

L
d L1

R1M

R
d

L
′

1

Fig. 1. Decomposition of the layers of the circuit C.

Proof: The proof of Lemma 3.1 is by induction on d. First consider d = 1. Then consider

the operator L†
1ML1. By the observations above, we may write L1 = L′

1 ⊗ R1, where L′
1 is

either a single or two-qubit gate. So,

L†
1ML1 = (L′†

1 ⊗ R†
1)M(L′

1 ⊗ R1) = L′†
1 ML′

1,

by virtue of the fact that M and R1 commute. Since L′
1 only depends on ≤ 2 qubits, this

establishes the result for d = 1.
Now suppose that we can write,

L†
dL

†
d−1 · · · L

†
1ML1 · · · Ld−1Ld = L′†

dL
′†
d−1 · · · L′†

1ML′
1 · · · L′

d−1L
′
d
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where, for each i, L′
i acts on at most 2i bits. In particular, note that L′

d acts on at most 2d

bits. Suppose that L′
d acts on indices in the set Sd (where Sd has size ≤ 2d). Now by the

induction hypothesis,

L†
d+1L

†
d · · · L

†
1ML1 · · · LdLd+1 = L†

d+1L
′†
d · · · L′†

1ML′
1 · · · L′

dLd+1,

and Sd ⊇ Sd−1 ⊇ ... ⊇ S1.
The gates in L′

d involve at most the bits in Sd. Since the circuit only contains at most
two-qubit gates, all the gates in Ld+1 involving bits in Sd can act on at most 2d+1 bits. Let
the tensor product of these gates be denoted by L′

d+1, and let Sd+1 denote the set of bits on
which L′

d+1 acts. Clearly Sd+1 ⊇ Sd. Then for some tensor product of single and two-qubit
gates Rd+1 we may write Ld+1 = L′

d+1 ⊗ Rd+1. Since Rd+1 acts on bits not in Sd+1, it
commutes with all the L′

i and M , which only act on bits inside Sd+1. Hence Rd+1 “cancels
out” and we have the desired relation.

Theorem 3.2. Let C be a quantum circuit on n inputs of depth d, consisting of single-qubit
and two-qubit gates, with any number of ancillæ that cleanly computes parity exactly. Then
d ≥ log n. If C computes fanout in the same way, then d ≥ log n − 2.

Note that, the following proof shows that this theorem applies not only to parity but to
any function which depends on all of its input bits.

Proof: Let C = L1 · · · Ld as in Lemma 3.1. Suppose C uses m ancillæ, and that it cleanly
computes the parity operator P in depth d < log n. It follows that for any x1, ..., xn−1, b and
any measurement operator M on the target bit,

〈x1, ..., xn−1, b, 0, ..., 0|C†MC|x1, ..., xn−1, b, 0, ..., 0〉 = 〈x1, ..., xn−1, b|PMP |x1, ..., xn−1, b〉. (2)

By Lemma 3.1,

C†MC = L†
dL

†
d−1 · · · L

†
1ML1 · · · Ld−1Ld = L′†

dL
′†
d−1 · · · L′†

1ML′
1 · · · L′

d−1L
′
d,

where the operator L′
1 · · · L′

d acts on at most 2d inputs. Since 2d < n, there is an input on
which that operator does not act. Hence the value on the left hand side of eq. (2) remains
unchanged if we can flip some xi or b. However, the outcome of the measurement on the
parity gate on the right hand side depends on every input, which is a contradiction.

The second assertion in the Theorem follows from eq. (1).

It is clear that if we have a family of circuits that use a fixed set of multi-qubit gates
with arity independent of n, that a similar proof will work. Thus we have the following as a
corollary of the proof of Theorem 3.2:

Corollary 3.3. Let C be a quantum circuit on n inputs of depth d, consisting of single-qubit
and multi-qubit gates of size O(1), with any number of ancillæ, that cleanly computes parity,
or fanout, exactly. Then d = Ω(log n).

