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The graph isomorphism problem (GI) plays a central role in the theory of computational
complexity and has importance in physics and chemistry as well [1, 2]. No polynomial-
time algorithm for solving GI is known. We investigate classical and quantum physics-
based polynomial-time algorithms for solving the graph isomorphism problem in which
the graph structure is reflected in the behavior of a dynamical system. We show that a
classical dynamical algorithm proposed by Gudkov and Nussinov [25] as well as its sim-
plest quantum generalization fail to distinguish pairs of non-isomorphic strongly regular
graphs. However, by combining the algorithm of Gudkov and Nussinov with a construc-
tion proposed by Rudolph [26] in which one examines a graph describing the dynamics of
two particles on the original graph, we find an algorithm that successfully distinguishes
all pairs of non-isomorphic strongly regular graphs that we tested with up to 29 vertices.
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1 Introduction

A graph is a set of N points, or vertices, and a set of edges, or unordered pairs of those
points. If two graphs differ only in the labelling of their points, then we say they are
isomorphic, otherwise they are non-isomorphic. The graph isomorphism ‘meta-problem’ is to
determine whether or not there is an algorithm that runs in polynomial time (¢ ~ N®, with
z independent of N) that distinguishes non-isomorphic pairs with certainty. The problem of
distinguishing distinct atomic clusters of size N, in which a cluster is defined by the bonds
between its atoms, is the same problem in another guise [3].

Typical instances of graph isomorphism (GI) can be solved in polynomial time because two
randomly chosen graphs with identical numbers of vertices and edges typically have different
degree and eigenvalue distributions. Moreover, GI can be solved efficiently for restricted
classes of graphs, such as trees [4], planar graphs [5], graphs with bounded degree [6, 7],
bounded eigenvalue multiplicity [8], and bounded average genus [9]. However, no algorithm for
solving GI for all graphs is presently known; the best existing upper bound is exp v/cN log N
[10]. There is evidence that indicates that GI is not NP-complete: first, counting the number
of isomorphisms is reducible to the decisional version of the problem [11], unlike what is
believed to be the case for NP-complete problems, and second, if GI were NP-complete then
certain complexity classes that are believed to be different would be identical [12, 13]. GI is
in NP, so it is believed that either GI is in P or else it is in the class of problems that are

492



S.-Y. Shiau, R. Joynt and S. N. Coppersmith 493

neither in P nor are NP-complete [14].

One way to solve GI is to solve the hidden subgroup problem for the permutation group.
Unfortunately, though the hidden subgroup problem for abelian groups can be solved effi-
ciently [15], no efficient algorithm for solving the hidden subgroup problem for the permu-
tation group is known [16, 17]. Indeed, some recent results [18], [19] have given rise to
pessimism that this is possible.

Recent results of Aaronson, while not ruling out a generic algorithm for finding a non-
abelian hidden subgroup, do show that any efficient quantum algorithm for GI would have to
exploit structural information about the problem [20].

In this paper we investigate classical and quantum approaches to solving the graph iso-
morphism problem that are motivated by physical processes [21]. Our work combines and
extends ideas of Gudkov and Nussinov [25] and of Rudolph [26] for attacking the GI problem
using algorithms based on physical intuition. We show that the interesting classical dynam-
ical algorithm proposed by Gudkov and Nussinov fails to distinguish an infinite set of pairs
of non-isomorphic graphs, and thus does not solve the GI problem in polynomial time. We
trace this failure to certain algebraic properties of these particular pairs of graphs and show
that the simplest quantum generalizations of the Gudkov and Nussinov algorithm also fails
to distinguish these pairs of graphs. However, an algorithm obtained by combining the basic
idea of the Gudkov and Nussinov algorithm with a construction proposed by Rudolph [26]
does distinguish all pairs of graphs that we have examined, including many with the same
eigenvalue spectra.

