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We construct a quantum circuit for addition of two n-bit binary numbers that uses no
ancillary qubits. The circuit is based on the ripple-carry approach. The depth and size
of the circuit are O(n). This is an affirmative answer to the question of Kutin [1] as to

whether a linear-depth quantum circuit for addition can be constructed without ancillary
qubits using the ripple-carry approach. We also construct quantum circuits for addition
modulo 2n, subtraction, and comparison that use no ancillary qubits by modifying the
circuit for addition.
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1 Introduction

Shor showed in 1994 that there exists an efficient quantum algorithm for factorization [2].
Shor’s algorithm requires elementary arithmetic operations such as addition and modular
exponentiation. Using efficient quantum circuits for elementary arithmetic operations, we
can construct efficient quantum circuits for Shor’s algorithm. For example, using a quantum
circuit for addition that uses no ancillary qubits, we can reduce the number of qubits used in
the quantum circuit for Shor’s algorithm [3]. Therefore, it is of interest to construct efficient
quantum circuits for elementary arithmetic operations.

In this paper, we focus on addition of two binary numbers and reducing the number of
ancillary qubits since addition is the most basic operation and qubits are very costly resources.
There have been many studies of quantum circuits for addition. Vedral et al. and Svore et
al. constructed quantum circuits for addition of two n-bit binary numbers that use O(n)
ancillary qubits [4, 5]. The circuit constructed by Vedral et al. is based on the ripple-carry
approach and the depth and size of the circuit are O(n). The one constructed by Svore et al.
is based on the carry-lookahead approach and the depth and size of the circuit are O(log n)
and O(n), respectively. Kutin’s quantum circuit for addition uses only one ancillary qubit [1].
The circuit is based on the ripple-carry approach and the depth and size of the circuit are
O(n). Draper’s uses no ancillary qubits using quantum Fourier transforms [6]. The depth and
aEmail: takahasi@theory.brl.ntt.co.jp
bEmail: kunihiro@ice.uec.ac.jp



Y. Takahashi and N. Kunihiro 441

size of the circuit are O(n) and O(n2), respectively. As is pointed out in [1], it is not known
whether a linear-depth quantum circuit for addition can be constructed without ancillary
qubits using the ripple-carry approach.

We construct a quantum circuit for addition of two n-bit binary numbers that uses no
ancillary qubits. The circuit is based on the ripple-carry approach and the depth and size
of the circuit are O(n). This is an affirmative answer to the above question. To construct
the circuit, we use the quantum circuit for the majority of three bits [1]. As we explain in
the next section, our use of the circuit for the majority is different from that in [1]. We also
construct quantum circuits for addition modulo 2n, subtraction, and comparison that use no
ancillary qubits by modifying the circuit for addition.

2 The Circuit

In the following, we use the standard notation for quantum states and use the standard
diagrams for quantum circuits and quantum operations [7]. Note that X represents a NOT
gate in circuit diagrams. Our circuit consists of CNOT, Toffoli, and NOT gates. The size
of the circuit is defined as the total number of gates. The depth of the circuit is defined as
follows. Input qubits are considered to have depth 0. For each gate G, the depth of G is equal
to 1 plus the maximal depth of a gate that G depends on. The depth of the circuit is equal
to the maximal depth of a gate in the circuit.

Let a and b be two n-bit binary numbers and an−1 · · ·a0 be the binary representation for
a, where a0 is the low-order bit. Similarly, let bn−1 · · · b0 be the binary representation for
b and sn · · · s0 be the binary representation for a + b. Let Ai and Bi denote the memory
locations where ai and bi are initially located. Let Z be an additional memory location where
some value z is initially located. The circuit computes the sum of a and b in place. Ai will
contain ai and Bi will contain si and Z will contain z ⊕ sn at the end of the computation,
where ⊕ denotes addition modulo 2.

In the ripple-carry approach, first, we compute the carry bit c1 using a0 and b0. Then
we compute the next carry bit c2 using a1 and b1 and c1. We continue this procedure and
compute the carry bit ci+1 (0 ≤ i ≤ n − 1) in order. More precisely, the carry bit ci+1 is
computed as follows.

ci+1 = MAJ(ai, bi, ci),

where c0 = 0 and MAJ is the majority function for three bits. Note that the MAJ can be
represented as follows.

MAJ(ai, bi, ci) = aibi ⊕ bici ⊕ ciai.

After we compute all carry bits, we compute si (0 ≤ i ≤ n) using the following relationship.

si = ai ⊕ bi ⊕ ci,

where an = bn = 0.
The key ingredient of the circuit is a gate that computes the majority of three bits in place

[1]. The gate is depicted in Fig. 1. When we input three bits z⊕ bi, z ⊕ ai, z ⊕ ci to the MAJ
gate, it is easy to check that the gate outputs three bits bi ⊕ ci, ai ⊕ ci, z ⊕ ci+1 as shown in
Fig. 2. Note that the MAJ gate will be used to compute z ⊕ ci+1 in our circuit, though the
MAJ gate in [1] is used to compute ci+1.
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MAJ =

Fig. 1. The MAJ gate that computes the majority of three bits in place. The gate consists of two
CNOT gates and one Toffoli gate.

bi ci

MAJ

Z bi

aiZ ciai

ciZ Z ci+1

Fig. 2. The MAJ gate for the input |z⊕bi〉|z⊕ai〉|z⊕ci〉. The gate outputs |bi⊕ci〉|ai⊕ci〉|z⊕ci+1〉.