This same proof technique can be used to establish that constant depth circuit families
with gates of bounded arity are not capable of simulating Toffoli gates. Thus we have,

Corollary 3.4. Let C be a quantum circuit on n inputs of depth d, consisting of single-qubit
and multi-qubit gates of size O(1), with any number of ancillæ, that cleanly and exactly
computes the Toffoli gate of arity n. Then d = Ω(log n).
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4 Parity Requires Log Depth with Few Ancillæ

In this section we treat circuits that contain Toffoli gates or, equivalently, Z-gates of arbitrary
size (i.e., that can depend on n), and consider whether such circuits can compute parity. The
technique of the preceding section does not yield interesting results in this case. This is because
the large gates in general do not cancel, since they may not commute with the measurement
operator M .

To see how to proceed, it is useful to briefly consider classical circuits with similar con-
straints. Suppose we have a classical circuit with NOT gates and unbounded fan-in AND and
OR gates, but that we do not allow any fanout. Once inputs (or outputs of other gates) are
used in either an AND or an OR gate, they can not be used again. It is obvious that if such
a circuit has constant depth, it cannot compute such functions as parity. The AND and OR
gates can be killed off by restricting a small set of inputs, resulting in a constant function,
while parity depends on all the inputs.

In the quantum case, it appears again that the only thing to do is to attempt to “kill off” the
large Toffoli gates. However, the quantum case is much more subtle since we must face the fact
that intermediate states are a superposition of computational basis states, and furthermore
that the Z-gates, in combination with the single-qubit gates, may cause entanglement.

As before, write C = L1L2 · · ·Ld. Thus the circuit C transforms the state |Ψ〉 to
L1 · · ·Ld|Ψ〉. We assume without loss of generality that each layer Li is a tensor product
of Z-gates and single-qubit gates. Further assume without loss of generality that a specific
bit (say, the nth bit) of C serves as the output or target bit (which eventually is supposed to
agree with the output bit of a parity gate).

Our main technical lemma is easiest to see in the case that C has no ancillæ, which we
assume until later in the section.

Lemma 4.1. Let C be a circuit with n inputs as described above, with no ancillæ. Then for
each 1 ≤ k ≤ d, there exists a state |Ψk〉 over at most 2k bits such that for any state |R〉 in
the quotient space of Bn complementary to |Ψk〉, the state L1L2 · · ·Lk(|R〉 ⊗ |Ψk〉) has a 0 in
the target position of C.

Proof: The proof is by induction on k. First let k = 1. There are two cases:

1. In layer L1, the target is the output of a single-qubit gate S. Then let the state
|Ψ1〉 = S†|0〉 over the nth bit. Now we may write L1 = L′

1 ⊗ S, where L′
1 acts on the

quotient space R complementary to |Ψ1〉. No matter what state |R〉 ∈ R we choose over
the bits {1, . . . , n−1}, it follows that L1(|R〉⊗|Ψ1〉) = (L′

1|R〉)⊗(S|Ψ1〉) = (L′
1|R〉)⊗|0〉

is a state where the nth qubit of the tensor product is unentangled with the rest of the
circuit and is in state |0〉.

2. In layer L1, the target is the output of a Z-gate. Write L1 = L′
1 ⊗G, where G is this Z

gate. In this case, we choose |Ψ1〉 = |0〉 over the nth bit. Now G acts both on |Ψ1〉 as
well as the complementary quotient space R (via extension by the identity). But since
G involves a bit that is 0 (i.e., the nth bit), G is equivalent to the unit matrix in R.
Hence for any state |R〉 ∈ R, L1(|R〉 ⊗ |Ψ1〉) = (L′

1 ⊗ G)(|R〉 ⊗ |Ψ1〉) = (L′
1|R〉)⊗ |0〉 =

(L′
1|R〉)⊗|Ψ1〉 again is a state where the nth qubit of the tensor product is unentangled

with the rest of the circuit and is in state |0〉. (Note that L′
1|R〉 is well defined by

extending L′
1 by the identity.)