The detailed statement of the GI problem is that we are given two graphs, each with
N vertices. The first has vertices {v1,vs,...un}, together with a set of edges, or unordered
pairs {eq, €2, ...} connecting pairs of these vertices, while the second graph is a set of vertices
{v},v},...vy}, and a set of edges {e},eh,...}. Each e; is associated with a pair {v,,vs},
and each e is associated with a pair {v},v;}. We wish to determine whether there exists a
permutation P of the v; such that the set of pairs {Pv,, Puvy} is identical with the set of pairs
(o, vp}-

An equivalent but more useful formulation for our purposes is to represent each graph
by its adjacency matrix A. Ag is an N X N matrix such that Ay, = 1 if there is a pair
e = {vg,vp} and A, = 0 otherwise. Two graphs are isomorphic if and only if there exists a
permutation matrix P such that A’ = PAP~ !,

2 Dynamical Algorithms

2.1 Classical algorithm

In the Gudkov and Nussinov approach to this problem [25], each vertex of the graph is
mapped into a point in an N—dimensional Hilbert space. These points move in time. The
vertex v; sits initially at the point 7; = (1,0,0, ...,0), v2 at 72 = (0, 1,0, ...0), and so on. These
are the vertices of an (IV — 1)—dimensional simplex. We now view these as mass-points with
forces acting pairwise among them. There is one force law if two particles are connected by
an edge and a different force law if they are not. The forces are derived from potentials Uy
and U> that depend only on the distances between the points in the pair. From the initial
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configuration, the particles move in time according to the relaxational equations of motion

u%t(t) = F,,
where
F, = Vi U, ...
and
U= AaUi(7a = 7)) + Y _(1 = Aap)Us(|7a = 73])- (1)
a>b a>b

The motion may be computed by any convenient algorithm. After a time T' the positions
are given by 7,(T) for ¢ = 1,2,...N. We now compute the set of N(IN — 1)/2 distances
dap = |Fo(T) — 7(T)|. Given a second graph, we compute d, = |7, (T) — 7},(T")| using the
same prescription. The sets {dq} and {d],}, being non-negative real numbers, may be
arranged in increasing order.

This suggests the following conjecture.
Conjecture 1 (Gudkov and Nussinov [25]): If the ordered distance sets {dqs} and {d/,}
for the graphs G and G’ are identical, then G and G’ are isomorphic.

Note that as long as T itself is of polynomial size, this is a polynomial-time algorithm.
In fact, in the algorithm as it stands, T is a constant. This would appear to be sufficient,
since the time evolution is unitary, which means that no chaotic (exponential sensitivity to
initial conditions) motion is possible. The sets do, and d, can be computed, ordered, and
compared efficiently. We now wish to examine the validity of Conjecture 1.

For purposes of clarity, we shall consider a slightly simpler model than the one defined by
Eqg. 1, one in which a harmonic force acts only between particles connected by edges:

U=—pn)  Awlfa —7[?/2.
a>b

We shall call this the U —model. We then define an N x N matrix X , where the i-th coordinate
of the a-th ”particle” is denoted by X,;. Thus the above initial condition can be rewritten as

Xai(t = 0) - 5ai7

where J,; is the Kronecker symbol: d,; = 1 if a = 7 and §,; = 0 otherwise. The equations of
motion for the U—model are

% = ZFG(;,) = ZAab(Xai — Xpi) = — ZAabXbi + Z ZAacéabXbi — ZLabXbi,
b b b b c b

where

Lab = 5ab ZAac - Aab = Dab - Aaba

is the Laplacian matrix. The diagonal matrix D is the degree sequence matrix: D,, is the
number of edges incident to the vertex a. Note that L is symmetric: L = LT. The algebraic
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isomorphism criterion mentioned in the introduction may also be put in terms of L : two
graphs defined by the Laplacian matrices L and L’ are isomorphic if and only if there exists
a permutation matrix P such that

L' = PLP".
The U—model possesses an explicit solution to the differential equation of motion :

Xai(t) = (e"),, Xui(t = 0) = (™)

at

so the final positions are
X(T) = €7,

in the matrix notation.
Definition: The dot product matrix S is defined as:

Sab =Y XaiXpi

Sap is the dot product of the vectors associated with the vertices a and b.
The precise form of S depends on the potential function. In the example defined by U,
S is given by

(2t)
S = XXTranspose _ XZ — e2Lt -1 + 2tL+ TLZ 4o

Another graph would be characterized by a different dot product matrix
SI — €2L’t.

Since the N2 squared distances d2, = |7,(T) — 7(T)|” satisfy d2, = Saa + Spp — 2Sap, com-
paring the set of numbers in the matrices S and S’ is essentially the same as comparing the
distances. (We shall consider the relationship more carefully below.)