Our circuit consists of four stages. In the first stage, the bit value z is added to the
memory locations Ai and Bi for 1 ≤ i ≤ n− 1. To do this, a CNOT gate is applied to a pair
of memory locations Z and Bi and then is applied to a pair of memory locations Z and Ai

for 1 ≤ i ≤ n − 1. The CNOT gates write z ⊕ bi into Bi and z ⊕ ai into Ai.
In the second stage, carry bits are computed using MAJ gates and are written into memory

locations Z and B0. To do this, Toffoli and MAJ gates are applied as follows.

1. Apply a Toffoli gate to a tuple of memory locations B0 and A0 and Z.

2. Apply a MAJ gate to a tuple of memory locations Bi and Ai and Z and then apply a
Toffoli gate to a tuple of memory locations Bi and Ai and B0 for 1 ≤ i ≤ n − 2.

3. Apply a MAJ gate to a tuple of memory locations Bn−1 and An−1 and Z.

The first Toffoli gate writes z ⊕ c1 into Z. As in Fig. 2, the first MAJ gate writes b1 ⊕ c1 into
B1 and a1 ⊕ c1 into A1 and z ⊕ c2 into Z. Then, a Toffoli gate writes b0 ⊕ c1 ⊕ c2 into B0. At
the end of the computation in the second stage, MAJ and Toffoli gates write b0 ⊕ c1 ⊕ cn−1

into B0 and bi ⊕ ci into Bi and ai ⊕ ci into Ai for 1 ≤ i ≤ n − 1 and z ⊕ cn into Z. Note
that cn = sn. The first and second stages for n = 5 are depicted in Fig. 3. A dashed box
represents a MAJ gate. Note that a carry bit written in B0 is used to erase a carry bit in
Ai (2 ≤ i ≤ n − 1) in the third stage.

The third and fourth stages are stages mainly for the reverse computation. In the third
stage, a CNOT gate is applied to a pair of memory locations B0 and An−i and then a Toffoli
gate is applied to a tuple of memory locations Bn−i−1 and An−i−1 and B0 for 1 ≤ i ≤ n− 2.
These CNOT and Toffoli gates write b0 into B0 and ai ⊕ b0 ⊕ c1 into Ai for 2 ≤ i ≤ n − 1.
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Fig. 3. The first and second stages for n = 5.

In the fourth stage, NOT and Toffoli and CNOT gates are applied as follows.

1. Apply a NOT gate to A0.

2. Apply a Toffoli gate to a tuple of memory locations B0 and A0 and An−i for 1 ≤ i ≤ n−2.

3. Apply a NOT gate to A0.

4. Apply a Toffoli gate to a tuple of memory locations B0 and A0 and A1.

5. Apply a CNOT gate to a pair of memory locations Ai and Bi for 0 ≤ i ≤ n − 1.

These NOT and Toffoli and CNOT gates write si into Bi and ai into Ai for 0 ≤ i ≤ n − 1.
The third and fourth stages for n = 5 are depicted in Fig. 4.
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Fig. 4. The third and fourth stages for n = 5.

Our circuit for addition is constructed by combining the four stages. The circuit for n = 5
is depicted in Fig. 5, where we move some gates to reduce the depth of the circuit. It follows



444 A linear-size quantum circuit for addition with no ancillary qubits

from the above construction that the depth and size of the circuit are linear in the length
of the input and that the circuit uses no ancillary qubits. In the following, we compute the
depth and size of the circuit precisely for two n-bit binary numbers, where we assume n ≥ 3.
In the first stage, the number of CNOT gates is 2n−2 and therefore the depth and size of the
stage are 2n − 2. In the second stage, the number of Toffoli gates is 2n − 2 and the number
of CNOT gates is 2n − 2. Therefore, the size of the stage is 4n − 4. When a Toffoli gate
after a MAJ gate is applied, the Toffoli gate and the CNOT gate in the next MAJ gate can
be applied simultaneously. Therefore, the depth of the stage is 3n − 2. In the third stage,
the number of CNOT gates is n − 2 and the number of Toffoli gates is n − 2. Therefore, the
depth and size of the stage are 2n − 4. In the fourth stage, the number of NOT gates is 2,
the number of Toffoli gates is n− 1, and the number of CNOT gates is n. Therefore, the size
of the stage is 2n + 1. Note that the first NOT gate can be applied in the second stage and
that the last n CNOT gates can be applied simultaneously. Therefore, the depth of the stage
is n + 1. The depth and size of the whole circuit are 8n − 7 and 10n − 9, respectively. The
numbers of CNOT, Toffoli, and NOT gates are 6n − 6, 4n− 5, and 2, respectively.
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Fig. 5. The circuit for n = 5.