Now suppose the assertion is true for k − 1 where k > 1. We will show that it remains
true for k. Suppose the |Ψk−1〉 in the assertion is a state over the (at most) 2k−1 bits in the
set Kk−1. Let Rk−1 denote the rest of the bits {1, . . . , n} − Kk−1. Thus |Ψk−1〉 is a state in
BKk−1

, and the quotient space complementary to |Ψk−1〉 is BRk−1
, which for convenience we

denote by Rk−1.
To construct |Ψk〉 we first construct a set D of “doomed” gates in layer Lk. |Ψk〉 is

constructed so that a set of bits, Kk −Kk−1, “kill” the gates in D. The set D is constructed
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by the following algorithm: Start with D := ∅, Kk := Kk−1 and Rk := Rk−1. If G is a Z-gate
not in D but in Lk which involves bits both in Kk and in Rk, we remove a single bit from
Rk involved with G, and add it to Kk. We declare the Z-gate G “doomed” and add it to D.
Continue until no more Z-gates can be added to D. Since each bit in Kk−1 can be involved
with at most one Z-gate in Lk, the number of bits added to Kk (and removed from Rk) in

this process is at most 2k−1. Let L
(K)
k denote the gates in Lk that involve the bits in Kk,

excluding the Z-gates in D.

We define the state |Ψk〉 as L
(K)†
k applied to the tensor product of |Ψk−1〉 with the state

in which all the bits in Kk −Kk−1 are 0. Note that |Ψk〉 is a state over at most 2 · 2k−1 = 2k

bits, as seen in Figure 2. Let Rk denote the quotient space complementary to |Ψk〉. Clearly,
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Fig. 2. The sets Kk and Rk. A Z gate that involves bits in both sets is shown.

Rk = BRk
. Now let |R〉 be any state in Rk (equivalently, over the bits in Rk), and apply Lk

to |R〉 ⊗ |Ψk〉. Let L
(R)
k denote the gates in Lk acting in Rk, again excluding the Z-gates in

D. Note that any Z-gate in D acts as the identity on Rk ⊗ |Ψk〉, by the construction of |Ψk〉.
Thus we have eliminated the gates in D from Lk without any loss of generality. Thus,

Lk(|R〉 ⊗ |Ψk〉) = (L
(R)
k ⊗ L

(K)
k )(|R〉 ⊗ |Ψk〉) = (L

(R)
k |R〉) ⊗ (L

(K)
k |Ψk〉).

Now L
(K)
k |Ψk〉 is the tensor product of |Ψk−1〉 with a number of |0〉 states. So we conclude

that Lk(|R〉 ⊗ |Ψk〉) is of the form |R′〉 ⊗ |Ψk−1〉 for some state |R′〉 ∈ Rk−1. Then,

L1L2 · · ·Lk−1Lk(|R〉 ⊗ |Ψk〉) = L1L2 · · ·Lk−1(|R′〉 ⊗ |Ψk−1〉).

By the induction hypothesis, the right hand side of the above equation has a 0 target bit,
which proves the lemma.

With a bit more careful analysis, Lemma 4.1 can be improved to the following:

Lemma 4.2. Let C be a circuit as described above and φ = (1 +
√

5)/2 be the golden ratio.
Then for each 1 ≤ k ≤ d, there exists a state |Ψk〉 over at most φk+1 bits such that for any
state |R〉 in the quotient space of Bn complementary to |Ψk〉, the state L1L2 · · ·Lk(|R〉⊗|Ψk〉)
has a 0 in the target position of C.

Remark. The difference is that now |Ψk〉 is over only φk+1 bits instead of 2k (recall
φ ∼= 1.62). This results in a tighter lower bound on the depth.