If the graphs are isomorphic, then clearly S’ is a rearrangement of S :

’ -1 _ _
Sl — eZLT :eZPLP T :PeZLtP 1 — PSP 1‘

Conjecture 1 is the converse statement.

In fact there do exist many interesting graph pairs for which the classical algorithm works.
Because S is most easily computed in the U—model by diagonalizing the real symmetric
matrix L, it is natural to ask whether pairs of non-isomorphic but isospectral graphs can
be distinguished by the method. Isospectral graphs are those for which the eigenvalues of
A and A’ are the same. We have investigated this question for some small graphs that are
isospectral but not isomorphic. A simple illustrative pair is shown in Fig. 1

We take the total time interval as 7' = 1 and compute numerically the dynamics of the
simple harmonic model for 10 steps of length 0.1 using the first-order Euler algorithm and
finally obtain a normalized X (T'). The sorted d2, and d2; for two graphs G and G’ in Fig. 1
are respectively
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G G’
Fig. 1. Two isospectral graphs

d?, = {[0]*°,[0.6092]*,[1.0261]®, [1.1168]%, [1.4014]*, [1.6484]®,
[1.9936]'6, [2.0661]*,[2.6094]*, [3.1010]%, [3.1107]®, [3.2248] ", [3.3762]'°}.
d%, = {[0]*°,[0.8778]%, [1.0261]%, [1.1168]%, [1.6210]*, [1.6484]*, [1.9936]®,
[2.0660]*, [2.2605]%, [2.6318]*, [2.8788]*, [3.1010]?, [3.1107]®, [3.2248]%,
(3.3762]%, [3.6212]*}.

In these expressions the superscripts denote the multiplicity of the number in square
brackets.

Thus the algorithm of Ref. [25] works for this non-isomorphic isospectral pair. The dy-
namical algorithm also distinguishes successfully some pairs of graphs that have both identical
degree distributions and identical Laplacian spectra ¢

It has been known for decades, however, that certain classes of graphs are difficult to
distinguish by elementary methods. An important intransigent class is the so-called “strongly
regular graphs” [27, 28].

Definition: A strongly regular graph (SRG) with parameters (N, k, A\, u) is a graph with N
vertices in which each vertex has k neighbors, each pair of adjacent vertices has A neighbors
in common, and each pair of non-adjacent vertices has p neighbors in common.

An example known as Ly(3) with parameters (9,4, 1,2) is shown in Fig. 2. Many pairs of
nonisomorphic SRGs with the same parameter set are known. °

The adjacency matrix A of a SRG has some interesting algebraic properties. For a general
graph, the (a,b) entry of A2 is the number of vertices adjacent to both a and b. For SRGs,
this number is (A2)ab =kifa=0b, (A2)ab = M if a is adjacent to b, and (Az)ab =pifais
not adjacent to b. Hence

A2 =kI+ XA+ p(J—1- A),

where T is the identity matrix and J is the matrix consisting entirely of 1’s. J?> = NJ. A
and J also have the properties that

AJ =JA=FkJ.

“For example, the two graphs of example 2.7 of Russell Merris, Laplacian Graph Eigenvectors, Linear Algebra
and its Applications, v. 278, 1998, pp. 221-236, are distinguished successfully.

YA list of all known SRGs with fewer than 100 vertices is given at the web site
http://www.cs.uwa.edu.au/~gordon/remote/srgs/.
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Fig. 2. L2(3) (9,4,1,2)

This follows from the fact that multiplication of a matrix by J has the effect of adding the
rows or columns of the matrix. For A, this sum is just the number of neighbors.  The
Laplacian matrix for a SRG is

L=kI-A

These equations show that the three matrices {I,J, L} form a commutative, associative
algebra, which is called the adjacency algebra. The elements of the adjacency algebra have
the form R = fI + gJ + hL, where f,g and h are real numbers. The multiplication rule is:

RR' =R'R=(fI+gJ+hL)(f'I+g¢'J+h'L)
={ff' =K =k —p+ 1)+ phk'} I+ (fg' + gf' + Ngg' + phh')J
+ [fR' + hf + (2k + p — N)hh'] L

The three-dimensional character of the adjacency algebra reflects the fact that A has only
three distinct eigenvalues.

