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Incomparability of pure bipartite entangled states under deterministic LOCC is a very
strange phenomena. We find two possible ways of getting our desired pure entangled state
which is incomparable with the given input state, by collective LOCC with certainty.
The first one is by providing some pure entanglement through the lower dimensional
maximally-entangled states or using further less amount of entanglement and the next
one is by collective operation on two pairs which are individually incomparable. It is
quite surprising that we are able to achieve maximally entangled states of any Schmidt
rank from a finite number of 2 X 2 pure entangled states only by deterministic LOCC.
We provide general theory for the case of 3 X 3 system of incomparable states by the
above processes where incomparability seems to be the most hardest one.
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1 Introduction

The necessity of quantum entanglement on different quantum information and communica-
tion tasks [1, 2] naturally raises the question of manipulating entanglement shared between
different parties. It is very often useful when shared parties are able to manipulate entangle-
ment by local operation and classical communication(LOCC). Within this restricted scenario,
Bennet et al. [3] provided the asymptotic conversion of entanglement by LOCC for bipartite
systems. Things are qualitatively different if we restrict ourselves to finite regime, i.e., only
finite number of copies are available, even for pure bipartite entangled states. Nielsen [4]
provided a necessary and sufficient condition for the local conversion of pure bipartite entan-
gled states for single copy case with certainty. Vidal extended this to the case of probabilistic
local conversion (SLOCC) of two pure bipartite entangled states [5]. Further, Morikoshi
[6] investigated the recovery of entanglement loss in the process of local conversion and sev-
eral other groups studied the possibility and impossibility of entanglement manipulation in
different context [7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

In many practical situation it is often necessary to use a particular entangled state for a
specific task. Therefore the possibility of extending the set of states which produces the target
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state of our interest, beyond those satisfying Nielsen’s criterion, is of importance. Jonathan
and Plenio [8] investigated the case where in place of single copy transformation we also allow
collective operation by assigning some entanglement. The phenomena is known as catalytic
conversion. Similar to the situation of partial recovery, Bandyopadhyay et.al. [7, 11] and Feng
et.al. [9] studied the possibility of local conversion of incomparable states (those not satis-
fying Nielsen’s criteria) by collective operation where some entanglement may be recovered.
The class of incomparable states may be further reduced by the process of multiple copy
transformation [12]. Still there remain large class of incomparable states where deterministic
conversion by LOCC are not possible. Recently, Ishizaka [17] showed that using ppt-bound
entanglement local conversion of any two states (no matter what the Schmidt rank of the
states are) is always possible, at least with some probability. So the problem of finding tar-
get state of our interest now remains for the case of deterministic local conversion. In this
paper our aim is to resolve the incomparability of two pure bipartite states having the same
Schmidt rank, by deterministic LOCC. We first show that, using the entanglement of some
lower dimensional pure state, it is always possible to break the incomparability in any dimen-
sion. This method is found to be successful in providing maximally entangled states of any
dimension from next lower dimensional maximally entangled states with the help of suitable
non-maximally pure entangled states. Actually it is possible to achieve any maximally entan-
gled states by a finite number of 2 X 2 pure entangled states only. We also observed that a
special kind of mutual catalysis which we rather call mutual co-operation is very much useful
in converting the pairs of incomparable states. We discuss exhaustively all our analysis for
3 x 3 systems in which incomparability seems to be the hardest one.