3 Addition Modulo 2n, Subtraction, and Comparison

Quantum circuits for addition modulo 2n, subtraction, and comparison that use no ancillary
qubits can be constructed by modifying the circuit for addition in the previous section. For two
n-bit binary numbers a, b, the circuit for addition modulo 2n outputs a and si for 0 ≤ i ≤ n−1,
where sn−1 · · · s0 is the binary representation for a + b mod 2n. That is, we do not compute
the high bit of a + b. To construct a circuit for addition modulo 2n, first, we construct a
circuit for addition basically using the idea in the previous section except that we regard the
memory location Z as An−1. The circuit for n = 5 is depicted in Fig. 6. To obtain the
circuit for addition modulo 2n, we remove two CNOT and one Toffoli gates that are applied
to a tuple of memory locations including Z. For n ≥ 3, the depth and size of the circuit are
8n − 10 and 10n− 12, respectively. The circuit for n = 5 is depicted in Fig. 7.

For two n-bit binary numbers a, b and some value z, the circuit for subtraction outputs a

and si for 0 ≤ i ≤ n−1 and z⊕sn, where sn−1 · · · s0 is the binary representation for a−b and
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Fig. 6. The circuit for addition constructed by modifying the circuit in Fig. 5.
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Fig. 7. The circuit for addition modulo 2n for n = 5.

sn is 1 if b ≤ a and 0 otherwise. We use two’s complement arithmetic to represent negative
numbers. That is, a negative number −r is represented as r′ + 1, where r > 0 and r′ is the
bitwise complement of r. It is known that

a − b = (a′ + b)′.

Therefore, we construct a circuit for computing (a′ + b)′. We apply NOT gates to Ai for
0 ≤ i ≤ n−1 and then apply the circuit for addition in the previous section. Lastly, we apply
NOT gates to all memory locations. For n ≥ 3, the depth and size of the circuit are 8n − 5
and 13n − 8, respectively. The circuit for n = 5 is depicted in Fig. 8.

For two n-bit binary numbers a, b and some value z, the circuit for comparison outputs
a, b, z ⊕ y, where y is 1 if b ≤ a and 0 otherwise. The circuit is constructed by modifying the
circuit for subtraction slightly. That is, we do not need to compute si for 0 ≤ i ≤ n − 1. We
add CNOT and Toffoli gates to the circuit for subtraction as follows.
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Fig. 8. The circuit for subtraction for n = 5.
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Fig. 9. The circuit for comparison for n = 5.

• Apply a CNOT gate to a pair of memory locations B0, Bn−i for 1 ≤ i ≤ n − 2 in the
third stage.

• Apply a Toffoli gate to a tuple of memory locations B0, A0, Bn−i for 1 ≤ i ≤ n − 1 in
the fourth stage.

Moreover, we remove CNOT and NOT gates from the circuit for subtraction as follows.

• Remove CNOT gates applied to a pair of memory locations Ai and Bi for 0 ≤ i ≤ n− 1
in the fourth stage.

• Remove NOT gates applied to Bi for 0 ≤ i ≤ n − 1 in the fourth stage.

For n ≥ 3, the depth and size of the circuit are 10n−9 and 13n−11, respectively. The circuit
for n = 5 is depicted in Fig. 9.
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4 Conclusions and Future Work

We constructed a quantum circuit for addition that uses no ancillary qubits. The circuit is
based on the ripple-carry approach and the depth and size of the circuit are linear in the length
of the input. We also constructed quantum circuits for addition modulo 2n, subtraction, and
comparison that use no ancillary qubits by modifying the circuit for addition.

Using the circuit for addition, we can reduce the number of qubits that are used in the
circuit for Shor’s algorithm as in [3]. However, the number of qubits is slightly larger than
that in [3] since our circuit for addition cannot reduce the number of qubits when we add
a classical bit string to a quantum state. An interesting challenge would be to construct
a linear-size quantum circuit for addition that uses no ancillary qubits and can reduce the
number of qubits when we add a classical bit string to a quantum state. Such a circuit is useful
for reducing the size of the circuit for Shor’s algorithm and the number of qubits needed.

Our circuit for addition consists of CNOT, Toffoli, and NOT gates. Toffoli gates can
be constructed using 5 controlled rotation gates or using 6 CNOT and 8 single-qubit gates.
Moreover, gates that are congruent to Toffoli modulo phase shifts can be constructed efficiently
[7, 8, 9]. It is interesting to investigate how our circuit for addition can be compressed when
we use these gates in place of Toffoli gates.

Though the depth of our circuit for addition is linear, the depth is larger than that in [1].
The depth of our circuit is 8n − 7 and the depth of the circuit in [1] is 2n + 4. It would be
interesting to try to construct a quantum circuit for addition that uses no ancillary qubits
and where the depth of which is nearly equal to 2n+4. Moreover, it would also be interesting
to try to construct a logarithmic-depth quantum circuit for addition. Can we construct a
logarithmic-depth quantum circuit for addition that uses no ancillary qubits?
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