The main point for our purposes is that the structure of the algebra is independent of the
precise form of the L matrix: it depends only on the (IV, k, A, 1) parameters.

With this background we may prove the following result.
Theorem: Any two non-isomorphic strongly regular graphs G and G’ characterized by
identical parameter sets (N, k,\, u) have identical sorted distance matrices: {d.,(T)} and

{dep(T)} -
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Proof

Let G and G’ have Laplacian and adjacency matrices L, A and L', A’, respectively. The
corresponding dot product matrices S and S’ are then computed by any desired approximation
to the solution of the differential equation of motion. Any such approximation has the form
of a finite polynomial in I, J, L :

S=> auI"J°L, (2)
while
S=> ap d"J* (L) (3)

The coefficients a,,; depend on the model and the approximation, but they are the same for
the two graphs. Using the multiplication rules of the adjacency algebra, which are the same
for both graphs, these expression become

S:b1I+bJJ+bLL:(b1+k)I+bJJ—bLA, (4)
and
S/:b1I+bJJ+bLLI:(b[+k)I+bJJ—bLA/. (5)

The diagonal elements of S and S’ are all equal to by +k +by. The off-diagonal elements
are equal to b; or by — br. Now, in any row or column of A or A’, precisely k entries are
equal to 1 and N — k entries are equal to 0. It follows that, considered as a set of numbers,
S has N entries equal to by + k + by, Nk entries equal to by — br,, and N(N — k — 1) entries
equal to by. The same holds true for S’.

The N? squared distances satisfy d2, = Saq + Seb — 2Sa = 2 (br + k) + 2b Ap, and
(d2), = SL,+ Sy, — 284, =2 (by + k) +2bp Ay when a # b. For a = b, d2, = d2, = 0. There
are Nk nonzero entries of A, and A}, with a # b. Hence, for both graphs there will be Nk
squared distances 2 (by + k + br) , N(N —k —1) squared distances equal to 2 (b; + k), and N
squared distances equal to 0. Hence the ordered sets of distances obtained by taking square
roots are identical. This completes the proof .

Corollary 1a: The theorem immediately implies that any pair of non-isomorphic SRG’s with
the same parameter set furnishes a counterexample to Conjecture 1. It is believed that there
is an infinite number of such pairs; if so, then the algorithm fails on an infinite set.

To illustrate the breakdown of the algorithm, we shall apply it to the smallest pair of
non-isomorphic SRGs. These are the “Latin square” graphs with N = 16 vertices. Latin
squares are two-dimensional M X M arrays of the numbers 1 to M, arranged so that in each
row and column no number is repeated. Two examples are shown in Fig. 3. Latin square
graphs are constructed from Latin squares as follows: Given a Latin square of order M, the
vertices are the N = M? cells. Two vertices are adjacent if they lie in the same row or
column or if they share the same integer label.
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Fig. 3. Latin squares L3(4) (16,9, 4,6)[29]

We use the following non-harmonic potential U; to calculate normalized X (7") and d2,
again using the first-order Euler algorithm for the two non-isomorphic Latin square graphs
drawn from Fig. 3.

U, =-4 Z(ra —rp)®+ B Z(ra — )t
where the sum is over pairs of connected vertices. Again taking time interval T' = 1 with step
of length 0.1, we obtain the distances dib forA=1, B=1
d2, = {[0]'%, [1.8641]°%, [2.3129]"**} .
d2, = {[0]'%, [1.8641]°%, [2.3129]'*} .

2(r
£ ") are computed from daé)

f=f =-1.0876
h=h =0.2244
g = ¢', but these quantities do not affect the distances. We have also verified that the two
sets are identical at each of the discrete time steps. As one would expect, the multiplicity of
each distinct distance depends only on N and k and are independent of time.
For completeness we tried a different non-harmonic attractive(repulsive) potential Uy (7, —

75)(Ua(7 — 7)) whose force is expressed as

—

= N N Ta — 7_"1,
Fio.=-VaUl(y —T) = —=——==-
la Ta 1( a b) 1 T |Fa — Fb|3

Fio = —F3q,.
Using this potential and still taking 7' = 1, we obtain the distances

d2, = {[0]'%, [1.4991]°%, [2.4486])"**} .
d2, = {[0]'®, [1.4991]°%, [2.4486]"**} .