2 Background

Let’s take a quick overview of the topic of state transformation by LOCC. We first mention
Nielsen’s criterion [4] for deterministic local conversion of |) to |@), both are pure bipartite
states shared between two parties, say, Alice and Bob. Suppose up to local unitary equivalence
we write |¢), |#) in the Schmidt basis {|i4), |ig)} with decreasing order of Schmidt coefficients
as : ) = Z?:l Vailiaig), |¢) = Z?Zl VBiliaig), where a; > ;11 > 0 and 3; > B;41 > 0,
for i = 1,2,---,d — 1, Z?Zlai =1= Z?Zlﬂi and denote Ay = (a1,a2, " ,04), Agp =
(B1,B82,"+,B4). Then Nielsen’s criterion tells us that |¢)) — |¢) is possible with certainty
under LOCC if and only if Ay is majorized by Ay (denoted by Ay < Ay); i.e., Zle a; <
Zle B; for each k = 1,2,---,d. One consequence of Nielsen’s result is; if [¢)) — [¢) under
LOCC with certainty, then E(|¢)) > E(|¢)) [where E(-) denote the von-Neumann entropy of
the reduced density operator of any subsystem and known as the entropy of entanglement].
If the above criterion does not hold, then it is usually denoted by | ¥) /4| ¢). Though it may
happen that |¢) — |¢) under LOCC. Now if it happens that |¢) /4 |¢) and |¢) 4 |¢) then
we denote it as 1) ¢ |¢) and call | ), | ¢) as a pair of incomparable states. For 2 x 2 states
it is always be the case that either |¢)) — |@) or |¢p) — |¢). Therefore, we look beyond the
2 x 2 system of states. Now it is natural to ask that for such incomparable pairs, is it not
possible to convert |¢) to |¢) by means of LOCC? If we require |¢) and we have a finite but
sufficient number of copies of |¢) then Vidal’s theorem[5] provide us the way of converting
probabilistically |¢) to |¢) by LOCC. This is of course of no use for deterministic conversion.
For the purpose of transferring |¢) to |¢) where |1} /4 |¢) Jonathan and Plenio [8] found that
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sometimes collective operation may be useful to convert deterministically. They showed that if
we assist the conversion by another pure entangled state |x), say catalyst, then the conversion
[¥) ®|x) — |¢) ® |x) may be possible by collective LOCC deterministically. It is interesting
in this method that we recover all the entanglement used in the process. But what type of
pairs are really catalyzable? It is really hard to categorize. Jonathan and Plenio [8] showed
that if the conversion [¢)) — |¢) is possible by a catalytic state then oy < 81 and ag > B4
hold simultaneously. Also if [¢)) — |¢) is possible by catalysis, then E(|¢))) > E(|¢)). For
3 x 3 system of states, violation of Nielsen’s criteria always implies violation of the necessary
condition for catalysis. The existence of catalytic state is first seen for 4 x 4 incomparable
pairs and only in this level a necessary and sufficient condition for the existence of 2 x 2 system
of catalytic state is found until now [19, 18]. Therefore except some numerical evidence it
is really hard to find catalyzable pairs. Investigation in this direction is going on by several
groups [14]. Now another interesting result is provided by Feng et.al., and other groups [9, 11]
which is known as mutual catalysis. The basic objective in this process is: given two pairs
of incomparable states, say, [)1) 7 |¢1),|¥2) / |P2), whether |11) ® [12) — |P1) ® |P2) is
possible under LOCC with certainty or not. Emphasis is given on the special kind of mutual
catalysis (in [11] it is defined as super catalysis), where in the conversion we recover not only
the entanglement assisted in the process but more than that, i.e., for some incomparable pair
| ¥) 4| @) there exists (| x),| n)) with E(|n)) > E(|x)) and | n) —| x) such that by collective
local operation |) ® |x) — |$) ® |n) is possible deterministically. It is interesting that the
necessary condition for the existence of such special kind of mutual catalytic pair (| x),| 7)),
is the same as that for catalyst. Hence this type of mutual catalysis is not possible for 3 x 3
system of incomparability. It is shown, not analytically, but by some numerical examples,
that there are systems for which catalyst does not exit but mutual catalysis works. Trivially
it is always possible that ) ® |¢) — |¢) @ |[¢) under LOCC with certainty. So existence of
mutual catalytic state is always possible. But it is not of use, as our target state |¢) is not
in our hand and in the process of trivial mutual catalysis we have to use it. Next to that, it
is found by Bandyopadhyay, et.al. [12], sometimes if we increase the number of copies of the
states, then deterministic conversion of incomparable states under LOCC may be possible;
ie, | ¥) 4| ¢) but | $)®* — | $)®* is possible for some integer k. This phenomena is
called multi-copy transformation. A sufficient condition for an incomparable pair to remain
incomparable even if we increase the number of copies as large as possible is that, either
a1 < B1 and g < B4, or, a1 > B1 and g > B4 must hold simultaneously [12]. We call them
as strongly incomparable [12]. All pure incomparable states in 3 x 3 are strongly incomparable.
So all the process of catalysis, mutual catalysis with some recovery and increasing number
of copies will fail for all 3 x 3 pure incomparable pair of states and also in all pure strongly
incomparable bipartite classes. Therefore one may ask, is it not possible to get the target
state under LOCC for such incomparable states?