Proof: We indicate how the proof of Lemma 4.1 is modified to obtain this result.
We claim that the size of the state |Ψk〉 that we create in step k of the induction is at

most fk+1 where {fk} is the Fibonacci sequence.
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To see this, observe that when some bit (the ith bit, say) is moved from Rk−1 to Kk−1, it
is set to the |0〉 state in step k−1 of the induction. Hence that bit becomes a bit in Kk−1 that
is set to |0〉. Consider the gate G (if any) in Lk that involves this bit. If G is a single-qubit
gate, then no Z-gate in Lk is killed involving the ith bit, so no additional bit needs to be
added to Kk for the sake of the ith bit. If G is a Z-gate, then the ith bit alone is enough to
kill G, since this bit is already 0. So again, no additional bit must be added to Kk to kill G.
This shows that it takes more than one step of the induction to double the number of bits in
Kk.

Let rk−1 denote the number of bits that were moved from Rk−1 to Kk−1 (and hence set
to the |0〉 state). Similarly, let `k−1 denote the number of bits in Kk−1 that were already
in Kk−1 (by virtue of their being in Kk−2, if k > 2). Thus the size of the state |Ψk−1〉 is
rk−1 + `k−1. For the base case, we start counting at k = 1. Note that after the first layer,
r1 = 0 (since the target bit was set to 0 and sent through either a Z-gate or a single qubit
gate, so no bits need to be set to 0), and `1 = 1. For the induction step, from the preceding
argument, the only bits that might require that new bits be set to 0 are the `k−1 bits that
were not set to 0 in step k − 1. We thus arrive at the following inequalities:

rk ≤ `k−1

`k ≤ rk−1 + `k−1

It is easy to see by induction that rk ≤ fk−1 and `k ≤ fk. Thus rk + `k ≤ fk−1 + fk = fk+1,
which proves the above claim.

Since fk+1 ≤ φk+1, the lemma follows.

Theorem 4.3. Let C be a depth d circuit of n inputs, consisting of single-qubit gates and
Z-gates, and using 0 ancillæ. If d < log n

log φ
− 1 ∼= 1.44 logn− 1, then C cannot compute P , the

parity gate with n − 1 inputs and one target.

Proof: Suppose C = P . Then for any input state, the target bit of C is 0 iff the target bit
of P is 0. By Lemma 4.2, there exists a state |Ψ〉 on at most φd+1 < n bits such that, for any
state |R〉 on the remaining n−φd+1 bits, C(|R〉⊗|Ψ〉) has a 0 value for the target. First let |R〉
be the state with 0’s in all n−φd+1 positions (since n−φd+1 > 0, such positions exist). Then
P (|R〉 ⊗ |Ψ〉) has a 0 target. This is only possible if the state |Ψ〉 is in a quotient space of Bn

spanned by computational basis states in which an even number of the variables are 1. Now
change one of the bits of |R〉 from 0 to 1. The target of C(|R〉⊗ |Ψ〉) still has the value 0, but
the target of P (|R〉⊗|Ψ〉) must change to 1, which contradicts the assumption that C = P .

This Theorem applies more broadly than stated here. It gives a circuit depth lower bound
of at least 1.44 logm−1 for any function with the property that, for any input string x, there
is a set of m bits such that flipping any one of them changes f(x). (The integer m is known
as the sensitivity of the function f [12]. ) So more succinctly, any function of sensitivity m
must have at least 1.44 logm − 1 depth.

Since by equation (1) fanout and parity are equivalent up to depth (with 0 ancillæ), we
immediately have the following.

Corollary 4.4. Let C be a circuit of depth d consisting of single-qubit gates and Z-gates,
and using 0 ancillæ. Then, if d < log n

log φ
− 3, C cannot compute the fanout operation.

The proof of Theorem 4.3 actually yields a stronger result: the circuit C cannot even
approximate P within distance 1/

√
2 in the operator norm.