with £, p()

f=f = —3.5482
h=h =0.4748

Thus, using a non-harmonic potential does not enable the dynamical algorithm to distinguish
these graphs.
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2.2 Quantum algorithms

The classical algorithm depends on an embedding of the graph in a Hilbert space. This
suggests a simple quantum modification of the classical algorithm, a kind of single-particle
quantum random walk. Consider the vertices of the graph as states |j) in a Hilbert space.
The Hamiltonian for the walk is

H=- Z Aabclcba
ab

where the operator clcb is defined by <z |clcb| j > = 0;a0pj. In physics terms, this is simply a
tight-binding model with bonds on the vertices of the graph. We now consider N possible
starting wavefunctions

[1(t =0)) = 1), |t2(t=0))=[2), ..

and we evolve these forward in time according to the usual time-dependent Schrédinger equa-
tion
dly)

iW = H |¢) (6)

for a time T. We then compute the N x N matrix of overlaps

Oij = ($:(0)[¢;(T)) -

This is an analog of the distance matrix for the classical algorithm. The O;; can be sorted
by any convenient method. For example, one may first sort the real parts, then use the
imaginary parts to break ties. Let the sorted set so obtained be denoted by {6ij} . This
leads to

Conjecture 2. If the sorted overlap sets {5”} and {5;1} obtained by the single-particle

quantum random walks for the graphs G and G’ are identical, then G and G’ are isomorphic.
It is certainly the case that {6ij}can distinguish certain isospectral graphs, since it uses

information about the eigenvectors of H, not just information about the spectrum. Nonethe-

less, conjecture 2 is false.

Corollary 1b: By following the proof of theorem 1, we find that pairs of non-isomorphic

SRG’s with identical parameter sets have identical sorted overlap sets {51]} and {6%}
The algebra over I,J, L is complex in the quantum case, but there are no other differences,
so we omit the details of the proof.

Hence Conjecture 2 is false.

Though the two strongly regular Latin square graphs of Fig. 3 are not distinguished by
the classical or the one-particle quantum random walk algorithms, they can be distinguished
in polynomial time by using a construction proposed by Rudolph [26]. Now we use the same
Hamiltonian but consider the quantum-mechanical motion of three particles. Rudolph uses
symmetric wavefunctions (to be defined below) but forbids double occupancy of any site,
corresponding in physics terms to a hard-core boson model. Rudolph showed that the spectra
of the 3-particle matrices obtained from two non-isomorphic regular graphs with identical
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single-particle spectra are different, demonstrating that the multiparticle construction does
increase the power of the algorithm to distinguish similar graphs.

Here we combine Rudolph’s multiparticle construction with the dynamical algorithm for
wavefunction overlaps; this hybrid algorithm has the advantage that it can distinguish non-
isomorphic strongly regular graphs using the 2-particle matrices, as opposed to 3-particle
matrices needed if the matrix eigenvalues are examined. In addition to Rudolph’s original
case of hard-core bosons, we also examine non-hard-core bosons and noninteracting spinless
fermions.

For bosons (which have wavefunctions that are symmetric under particle interchange)
we consider a simple Hubbard Hamiltonian [30], in which each boson can hop between two
vertices if and only if the vertices are connected by an edge, and in addition there is an energy
cost U if two bosons are on the same site. Using as a basis the states |ij) with particles at
vertices ¢ and j, the matrix K for the level 2 (i.e. two-particle) graph for bosons is specified
by the Hamiltonian matrix elements

K = —(ij | H| k)
= 0 Arj + djkAa + 6 Aji + 051 Aik ifi#jandk#1
=Ud; ifi=jand k=1

1
= E((silAkj + 05k A + 0iAji + 01 Aik) ifi=jork=1

There are N(N + 1)/2 initial two-particle states
i) = [11),12),[13) ,...[IN) ,[22),123) , [24) ..., [N N) .

In the hard core limit U — oo the basis states with doubly-occupied sites can be ignored, so
that the Hilbert space has N(N —1)/2 dimensions, and the Hamiltonian matrix elements are

HCB
K "

— (ij |H| ki)
= 0uArj + djnAi + 6 Aji + 61 Air

where now we require ¢ # j and k # [.