Here comes the question of using entanglement to reach the target state. By the use of
entanglement we mean to forget about recovering the entanglement used in the process, but
to concentrate on converting the input state to the desired one. In this paper we discover
two paths from [|¢) to |@) by collective LOCC deterministically, discussed in two different
sections. In the first part we show that for any incomparable pair | ¢¥) #| ¢), it is always
possible to locally transform an incomparable pair of states with certainty, if we provide some
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amount of pure entanglement. We shall show that by collective LOCC, on the joint system
of [¢) and the next lower dimensional maximally entangled state |¥9-1) we are always able
to get the target state |¢) along with a product state |P). This indicates that in any finite
dimension, an incomparable pair can be made to transform if we have some supply of pure
entanglement, at least the next lower rank maximally entangled states. Then it is only the
matter that beside of using [¥9-1) is it possible to use further less amount of entanglement
to achieve the target state, and if yes, then what is the minimum amount of entanglement
required for such conversion. It is interesting to note here that in all the pairs of incomparable
states 1) and |@), the first and last Schmidt coefficients of the states are intricately related
with each other. We complete our analysis of minimum pure entanglement required for 3 x 3
system of states, as it is the minimum and possibly the hardest dimension to deal with. We
also observe that the maximally entangled state of any finite Schmidt rank together with a
suitable pure entangled state is able to produce the next higher rank maximally entangled
state under deterministic LOCC. Surprisingly we found that to require a maximally entangled
state of Schmidt rank d we need only d — 1 number of suitable 2 X 2 pure entangled states.

In the next section, we shall show another interesting phenomenon that there may be two
pairs of incomparable states such as | ) 4| @) and | x) 4| n) but |¢¥) ® |[x) — |¢) ® |n) is
possible under LOCC with certainty. That is if we require |@), |n) but we have |¢), |x) then
this collective operation may be possible. We call this phenomenon as mutual co-operation.
Obviously this is a general kind of mutual catalysis which is the most preferred one. Beside
giving some numerical evidences, we provide analytically an auxiliary pair of incomparable
states for every pair of incomparable states in 3 X 3 system such that the joint transformation
under LOCC is always possible with certainty. The concluding part of this section reflects
the feature of the 3 x 3 system that by collective local operation on two copy of a state |¢),
almost in all cases, we are able to get two different states |¢1) and |@2) both are incomparable
with |¢). Now if we fix any one of |¢1) or |p2) as our target state, then we provide a good
range of the possible existence of the other state.

3 Assistance by Entanglement

Suppose we have a pair of incomparable states | ¢),| ¢) in d X d system, where the source
state | ¥) = Z?:l Va; | i), and the target state | ¢) = Z‘Z:l Vb; | ii), are taken in their
most general form with a; > a;41 > 0and b; > b;y1 >0, Vi =1,2,---,(d — 1) together with
Z‘Z:l a; = Z‘Z:l b; = 1. In the whole processes we would not taken into account the amount
of entanglement of the states. Now, consider the (d — 1) x (d — 1) maximally entangled state
| wd-1) = \/(117—1 Z?i;j_l | i7), and the product state | P) =| 00). We want to make possible
the joint transformation | ¥)® | ¥¢-1) —| #)® | P) under LOCC with certainty. For this we
must have,

k

k

d"il§2b,~;v1<;:1,2,...,d—1. (1)
=1

To prove this, we first state a theorem which shows an intricate relation holds between first
and last Schmidt coefficients of any two incomparable states.
Theorem. For any pair of incomparable states | ¥) ¢| ¢) in d x d system, where

| ¢y = L, a; | i), and | ¢) = Y0, V/b; | di), with a; > a;41 > 0,50 a; = 1 and
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b; > biy1 >0, 2?21 b; = 1, the following always holds:
a; +bg <1, by +aqg <l (2)

Proof of this theorem follows from Nielsen’s criteria if we analyze incomparability condition
critically.
The theorem above readily implies that a; < Zf;ll b;, from which we have

kay i d_lb 3 b, Vk=1,2,---,d—1
(d71)<m2 i<z (X — L&, = L. (3)
=1 =1

So the incomparability condition itself implies that the required joint transformation is pos-
sible under LOCC with certainty. i.e., | $)® | ¥4:1) —| ¢)® | P) is possible under LOCC

max

with certainty. Therefore for any pair of incomparable states with a given Schmidt rank the
maximally entangled state of the next lower rank is sufficient to assist the joint transformation
under LOCC.