Theorem 4.5. Let C be a circuit of depth d consisting of single-qubit gates and Z-gates,
using 0 ancillæ. If d < log n

log φ
− 1, then ‖P − C‖ ≥ 1√

2
, where ‖ · ‖ = ‖ · ‖∞ is the operator

norm.
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Proof: Let C be such a circuit, and let |Ψ〉 be as in the proof of Theorem 4.3. Let |R0〉 be
the all-0 state on the remaining n−φd+1 qubits, which do not include the target qubit n, and
let |R1〉 = Xi|R0〉, where Xi is the bit-flip gate applied to one of the qubits of |R0〉. Thus

|R1〉 is the same as |R0〉 but with some qubit i flipped to 1. Set |R〉 = (|R0〉 + |R1〉)/
√

2 =

(I + Xi)|R0〉/
√

2. Then
C(|R〉 ⊗ |Ψ〉) = |S〉 ⊗ |0〉 (3)

by the definition of |Ψ〉, where |S〉 is some state of the n − 1 nontarget qubits. Also, note
that PXi = XnXiP , where Xn is the bit-flip gate on the target qubit n. Letting P ′ be the
parity gate applied to the qubits of |Ψ〉, and setting P ′|Ψ〉 = |T0〉 ⊗ |0〉 + |T1〉 ⊗ |1〉 for some
(nonnormalized) states |T0〉 and |T1〉 of the nontarget qubits of |Ψ〉, we have

P (|R〉 ⊗ |Ψ〉) =
P (I + Xi)(|R0〉|Ψ〉)√

2
(4)

=
(I + XnXi)P (|R0〉|Ψ〉)√

2
(5)

=
(I + XnXi)(|R0〉P ′|Ψ〉)√

2
(6)

=
(I + XnXi)(|R0〉(|T0〉|0〉 + |T1〉|1〉))√

2
(7)

=
(|R0〉|T0〉 + |R1〉|T1〉)|0〉 + (|R0〉|T1〉 + |R1〉|T0〉)|1〉√

2
. (8)

Combining (3) with (4–8), we get

(P − C)(|R〉 ⊗ |Ψ〉) = |U〉|0〉 +
(|R0〉|T1〉 + |R1〉|T0〉)|1〉√

2

for some unnormalized state |U〉. Since the two terms on the right-hand side are orthogonal,
and also 〈R0 | R1〉 = 0, we have

‖P − C‖ ≥ |(P − C)(|R〉 ⊗ |Ψ〉)|

≥
∣

∣

∣

∣

|R0〉|T1〉 + |R1〉|T0〉√
2

∣

∣

∣

∣

=

√

〈T0 | T0〉2 + 〈T1 | T1〉2
2

=
|P ′|Ψ〉|√

2

=
1√
2
.

We now consider the case in which our circuit has a non-zero number of ancillæ. Firstly,
it is clear that Lemmas 4.1 and 4.2 work if we set a target and all ancillæ to 0 at the same
time. If there are a many ancillæ, then we are setting a + 1 “outputs.” The conclusion of the
analogous Lemma for a ancillæ would then be that the state |Ψ〉 is over (a+1)φd+1 bits (since
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the number of “committed” bits increases like the Fibonacci sequence with each layer, as in
Lemma 4.2). These bits may include ancillæ, and assuming that C does a clean computation,
|Ψ〉 will be 0 on the ancillæ (since they must all start out as 0 in order to return to their final
value of 0). Therefore, if n > (a + 1)φd+1, the state |R〉 is over at least one bit but no ancillæ
and is thus free to take on any value. Thus if n > (a + 1)φd+1, the output of C is insensitive
to changes in at least one of the inputs, and hence the circuit is defeated as before. Note we
have a depth/ancillæ trade-off as a result. We thus have the following corollary of the proof
of Theorem 4.3:

Corollary 4.6. Let C be a circuit of depth d consisting of single-qubit gates and Z-gates.
Then, if C cleanly computes the parity function with a ancillæ, then d ≥ (log φ)−1 log(n/(a+
1)) − 1 ∼= 1.44 log(n/(a + 1)) − 1.