For fermions, (which have wavefunctions that are antisymmetric under particle inter-
change), the Hilbert space has N(IN — 1)/2 dimensions, since only at most one fermion is
allowed on a site. We can choose the basis states |ij), ¢ # j. The Hamiltonian matrix
elements are
K = 6idij + 6jnAis — 6inAji — 051 A

1,

Thus we extend an adjacency matrix of rank N to a matrix K of higher rank, either
N(N+1)/2 (for non-hard-core bosons) or N(N —1)/2 (for hard-core bosons and for fermions).
Technically, except for hard core bosons, the matrix K is not an adjacency matrix since it
has elements other than 0 and 1. For fermionic statistics, some entries of K are equal to —1,
while for soft-core bosons some entries are equal to v/2 and others to U. K can be pictured
basically as a matrix in which every off-diagonal element represents the probability amplitude
for two particles to hop from one state to another state. Accordingly, the information of the
adjacency matrix A is embedded in the corresponding K.
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Fig. 4. Variation of the numbers R and I (defined in Egs. 7 and 8) as a function U (potential) for
the two non-isomorphic Latin square graphs with N=16. As U goes to zero, R and I vanish.

Again we evolve forward the initial two-particle states in time according to the quantum
mechanical evolution Eq. (6) and ask whether any pair of nonisomorphic graphs has two
distinct sets of {6ij:kl(T)}. We order these sets dictionary-style, first by their real parts and
then use the imaginary parts to break ties, and make the following set of conjectures:
Conjectures 2a,2b,2c: If the sorted overlap sets {51-]-,;91} and {5;j,kz} obtained by two-
particle quantum random walks of (a) non-interacting bosons, (b) non-interacting fermions,
(c) interacting bosons, for the graphs G and G’ are identical, then G and G’ are isomorphic.

We do not at present have analytical arguments to support or confute these conjectures,

and give only numerical evidence. The test of isomorphism is whether the sets {5ij,kl} and

{6§jykl}are the same after rearranging. A simple way to compare the ordered sets is to
compute the numbers R and I defined as

R(T) = Z IReOjj,1a(T) — ReO}; 1 (T)| (7)
I(T) = Z ImOjja(T) — ImO}; 1 (T)], (8)

where in both cases the differences are taken between the entries in the ordered sets of overlaps.
We compute R and I for pairs of non-isomorphic SRG’s with the same parameter sets. If
either R(T) or I(T) is nonzero, it follows immediately that the graphs are not isomorphic.
Conjectures 2a, 2b, and 2¢ are the converse of this statement.

For each graph in a given pair, we find numerically the eigenvectors and eigenvalues of K
and use them to calculate the {O;j ki }, { Oijri}then R(T) and I(T') for T = 1. The qualitative
behavior does not depend on the choice of T'. Table 1 shows that for all these pairs of graphs
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graph specification | fermions | noninteracting bosons | hard-core bosons

(16,9,4,6) R=1.37 R=0 R=110.66
[=11.11 I=0 1=886.05

(25,12,5,6) R=1.24 R=0 R=129.66
1=5.96 1=0 1=2160.86

(26,10,3,4) R=191 R=0 R=14.88
1=3.50 1=0 1=896.75

(28,12,6,4) R=1.82 R=0 R=87.27
1=6.88 1=0 1=1384.86

(29,14,6,7) R=3.50 R=0 R=28.69
1=6.08 I=0 1=2672.23

(35,18,9,9) R=0 R=0 R=300.63
I=0 1=0 1=3970.15

Table 1. Table of results for hybrid dynamical algorithm for pairs of nonisomorphic strongly
regular graphs for non-interacting fermions, non-interacting bosons, and hard-core bosons. Each
pair of graphs has the same parameters (N, k, A, 1), where N is the number of vertices, each vertex
has k neighbors, each pair of adjacent vertices has A neighbors in common, and each pair of non-
adjacent vertices has p neighbors in common. Noninteracting bosons do not distinguish any of
the pairs of nonisomorphic graphs, noninteracting fermions distinguish most but not all pairs of
nonisomorphic graphs tested, and hard-core bosons distinguish all pairs of nonisomorphic graphs
examined.

both R and I vanish for noninteracting bosons, but both R and I are nonzero for hard core
bosons and for noninteracting fermions for N <29. R = I = 0 for the noninteracting fermion
algorithm for a specific pair of non-isomorphic graphs with V. = 35. Hence Conjectures 2a and
2b are false, but conjecture 2c remains open. However, the non-interacting fermion algorithm
is much more powerful than the non-interacting boson algorithm, for reasons that we do not
at present understand. We find also that R and I are nonzero for graphs with nonzero but
finite U. An illustration of this is shown in Fig. 4 the pair with N = 16. Note that the linear
term in U is sufficient to distinguish these graphs.