Next we show that instead of using lower rank maximally entangled state, the conversion
may be possible under LOCC if we use lower rank non-maximally entangled states so that
we need as much as minimum use of the resource. We found explicitly the minimum amount
of entanglement that is required for the local transformation of any 3 x 3 incomparable
pairs. Suppose | ¥),| ¢) be a pair of incomparable states such that | ¢) = Z?zl Va; | ii) and
| ¢> = Z?:l \/b—l | ii),where aj Z as Z as Z 072?:1 a; = 1 andb1 Z b2 Z b3 Z 0’2?:1 bl = 1,
and consider a 2 X 2 pure entangled state | x) = /c | 44)++/1 —c|55),1 > c> 1 anda2x2
product state | n) =| 44). Then the collective operation under LOCC | ¥)® | x) —| ¢)® | ),
occurs with certainty if | x) is specified according with the amount of entanglement used in
the process; i.e., E(x) = —clogsc — (1 — ¢)log,(1 — ¢). Hence to minimize E, we have to
find the largest possible value of c, obviously which is not 1. Now, we discuss separately two
different classes of 3 x 3 incomparable pair of states.

Type-1: When a; < by,a; + az > by + bz, then we must have ¢ < %; i.e., the
minimum amount of entanglement required in this process to achieve | ¢) from | ¢) is E = Ey
corresponding to the value ¢ = ¢g = %.

Type-2: When a; > bi,a; + az < by + by, then we must have ¢ < fl’—i; i.e., the mini-
mum amount of entanglement required in this process to achieve | ¢) from | ¢) is E = Ey
corresponding to the value ¢ = ¢g = 2—11.

We conclude this section with an interesting result that in any dimension from a non-

maximally pure entangled state | ¢¢) of d x d system (d > 3), we are able to reach the

d
max

maximally entangled state | ¢) =| ¥Z ) of the same dimension by the use of the next

lower dimensional maximally entangled state | 41 ) through collective local operation with

maxr
certainty.
Corollary-1. | y)® | ¥4-1) | ¥d ® | P), where | P) is a product state, is possible
under LOCC with certainty, if the largest Schmidt coefficient, a; of | 1/¢) satisfies the relation
ai S %

This result follows directly from the theorem above. In fact, instead of using the state
| p%), the above transformation is possible by a 2 x 2 state only.
Corollary-2. The transformation | ¥)® | ¥4 1) — | ¥¢ ‘® | P), is possible under

mazxr max

LOCC with certainty, if we take | 1), as a 2 X 2 state with Schmidt coefficients (%, %)
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Corollary-2 immediately suggests that it is possible to achieve a maximally entangled state
of any Schmidt rank d, d > 3 by using a finite number of 2 x 2 states only.

Corollary-3. The transformation,

| Y1)® [ ¥2) ® -+ | Y1) =| ¥hop)® | P),
is possible under LOCC with certainty, where | ¢;), Vi = 1,2,---,d — 1 are 2 X 2 states with
Schmidt coefficients (#fil, d+i+1)’ respectively.

4 Mutual Co-operation

In this section our main goal is to provide an auxiliary incomparable pair so that the collective
operation enables us to find the desired states; i.e., given a pair | ¢) | ¢) we want to find
an auxiliary pair | x) ¢/ n) such that | ¥)® | x) —| ¢)® | 7), is possible under LOCC
deterministically. There are several ways to find nontrivial (| x), | n)). We first provide some
examples that will show such features and then in two subsections we shall give analytical
results for 3 x 3 system of incomparable states. We explicitly provide the form of the auxiliary
pair for all possible incomparable pair (| ¥),| ¢)) in 3 x 3 system. One of the interesting
feature of such incomparable pairs is that we are unable to say that which state has greater
entanglement than the other. So in this way we may resolve the incomparability of (| ¥),| ¢))
with E(| ¥)) < E(] ¢)) by mutual co-operation which obviously claims that E(| x)) > E(| n)).
Other interesting part we have studied analytically in 3 x 3 system is the following :

From two copy of a pure entangled state we are able to find two different pure entangled
states, both of which are incomparable with the source state. Let us begin with an example
of mutual co-operation.