As mentioned at the beginning of Section 3.1, one can compute parity in depth 2 logn+1.
We conjecture that this is optimal no matter what a is, so Corollary 4.6 leaves considerable
room for improvement.

We offer an alternative interpretation of our result that arose out of conversations with
Luc Longpré. Let us say that a quantum circuit C robustly computes a unitary operator U
if C computes U cleanly and, in addition, if its output is insensitive to the initial state of
the ancillæ. Thus the ancillæ of C can start out in any state whatsoever; the circuit C is
guaranteed to return the ancillæ to that state in the end, and always gives the same answer.
This of course puts a much stronger constraint on the circuit (since in the usual model we
only insist on a clean computation when the ancillæ are initialized to 0), but such circuits
can be useful (e.g., see exercise 8.5 in Kitaev et al. [11]).

In this case, if C consists only of single-qubit and Z-gates, then it must have depth about
1.44 logn to compute parity, regardless of the number of ancillæ. We can construct the state
|Ψk〉 as in the proof of Lemma 4.1 to force the output to 0. This may involve giving some of
the ancillæ non-zero initial settings, but this does not matter as in a robust computation we
do not require that ancillæ are initially 0.

5 Conclusions and Open Problems

Following the line of earlier work of Green et al., Høyer and Špalek, and Cleve and Watrous
[4, 1, 9], our main result gives an optimal, Ω(log n) lower bound on the depth of QAC-
type circuits computing fanout, in the presence of limited (slightly sublinear) numbers of
ancillæ. It would clearly be desirable to extend our result to obtain the same conclusion when
polynomially many (or an unlimited number of) ancillæ are allowed, and thus to prove that

QAC
0 6= QAC

0
wf .

The role of ancillæ in quantum computation has not received much detailed attention.
Prompted by our considerations here, there are several interesting questions that arise. One
issue is the necessity of ancillæ for specific quantum computations or classes of quantum
computations. Is there a problem that can be done in constant depth with ancillæ but which
requires log n depth without ancillæ? Similarly, are there computational problems for which
log n depth is possible with ancillæ but without ancillæ, polynomial depth is needed? In
general, how many ancillæ are needed for specific problems? Is there a general tradeoff that
can be proved between numbers of ancillæ and circuit depth?

While much has recently been learned concerning constant depth circuit classes, interest-
ing questions remain. It would be worthwhile to be able to distinguish between the power
of quantum gates of unbounded arity. We have seen that Toffoli and Z gates (which are
equivalent up to constant depth) are weaker than parity and fanout. We also know that, in
the presence of single qubit gates, parity and fanout are equivalent and can be used to com-
pute other mod gates, threshold gates and the quantum Fourier transform in constant depth
(see [1]). The converse statement, whether threshold gates can be used to compute parity
(or approximate the QFT) in constant depth, is an interesting open question. Are threshold
and parity equivalent or is threshold “weaker” than parity? (Note that in the classical case
threshold is thought of as stronger than parity, but to justify that one needs classical fanout
gates.) If threshold is weaker, is it equivalent to Toffoli gates, up to constant depth,or does its
power lie between the two? Using the technique of Theorem 4.3, we can get a non-constant



M. Fang, S. Fenner, F. Green, S. Homer, and Y. Zhang 57

depth lower bound for computing threshold with circuits which have only single-qubit and
(arbitrary width) Toffoli gates and a limited number of ancillæ; but this does not by any
means imply that threshold gates are strictly harder than Toffoli gates. It would also be of
interest to characterize exactly what can be computed in constant depth using only single
qubit and CNOT gates as, even from an optimistic point of view, this is the kind of circuit
that might be built in the not too distant future. A further study of these limited quantum
circuits can be found in Fenner et al. [13] Finally, there is a locality to quantum interac-
tions which makes it difficult to implement gates which act on qubits outside of a small local
neighborhood of each other. It would be interesting to consider non-locality as a resource
and investigate which computations can be carried out by circuits with gates acting only on
a neighborhood of “nearby” qubits.
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