We remark that it is necessary examine all matrix elements of K, not just the spectrum of
K. The K matrices of the two non-isomorphic graphs still share the same set of eigenvalues
for all non-interacting two-particle systems. In physical terms, this is due to the additivity

graph 1 | graph 2 | graph 3 | graph 4 | graph 5
graph 2 No
graph 3 Yes Yes
graph 4 No No Yes
graphb No No Yes No
graph6 No No Yes No No

Table 2. Table of distinguishability by fermions for six (35,18,9,9) nonisomorphic SRGs. Yes
entries denote graph pairs that are distinguished by the two-fermion algorithm. Note that only
graph 3 is distinguished from the other five graphs. Thus, it appears that there may be some
distinct properties among these graphs that allow fermions to tell some but not all of them apart.
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of energies for non-interacting particles.

S | W N =
| Ot R W N
N[ | Ot x| W
W DN = O
N O = | W

) 112
1 2|1
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4 5|4

W| | DN O &
N s W] Ot

Fig. 5. Latin squares L3(5) (25,12, 5,6)[29]

2.3 Summary

We have examined several dynamical algorithms for the GI problem, both classical and quan-
tum. Our work shows that the classical algorithm, the one-particle quantum algorithm, and
the two-particle non-interacting boson algorithm, all fail on the class of strongly regular graphs
(falsity of conjectures 1, 2, and 3a). Intriguingly, the two particle non-interacting fermion
algorithm also fails to distinguish at least one non-isomorphic pair of strongly regular graphs,
(falsity of conjecture 3b), but does appear to distinguish most such pairs, at least when the
number of vertices is reasonably small. Conjecture 3c, that the two-particle non-interacting
boson algorithm solves GI, has stood all tests so far.

3 Discussion

From the standpoint of efficiency, we must distinguish whether the algorithms are run on a
classical or a quantum computer. The two-particle algorithms already run in polynomial
time on a classical computer. The {O;;r} matrix contains O(N?) entries, each of which
is computed in a time of O(N*). If conjecture 3c holds, then GI is in P. If conjecture
3c does not hold, then we may consider an extension of the algorithm to an IN,— particle
quantum random walk, where NV, ~ O(N). Then the running time on a classical computer
is roughly (1]\\11 ) ~ ( NA/;), which is exponential. The question of efficiency on a quantum
computer is more interesting. The motion of IV, ~ N particles can be mapped onto the
Heisenberg model of a spin system at a fixed magnetization, which is nothing more than
the dynamics of NV qubits with a constraint. Thus the evolution takes place in polynomial
time on a quantum computer. On the other hand, the simplest extension of the quantum
algorithm requires an exponential number of measurements. However, since all we need
to do is ask whether the evolution of the two systems is in some sense similar, there may
exist a preparation that entangles the graphs and a single measurement, or perhaps a set of
measurements of polynomial size, that captures the needed information. In this connection,
the work of Aharonov and Ta-Shma, who showed that GI is reducible to estimating the inner
product of two quantum states, is perhaps relevant [31].

In conclusion, we have shown that strongly regular graphs provide a useful testbed for both
classical and quantum dynamical algorithms that aim to solve the graph isomorphism problem.
Pairs of graphs in this class cannot be distinguished by the classical algorithm of Gudkov and
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Nussinov [25], but quantum algorithms combining the dynamical evolution of the algorithm
of Gudkov and Nussinov with a construction of Rudolph [26] using interacting bosons as well
as noninteracting fermions can distinguish pairs of SRGs of order < 29, while a two-boson
noninteracting algorithm fails [32]. An algorithm employing non-interacting fermions fails
at V = 35. Interesting open questions include whether there exists a counterexample for
the two-particle hard-core-boson algorithm, whether an IV,-hard-core-boson algorithm solves
GI, and if so, what value of IV, suffices, and whether an algorithm with IV, ~ N can be
implemented efficiently on a quantum computer.
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