Ezample 1.— Consider a pair of pure entangled states of the form

| ) = v/0.4]00) + 0.4 | 11) + /0.2 | 22),
| ¢) = /0.48 | 00) +1/0.26 | 11) + v/0.26 | 22),
| x) = v0.49 | 33) + v/0.255 | 44) + v/0.255 | 55),

| n) = v0.41 | 33) + /0.41 | 44) + +/0.18 | 55).

It is easy to check that | ) 4| ¢) and | x) #| n); whereas, E(] ¢)) ~ 1.5219 > E(| ¢)) ~
1.5188, E(] x)) ~ 1.5097 > E(| n)) ~ 1.5001; and if we allow collective operations locally on
the joint systems, then the transformation | ¥)® | x) —| ¢)® | n) is possible with certainty,
i.e., we see that the two pairs which are incomparable, will co-operate with each other and
make the joint transformation possible.

If we looked upon the whole thing in a little more physically then something more comes
out. We see here that the comparability of the joint operation actually comes through the
co-operation with the comparable class, i.e., this four states are related in such a way that
| ) —| n) and | ¢) —| x). So here we reduce the incomparability of two states by choosing
some class of states comparable with them. It is obvious that such a pair of states always exist
for any incomparable pair, i.e., incomparable pairs can always be made to compare. Without
going into details of the proof, we state that this approach resolves the incomparability of the
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3 x 3 states. At this moment someone may think that this result imply that only with the
help of comparable classes we destroy the incomparability. Obviously, the answer is in the
negative. The next example is given in support of this.

Ezample 2.— Consider two pairs of pure entangled states (| ¥),| ¢)) and (| x), | 7)) of the form

| ) = V0.41 | 00) +v/0.38 | 11) + V0.21 | 22),
| ¢) = /0.4 ]00) + V0.4 | 11) + V0.2 | 22),
| x) = v0.45 | 33) + v/0.34 | 44) +/0.21 | 55),

| n) = v/0.48 | 33) +/0.309 | 44) + v0.211 | 55).

It is quite surprising to see that not only | ¥) ¢| ¢) and | x) ¥| 1) but also | ¢¥) ¢|n), |
X) 4| ¢). Beside this we also get the extra facility to prepare |x) from |¢) as | ¥) —| x). From
the informative point of view the picture is although, E(| ¢)) ~ 1.5307 > E(| ¢)) ~ 1.5219,
and E(| x)) = 1.5204 > E(| n)) ~ 1.50544, but still independently we can not convert | ¢) to
either one of | ¢) or | n) and also | x) to either one of | ¢) or | n) with certainty under LOCC.
Therefore although the resource states have greater information content, the individual pairs
aren’t convertible, but treating them together we break their incomparability. Here we didn’t
fix our eyes only on the transformation of the first pair and recover as much as possible amount
of entanglement from second pair rather we have tried to reduce the incomparability of both
the two pairs of states together.

To give rise the fact that mutual co-operation also exists in other dimensions, we are
providing other two sets of incomparable pairs in 4 X 4 system which are strongly incomparable
so that deterministic local conversions are not possible by assisting also catalytic states and
2 x 2 mutual catalytic states but co-operate each to make the joint transformation possible.
Ezample 83— Consider two pairs of pure entangled states (| ¥),| ¢)) and (| x), | 7)) of the form

| ) = v0.4]00) ++/0.3 | 11) + V0.2 | 22) + V0.1 | 33),
| ¢) = v/0.45 | 00) + /0.29 | 11) + v/0.14 | 22) +/0.12 | 33),
| x) = V0.5 | 44) ++/0.25 | 55) + /0.2 | 66) + v/0.05 | 77),

| n) = v/0.48 | 44) + v/0.36 | 55) + v0.12 | 66) + /0.04 | 77).

It is easy to check that | ¢) 4+| ¢) and | x) | 1), and E(| ¥)) = 1.846 > E(]| ¢)) ~ 1.800,
E(] x)) = 1.680 > E(| n)) ~ 1.592. However, one may check | )® | x) — | ¢)® | n), is
possible under LOCC.

Ezample 4.— Consider two pairs of pure entangled states (| ¥),| ¢)) and (| x),| 1)) of the form

| 4) = /0.4 ] 00) + 0.3 | 11) + 0.2 | 22) + V0.1 | 33),
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| ¢) = v/0.45 | 00) + v/0.29 | 11) + v0.14 | 22) + V0.12 | 33),
| x) = V0.5 | 44) +v/0.23 | 55) + v/0.22 | 66) + 1/0.05 | 77),

| n) =+0.48 | 44) ++/0.36 | 55) + v0.12 | 66) + +/0.04 | 77).

Here also it is easy to verify that | 9) #| 6), | 9) #1 1), | x) #| 8) and | x) % 7).
But surprisingly | ¥) — | x). Now it is very interesting that we can prepare the state of

co-operation from the state in our hand. The relations between the entanglement of those
states are, E(] ¥)) ~ 1.846 > E(| ¢)) ~ 1.800, and E(| x)) ~ 1.684 > E(| n)) ~ 1.592,
and | P)® | x) —| ¢)® | n), is possible under LOCC with certainty. All the examples we
are providing are non-trivial one. Next we show some analytical results for 3 x 3 system of
incomparable states.

4.1 Local conversion of 3 x 3 incomparable pairs by auziliary 3 X 3 incomparable
pairs

Now we concentrate to the case of incomparable pairs in 3 X 3 system of states. We shall
show for every pair of incomparable pure entangled states (| ¢1),| ¢1)) there is always a pair
of incomparable pure entangled states (| ¥2), | ¢2)) such that | ¥1) ® | P2) — | $1)® | P2), is
possible under LOCC with certainty. The main idea of this portion is, assuming | 1) as the
source state and | ¢1) as the target state, we choose the nontrivial auxiliary incomparable pair
(| ¥a), | ¢2)) such that by collective LOCC the joint transformation of both pairs is possible
with certainty.

Consider, | 1) = (a1,a3,as3),| ¢1) = (b1,b2,b3) where a; > as > a3 > 0,a; + ax + a3 =
1,by > by > b3 > 0,b; + by + bs = 1. There are two possible cases of incomparability that
exist in this dimension, which are discussed and treated differently below.

Case-1: a; > bj,a; + az < by + ba. We choose | 9¥2) = (81,061, 82),| ¢2) = (a1, s, az)
where 31 > B2 > 0,20: + B2 = 1,1 > a2 > 0,01 + 2a2 = 1,061 < a1,2061 > ai + as, such
that

ai bl a1
2 2 <= 4
max{7, 71} < 1 (4)
and
as (12[)3 a2(2 - bl) — as Oél(bl + bz)
O E— —_— b +2b 1- 5
(2@1 +a3) > /62 > ma‘x{ as 7a2( 2 + 3)7 (1 _ a3) ’ ai } ( )

Under such a choice the required joint transformation is always possible.

In the above process there may arise a similar condition like our first example. For this
type of choice we have always | ¥1) —| ¢2). Except this choice we further require that
those cross pairs (| ¥1),| @2)) or (| ¥2),| ¢1)), remain incomparable too. To fulfill this
requirement the state | 12) is chosen slight differently, as | ¢¥2) = (81, 32,0;), where 31 >
B2 > B3 > 0,81 + B2 + B3 = 1, such that a1 683 > B1as > bias, a161 < biag,aszBs > bzas and
{(,61(13 — 02,33) — (a3 — bg)} < l’IliIl{O, (albg — Oégbz), (02,32 — Otzbz)}. After such a choice the
pair (| ¥2),| ¢1)) became incomparable except when as = az. But whenever we face the case
by = b2 and as = a3 then correspondingly we see that | 1) —| ¢2) and | ¥2) —| ¢1).
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Case-2: a; < by,a; + az > by + be. In this case we choose | ¥3) = (81, 82,03), | ¢2) =
(ozl,al,ozz) where 81 > (B2 > (B3 > 0,81 + B2+ B3 = L,a1 > as > 0,207 +as = 1,8, >
a1, B1 + B2 > 2a;. Now consider two subcases.

Firstly, when a; < 3, we choose the state (| ¥2), | ¢2)) in such a way that a1b3 > a185 >
Bias and
Brar Bi(ar +az) +aiBz (1 —B3)(1 — as3)

by ’ 2b; + bo ’ 2(1 — b3)

} (6)

oy > max{

Secondly, when a; > %, we choose the state (| ¥2), | ¢2)) in such a way that 8, = % and
aiby > a1 > fhas,

& a1+a2+2a1ﬂ2 (0.5+ﬂ2)(1—a3) 2a1 + as al+a2—a2ﬂ3
%1’ 2026 +ba) ° 2(1—by)  4(bi+ba)’ 2 b

oy > max{ YO
It is interesting to note that in the first subcase when a; = as then | ¢¥1) —| ¢2). Except this,
our choice maintains | ¥;) | ¢;), Vi,j = 1,2.

4.2  Two incomparability with the same initial state may be broken jointly

At the beginning of this section we want to present the special result for 3 x 3 system which
is as follows :

For any source state | ¢) in 3 x 3 system, with distinct Schmidt coefficients there always
exist two states (| x), | 7)) such that both of them are incomparable with | 1) but from two
copy of | ) we are able to get them by collective LOCC with certainty.

Suppose the source state is | ) = (a1, a2,a3) with a; > a2 > a3 >0, a1 +az + a3z =1
and the other states are | x) = (b1,b2,b3) and | n) = (c1,c2,¢3) with by > by > b3 > 0,
b1 +b2+bs=1and ¢c; > co >c3 >0, c1 +c2+ c3 = 1. We first impose the incomparability
conditions as a; > by,a; +as < by + by and a; < ¢1,a1 + a2 > ¢1 + ¢co. Then it follows from
Nielsen’s condition that there is always a possible range of (| x),| 1)) such that | ¢)®? —|
X)® | 1), under LOCC with certainty. It should be noted that the cases of failure of this
general result is only the small number of cases where irrespective of the incomparability
condition, the Schmidt coefficients of the source state are not all distinct, i.e., either a; = a2
or as = as.

This result is very important because we must keep in our mind the fact, that multiple
copy transformation is not possible for states in 3 x 3 system. Now with this result in our
hand, let us try to fix | x) as our target state and find the possible range (if exists at all) of
| n); i.e., in a quite general sense we assume that there is two copy of the source state | 1)
in our hand, where | ¢) | x). Our aim is to find a | n); such that | ¢) | n), and to make
possible the joint transformation | ¢)®? —| x)® | 1), under LOCC with certainty.

Like the previous section here also we have two cases of incomparability.

Case-1: When a; > by,a; + az < by + be, we take | ) = (a1, a2, as) where a; > ay >
0,a; + 2as = 1,a; < a1,a; + a2 > a; + az. Then the condition for such transformation is,
as < 3(1— %) Under this condition we have not only one | 1), but a range of it specified
either by the relation

ajaz a? as(2az + a3)

i =3 f 2 8
az < min{ by b3’ (ba+ 2b3) }, for az® > ajas, (8)
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or by the relation

2% —a3? a_§ as(2az2 + a3)
2 by’ (bs+ 2b3)

ag < min{as + 4 }, for ax® < ajaz (9)

Case-2: a; < by,a1 + a2 > by + ba. Here we take | ) = (a1, a1, a2) where a3 > as >

0,2a1 + a2 = 1,a1 > ai,a1 + az < 2a;. Consider two subcases separately.

f. (a1taz)
) 2(b1 +b2)

2

Firstly, when as? > ajas then such a joint transformation occurs i < a1 and the

range of | n) is specified by the relation

a1? — ax? (a1 +a2)? (a1)? ai(ar + 2az)
2 ’ 2(b1 + bz) ’ by ’ (2b1 + bz)

} (10)

oy > max{a; —
Next, when as? < aias then the condition for such transformation is; a1 + 2as < 2b; + bs.
Under this condition range of | n) is specified by the relation

a12—a22 a1(2—a1) (a1)2 al(a1+2a2)} (11)
2 " (2-b3) 7 by 7 (2b; + bo)

oy > max{a; —

Finally we must mention that this process works for most of the cases of incomparability. But,
it is not always successful; i.e., choosing any arbitrary incomparable pair we might not be able
to reach the target state by this method. This small range of failure of the process is possibly
due to the fact that we didn’t ever bother about the amount of entanglement contained into
the states. It is possible that E(| ¢)) < E(| x)); for which there doesn’t exists such a state
| n), incomparable with | %) and E(| ¥)®%) > E(| x)® | n)).

In conclusion we have succeeded in providing a method by which any incomparable pair of
pure bipartite entangled states in any finite dimension, can be maid to compare(i.e., transform
one to another), under LOCC with certainty, by providing some pure entanglement. We
observed that mutual co-operation is an useful process to break the incomparability of two
pairs under LOCC. This is not only discussed as an abstract or rather complicated theory,
but we provide the algorithmic structure by which this goal can be really achieved. This
work supports the possibility of reaching any pure bipartite entangled states by deterministic
LOCC.
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